2011-m2s3-city-builder/roam.c

319 lines
9.3 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#include "roam.h"
#include "hash.h"
/* Implémentation de ROAM
* http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.1811&rep=rep1&type=pdf
*
* Triangle T (apex, vLeft, vRight)
* . vApex
* /|\
* / | \
* tLeftChild / 90° \ tRightChild
* / | \
* / 45°|45° \
* vLeft ._____._____. vRight
* vCenter
*
* Le triangle T contient le champ `vCenter`, qui permet de construire
* ses sous-triangles tLeftChild (vCenter, vApex, vLeft) et
* tRightChild (vCenter, vRight, vApex), du moment qu'on connait
* vApex, vLeft et vRight quand on manipule T. On les connaît car on a
* traversé récursivement ses triangles parents avant d'y arriver.
*
* T est le tParent de tLeftChild et tRightChild.
*
* Voisins :
*
* Le tBaseNeighbor de T est le triangle en-dessous, qui partage son
* côté (vLeft,vRight).
*
* Le tLeftNeighbor de T est le triangle à gauche, qui partage son
* côté (vApex,vLeft).
*
* Le tRightNeighbor de T est le triangle à droite, qui partage son
* côté (vApex,vRight).
*
*/
/* Permet de récupérer la taille de la base du triangle (hypoténuse).*/
// TODO Optimisze la fonction pour éviter la racine carée.
int getFirstTriangleSize(Triangle* t) {
return sqrt(((t->vRight->x - t->vLeft->x)^2) + ((t->vRight->y - t->vLeft->y)^2));
}
/* Interpolation linéaire entre deux points.
* (x,y) est le point dont on veut connaître la valeur
* (x1,y1)--(x2,y2) est le carré dont on connaît les valeurs
* ne,se,so,no sont les valeurs aux coins nord/sud-est/ouest du carré. */
// A optimiser par aproximation.
// Optimiser aussi le fait que la distance entre xy1 et xy2 est une puissance de 2, donc on peut faire un simple décalage.
// Peut être réalisé par une multiplication de matrice (donc sur le GPU) : http://en.wikipedia.org/wiki/Bilinear_interpolation
int interpolation(int x, int y, int x1, int y1, int x2, int y2, int ne, int se, int so, int no) {
int ret = 0;
// on multiplie chaque coin par la superficie du rectangle formé par (x,y) et ce coin.
ret += so * (x2-x) * (y-y1);
ret += no * (x2-x) * (y2-y);
ret += ne * (x-x1) * (y2-y);
ret += se * (x-x1) * (y-y1);
return ret / ((x2-x1) * (y2-y1));
}
// renvoie un z entre 0 et 255
int get_z(int x, int y) {
x = x; /* Unused */
y = y; /* Unused */
int z = 0;
int level;
int maxlevel = 6;
for (level = maxlevel; level >= 0; level--) {
int step = (1 << level);
int mask = step - 1;
int zmax = 2*step - 1;
int x1 = x & ~mask;
int y1 = y & ~mask;
int x2 = x1 + step;
int y2 = y1 + step;
z += interpolation(x, y, x1, y1, x2, y2, hash3(level, x2, y1) & zmax, hash3(level, x2, y2) & zmax, hash3(level, x1, y2) & zmax, hash3(level, x1, y1) & zmax);
}
// ici le résultat est entre 0 (inclus) et 2^(2+maxlevel) (non inclus)
// On normalise sur [0,256[ sachant que 256 == 2^8.
if (maxlevel > 6)
z = z >> (-6+maxlevel);
else if (maxlevel != 6)
z = z << (6-maxlevel);
return z;
}
void triangle_split(Triangle* t) {
Triangle* b; /* base neighbor */
Vertex* c; /* center vertex */
Triangle* subTLeft;
Triangle* subTRight;
Triangle* subBLeft;
Triangle* subBRight;
b = t->tBaseNeighbor;
if (b != NULL)
if (b->tBaseNeighbor != t)
/* T and its base neighbor aren't of the same LOD. */
triangle_split(b);
b = t->tBaseNeighbor;
c = (Vertex*)malloc(sizeof(Vertex));
c->x = (t->vLeft->x + t->vRight->x) / 2;
c->y = (t->vLeft->y + t->vRight->y) / 2;
c->z = get_z(c->x, c->y);
subTLeft = (Triangle*)malloc(sizeof(Triangle));
subTRight = (Triangle*)malloc(sizeof(Triangle));
if (b != NULL) {
subBLeft = (Triangle*)malloc(sizeof(Triangle));
subBRight = (Triangle*)malloc(sizeof(Triangle));
} else {
subBLeft = NULL;
subBRight = NULL;
}
/* subTLeft */
{
/* Vertices */
subTLeft->vApex = c;
subTLeft->vLeft = t->vApex;
subTLeft->vRight = t->vLeft;
/* Children */
subTLeft->tLeftChild = NULL;
subTLeft->tRightChild = NULL;
/* To neighbors */
subTLeft->tBaseNeighbor = t->tLeftNeighbor;
subTLeft->tLeftNeighbor = subTRight;
subTLeft->tRightNeighbor = subBRight;
/* Parent */
subTLeft->tParent = t;
/* From neighbors */
if (t->tLeftNeighbor != NULL) {
if (t->tLeftNeighbor->tBaseNeighbor == t) {
t->tLeftNeighbor->tBaseNeighbor = subTLeft;
} else {
t->tLeftNeighbor->tRightNeighbor = subTLeft;
}
}
}
/* subTRight */
{
/* Vertices */
subTRight->vApex = c;
subTRight->vLeft = t->vRight;
subTRight->vRight = t->vApex;
/* Children */
subTRight->tLeftChild = NULL;
subTRight->tRightChild = NULL;
/* To neighbors */
subTRight->tBaseNeighbor = t->tRightNeighbor;
subTRight->tLeftNeighbor = subBLeft;
subTRight->tRightNeighbor = subTLeft;
/* Parent */
subTRight->tParent = t;
/* From neighbors */
if (t->tRightNeighbor != NULL) {
if (t->tRightNeighbor->tBaseNeighbor == t) {
t->tRightNeighbor->tBaseNeighbor = subTRight;
} else {
t->tRightNeighbor->tLeftNeighbor = subTRight;
}
}
}
/* subBLeft */
if (b != NULL) {
/* Vertices */
subBLeft->vApex = c;
subBLeft->vLeft = b->vApex;
subBLeft->vRight = t->vRight; /* == b->vLeft, mais a plus de chances d'être dans le cache, non ? */
/* Children */
subBLeft->tLeftChild = NULL;
subBLeft->tRightChild = NULL;
/* To neighbors */
subBLeft->tBaseNeighbor = b->tLeftNeighbor;
subBLeft->tLeftNeighbor = subBRight;
subBLeft->tRightNeighbor = subTRight;
/* Parent */
subBLeft->tParent = t;
/* From neighbors */
if (b->tLeftNeighbor != NULL) {
if (b->tLeftNeighbor->tBaseNeighbor == b) {
b->tLeftNeighbor->tBaseNeighbor = subBLeft;
} else {
b->tLeftNeighbor->tRightNeighbor = subBLeft;
}
}
}
/* subBRight */
if (b != NULL) {
/* Vertices */
subBRight->vApex = c;
subBRight->vLeft = t->vLeft; /* == b->vRight, mais a plus de chances d'être dans le cache, non ? */
subBRight->vRight = b->vApex;
/* Children */
subBRight->tLeftChild = NULL;
subBRight->tRightChild = NULL;
/* To neighbors */
subBRight->tBaseNeighbor = b->tRightNeighbor;
subBRight->tLeftNeighbor = subTLeft;
subBRight->tRightNeighbor = subBLeft;
/* Parent */
subBRight->tParent = t;
/* From neighbors */
if (b->tRightNeighbor != NULL) {
if (b->tRightNeighbor->tBaseNeighbor == b) {
b->tRightNeighbor->tBaseNeighbor = subBRight;
} else {
b->tRightNeighbor->tLeftNeighbor = subBRight;
}
}
}
t->tLeftChild = subTLeft;
t->tRightChild = subTRight;
if (b != NULL) {
b->tLeftChild = subBLeft;
b->tRightChild = subBRight;
}
}
void triangle_merge(Triangle* t, Triangle* b) {
t = t;
b = b;
/* TODO : free récursivement les triangles… Peut-être pas
* nécessaire vu qu'on peut les garbage-collecter en quelque sorte
* lorsqu'on envoie tous les triangles à la carte (on verra ceux
* qu'on n'envoie pas).
*/
t->tLeftChild = NULL;
t->tRightChild = NULL;
b->tLeftChild = NULL;
b->tRightChild = NULL;
}
/* TODO : MinMax Heap : http://www.diku.dk/forskning/performance-engineering/Jesper/heaplab/heapsurvey_html/node11.html
* TODO : flexible memory usage : http://www.diku.dk/forskning/performance-engineering/Jesper/heaplab/heapsurvey_html/node15.html
* TODO : pour l'instant les comparaisons se font sur les adresses !
*/
/* Index des éléments du tas dans le tableau de stockage.
* 0
* 1 2
* 3 4 5 6
* 7 8 9 . . . . .
*/
#define HEAP_PARENT(x) (((x)-1)/2)
#define HEAP_LEFT_CHILD(x) ((x)*2+1)
#define HEAP_RIGHT_CHILD(x) ((x)*2+2)
#define SWAP(type, a, b) do { type SWAP_temp = (a); (a) = (b); (b) = SWAP_temp; } while (0)
/* Insère `node` dans `heap`.
* @param n : nombre de `node`s déjà dans le `heap`.
*/
void maxheap_insert(Triangle** heap, Triangle* node, unsigned int n) {
heap[n] = node;
unsigned int x = n;
while (x != 0 && heap[x] > heap[HEAP_PARENT(x)]) {
SWAP(Triangle*, heap[x], heap[HEAP_PARENT(x)]);
}
}
/* Récupère le plus grand élément de `heap`.
* @param n : nombre de `node`s déjà dans le `heap`.
*/
Triangle* maxheap_pop_max(Triangle** heap, unsigned int n) {
Triangle* ret = heap[0];
heap[0] = heap[n];
unsigned int x = 0;
while (x != n &&
(heap[x] < heap[HEAP_LEFT_CHILD(x)] || heap[x] < heap[HEAP_RIGHT_CHILD(x)])) {
if (heap[HEAP_LEFT_CHILD(x)] > heap[HEAP_RIGHT_CHILD(x)]) {
SWAP(Triangle*, heap[x], heap[HEAP_LEFT_CHILD(x)]);
} else {
/* échanger right et x */
SWAP(Triangle*, heap[x], heap[HEAP_RIGHT_CHILD(x)]);
}
}
return ret;
}
void recursiveSplit(Triangle* t, int n) {
if (n == 0) return;
if (t->tLeftChild == NULL) { // t is not already split
triangle_split(t);
}
recursiveSplit(t->tLeftChild, n-1);
recursiveSplit(t->tRightChild, n-1);
}
Triangle* initDefaultExample() {
Triangle* t = (Triangle*)malloc(sizeof(Triangle));
Vertex* vApex = (Vertex*)malloc(sizeof(Vertex));
Vertex* vLeft = (Vertex*)malloc(sizeof(Vertex));
Vertex* vRight = (Vertex*)malloc(sizeof(Vertex));
vApex->x = 256; vApex->y = 256; vApex->z = get_z(256,256);
vLeft->x = 0; vLeft->y = 0; vLeft->z = get_z(0,0);
vRight->x = 512; vRight->y = 0; vRight->z = get_z(512,0);
t->vApex = vApex;
t->vLeft = vLeft;
t->vRight = vRight;
t->tLeftChild = NULL;
t->tRightChild = NULL;
t->tBaseNeighbor = NULL;
t->tLeftNeighbor = NULL;
t->tRightNeighbor = NULL;
t->tParent = NULL;
recursiveSplit(t, 10);
/* triangle_split(t); */
/* triangle_split(t->tLeftChild); */
/* triangle_split(t->tLeftChild->tLeftChild); */
/* triangle_split(t->tLeftChild->tRightChild); */
return t;
}