#include "all_includes.hh" Quad::Quad() {} Quad::Quad(Vertex ne, Vertex se, Vertex sw, Vertex nw) { c[(int)NE] = ne; c[(int)SE] = se; c[(int)SW] = sw; c[(int)NW] = nw; } Quad Quad::inset(Cardinal side, float offset) const { Quad q = (*this) << int(side); Vertex offsetDirection = Triangle(q[NE], q[NW], q[NW] + q.normal()).normal(); Vertex e = q[SE] - q[NE]; Vertex w = q[SW] - q[NW]; float distE = offset / offsetDirection.cosAngle(e); float distW = offset / offsetDirection.cosAngle(w); q[NE] = q[NE] + e.setNorm(distE); q[NW] = q[NW] + w.setNorm(distW); return q >> int(side); } Quad Quad::insetNESW(float offsetN, float offsetE, float offsetS, float offsetW) const { return (*this).inset(N,offsetN).inset(E,offsetE).inset(S,offsetS).inset(W,offsetW); } Quad Quad::insetNESW(float offset) const { return insetNESW(offset, offset, offset, offset); } Quad Quad::insetOpp(Cardinal side, float offset) const { Quad q = (*this) << int(side); Quad qb = (*this) << int(side); qb = qb.inset(N,offset); return Quad(q[NE],qb[NE],qb[NW],q[NW]); } Quad Quad::makeParallelogram() const { float l1, l2; Quad q(c[NE],c[SE],c[SW],c[NW]); if(length(N) < length(S)) { if((l1 = length(E)) < (l2 = length(W))) { q[SW] = Segment(q[NW],q[SW]).reduce(l1).v; q[SE] = q[SW] + (q[NE] - q[NW]); } else if((l1 = length(E)) > (l2 = length(W))) { q[SE] = Segment(q[NE],q[SE]).reduce(l2).v; q[SW] = q[SE] + (q[NW] - q[NE]); } } else { if((l1 = length(E)) < (l2 = length(W))) { q[NW] = Segment(q[SW],q[NW]).reduce(l1).v; q[NE] = q[NW] + (q[SE] - q[SW]); } else if((l1 = length(E)) > (l2 = length(W))) { q[NE] = Segment(q[SE],q[NE]).reduce(l2).v; q[NW] = q[NE] + (q[SW] - q[SE]); } } return q; } float Quad::length(Cardinal side) const { return Segment(c[NW+int(side)],c[NE+int(side)]).length(); } float Quad::minLengthNS() const { return std::min(length(N), length(S)); } float Quad::minLengthEW() const { return std::min(length(E), length(W)); } float Quad::maxLengthNS() const { return std::max(length(N), length(S)); } float Quad::maxLengthEW() const { return std::max(length(E), length(W)); } float Quad::minLength() const { return std::min(minLengthNS(), minLengthEW()); } float Quad::maxLength() const { return std::max(maxLengthNS(), maxLengthEW()); } Cardinal Quad::minLengthSide() const { float ln = length(N); float le = length(E); float ls = length(S); float lw = length(W); if (ln < le && ln < ls && ln < lw) return N; else if (le < ls && le < lw) return E; else if (ls < lw) return S; else return W; } Cardinal Quad::maxLengthSide() const { float ln = length(N); float le = length(E); float ls = length(S); float lw = length(W); if (ln > le && ln > ls && ln > lw) return N; else if (le > ls && le > lw) return E; else if (ls > lw) return S; else return W; } float Quad::angle(Coin corner) const { return Triangle(c[NW+corner], c[NE+corner], c[SE+corner]).angle(); } float Quad::minAngle() const { float ane = angle(NE); float ase = angle(SE); float asw = angle(SW); float anw = 2*Angle::Pi - (ane + ase + asw); return std::min(std::min(ane, ase), std::min(asw, anw)); } float Quad::maxAngle() const { float ane = angle(NE); float ase = angle(SE); float asw = angle(SW); float anw = 2*Angle::Pi - (ane + ase + asw); return std::max(std::max(ane, ase), std::max(asw, anw)); } Coin Quad::minAngleCorner() const { float ane = angle(NE); float ase = angle(SE); float asw = angle(SW); float anw = 2*Angle::Pi - (ane + ase + asw); if (ane < ase && ane < asw && ane < anw) return NE; else if (ase < asw && ase < anw) return SE; else if (asw < anw) return SW; else return NW; } Coin Quad::maxAngleCorner() const { float ane = angle(NE); float ase = angle(SE); float asw = angle(SW); float anw = 2*Angle::Pi - (ane + ase + asw); if (ane > ase && ane > asw && ane > anw) return NE; else if (ase > asw && ase > anw) return SE; else if (asw > anw) return SW; else return NW; } Coin Quad::concaveCorner() { Vertex nne = Triangle(c[NW], c[NE], c[SE]).normalizedNormal(); Vertex nse = Triangle(c[NE], c[SE], c[SW]).normalizedNormal(); Vertex nsw = Triangle(c[SE], c[SW], c[NW]).normalizedNormal(); Vertex nnw = Triangle(c[SW], c[NW], c[NE]).normalizedNormal(); float dne1 = (nnw - nne).norm(); float dne2 = (nse - nne).norm(); float dse1 = (nne - nse).norm(); float dse2 = (nsw - nse).norm(); float dsw1 = (nse - nsw).norm(); float dsw2 = (nnw - nsw).norm(); //float dnw1 = (nsw - nnw).norm(); //float dnw2 = (nne - nnw).norm(); if(dne1 >= 1.5 && dne2 >= 1.5) return NE; else if(dse1 >= 1.5 && dse2 >= 1.5) return SE; else if(dsw1 >= 1.5 && dsw2 >= 1.5) return SW; else return NW; } bool Quad::isConcave() { Vertex nne = Triangle(c[NW], c[NE], c[SE]).normalizedNormal(); Vertex nse = Triangle(c[NE], c[SE], c[SW]).normalizedNormal(); Vertex nsw = Triangle(c[SE], c[SW], c[NW]).normalizedNormal(); Vertex nnw = Triangle(c[SW], c[NW], c[NE]).normalizedNormal(); float dne1 = (nnw - nne).norm(); float dse1 = (nne - nse).norm(); float dsw1 = (nse - nsw).norm(); float dnw1 = (nsw - nnw).norm(); if(dne1 >= 1.5 || dse1 >= 1.5 || dsw1 >= 1.5 || dnw1 >= 1.5) return true; return false; } Quad operator+(const Quad& q, const Vertex& v) { return Quad(q[NE] + v, q[SE] + v, q[SW] + v, q[NW] + v); } Vertex Quad::randomPoint(int seed, int n) const { Triangle ne(c[NW], c[NE], c[SE]); Triangle sw(c[SE], c[SW], c[NW]); float surfacene = ne.surface(); float surfacesw = sw.surface(); if (proba(seed, n, surfacene, surfacene + surfacesw)) { return ne.randomPoint(seed, hash2(n, 42)); } else { return sw.randomPoint(seed, hash2(n, 42)); } } float Quad::surface() const { Triangle ne(c[NW], c[NE], c[SE]); Triangle sw(c[SE], c[SW], c[NW]); return ne.surface() + sw.surface(); } Quad Quad::offsetNormal(float offset) const { return ((*this) + Triangle(c[NE], c[SE], c[SW]).normal().setNorm(offset)); } Vertex Quad::normal() const { return Triangle(c[NE], c[SE], c[SW]).normal(); }