#*************************************************************************** #* * #* Copyright (c) 2018 * #* Efficient Power Conversion Corporation, Inc. http://epc-co.com * #* * #* Developed by FastFieldSolvers S.R.L. under contract by EPC * #* http://www.fastfieldsolvers.com * #* * #* This program is free software; you can redistribute it and/or modify * #* it under the terms of the GNU Lesser General Public License (LGPL) * #* as published by the Free Software Foundation; either version 2 of * #* the License, or (at your option) any later version. * #* for detail see the LICENCE text file. * #* * #* This program is distributed in the hope that it will be useful, * #* but WITHOUT ANY WARRANTY; without even the implied warranty of * #* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * #* GNU Library General Public License for more details. * #* * #* You should have received a copy of the GNU Library General Public * #* License along with this program; if not, write to the Free Software * #* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * #* USA * #* * #*************************************************************************** import FreeCAD, Mesh, Part, MeshPart, DraftGeomUtils, os from FreeCAD import Vector import numpy as np if FreeCAD.GuiUp: import FreeCADGui from PySide import QtCore, QtGui else: def translate(ctxt,txt): return txt __title__="FreeCAD E.M. FastHenry2 Macros" __author__ = "FastFieldSolvers S.R.L." __url__ = "http://www.fastfieldsolvers.com" DEF_FOLDER = "." def export_segs(filename="", disc=3, custDot="", FHbug=False, w=0, h=0, nhinc=0, nwinc=0, folder=DEF_FOLDER): '''Export segments in FastHenry format The function operates on the selection. The selection must be a sketch, a wire or an edge. 'filename' is the name of the export file 'disc' is the maximum number of segments into which curves will be discretized 'custDot' is a custom directive added in the output file (a string added as it is on top of the file) 'FHbug' works around a FastHenry bug happening for some very exact values of diagonal parallel segments, giving rise to 'uh oh segments don't seem parallel' kind of errors 'w', 'h', 'nhinc', 'nwinc' are the FastHenry parameters; if zero, they are ignored (FastHenry will use the .default values). If 'w' is not zero, no segment shorter than abs(w)*3 will be output. Note that the end point of the previous segment will be the starting point of the *next* segment (skipping the short one). This might cause misalignments if there are many consecutive short segments. If 'w' is negative, it assures that no curve will be discretized if the radius is less than w*3, to avoid short thick (overlapping) segments. 'folder' is the folder in which 'filename' will be saved Example: export_segs("mysegs.inp", folder="C:/temp") ''' # get selection sel = FreeCADGui.Selection.getSelection() # if no valid selection was passed if sel == None: return if filename == "": filename = sel[0].Label.replace(" ","_") + ".txt" if not os.path.isdir(folder): os.mkdir(folder) with open(folder + os.sep + filename, 'w') as fid: fid.write("* Conductor definition file for the following objects\n") for obj in sel: fid.write("* - " + obj.Label + "\n") fid.write("* created using FreeCAD's ElectroMagnetic Workbench\n") fid.write("* see http://www.freecad.org and http://www.fastfieldsolvers.com\n") fid.write("\n") # scan objects in selection and export to FastHenry one by one for obj in sel: edges_raw = [] # checking TypeId; cannot check type(obj), too generic if obj.TypeId == "Sketcher::SketchObject": if obj.Shape.ShapeType == "Wire": edges_raw.extend(obj.Shape.Edges) # compound elif obj.TypeId == "Part::Compound": edges_raw.extend(obj.Shape.Edges) # line or DWire (Draft Wire) elif obj.TypeId == "Part::Part2DObjectPython": if obj.Shape.ShapeType == "Wire": edges_raw.extend(obj.Shape.Edges) # wire created by upgrading a set of (connected) edges elif obj.TypeId == "Part::Feature": if obj.Shape.ShapeType == "Wire": edges_raw.extend(obj.Shape.Edges) # any other part, provided it has a 'Shape' attribute else: if hasattr(obj, "Shape"): if obj.Shape.ShapeType == "Wire": edges_raw.extend(obj.Shape.Edges) else: # to be implemented? FreeCAD.Console.PrintMessage("Unsupported object type for '" + obj.Label + "', skipping\n") continue # sort the edges. If the selected path is disconnected, the path will be broken! edges = Part.__sortEdges__(edges_raw) # TBC: join parts with additional edges, or .equiv-ing them, using distToShape between the obj.Shape # Can happen with a compound containing different edges / wires / stetches #edge = Part.Edge(Part.Line(Vector(154.0002, -62.6872,0), Vector(154.0002,-53.1876,0))) #v = Part.Vertex(edges[0].Curve.StartPoint) #v.Tolerance #App.ActiveDocument.Shape.Shape.Vertexes[1].distToShape(App.ActiveDocument.Shape001.Shape.Vertexes[0]) # scan edges and derive nodes nodes = [] for edge in edges: if type(edge.Curve) == Part.Circle: # discretize if edge.Curve.Radius < -w*3 and w < 0: ddisc = 1 else: ddisc = disc for i in range(0, ddisc): step = (edge.LastParameter - edge.FirstParameter) / ddisc # always skip last vertex, as the next edge will start where this finishes nodes.append(edge.valueAt(edge.FirstParameter + i*step)) # quick & dirty trick lastvertex = edge.valueAt(edge.LastParameter) elif type(edge.Curve) == Part.Ellipse: # discretize if (edge.Curve.MajorRadius < -w*3 or edge.Curve.MinorRadius < -w*3) and w < 0: ddisc = 1 else: ddisc = disc for i in range(0, ddisc): step = (edge.LastParameter - edge.FirstParameter) / ddisc # always skip last vertex, as the next edge will start where this finishes nodes.append(edge.valueAt(edge.FirstParameter + i*step)) # quick & dirty trick lastvertex = edge.valueAt(edge.LastParameter) elif type(edge.Curve) == Part.Line: # if w=0, the following condition is always true if edge.Length > abs(w)*3: nodes.append(edge.valueAt(edge.FirstParameter)) # quick & dirty trick lastvertex = edge.valueAt(edge.LastParameter) else: FreeCAD.Console.PrintMessage("Unknown edge: " + str(type(edge.Curve)) + " in '" + obj.Label + "',, skipping\n") # now add the very last vertex nodes.append(lastvertex) if len(nodes) < 2: FreeCAD.Console.PrintMessage("Less than two nodes found in '" + obj.Label + "', skipping\n") continue # start actual object output in FastHenry format fid.write("* " + obj.Label + "\n") if custDot != "": fid.write(custDot + "\n") baseName = obj.Label.replace(" ","_") + "_" # now create nodes for i, node in enumerate(nodes): # extension in the node name must be "S" for the Start node # and "E" for the End node if i == 0: ext = "S" elif i == len(nodes)-1: ext = "E" else: ext = str(i) if FHbug == True: fid.write("N" + baseName + ext + " x=" + str(node.x) + " y=" + str(int(node.y)) + " z=" + str(node.z) + "\n") else: fid.write("N" + baseName + ext + " x=" + str(node.x) + " y=" + str(node.y) + " z=" + str(node.z) + "\n") # and finally segments for i in range(0, len(nodes)-1): # extension in the node name must be "S" for the Start node # and "E" for the End node # # start node if i == 0: ext1 = "S" else: ext1 = str(i) # end node if i >= len(nodes)-2: ext2 = "E" else: ext2 = str(i+1) fid.write("E" + baseName + "N" + ext1 + "N" + ext2 + " ") fid.write("N" + baseName + ext1 + " " + "N" + baseName + ext2) if w > 0: fid.write(" w=" + str(w)) if h > 0: fid.write(" h=" + str(w)) if nhinc > 0: fid.write(" nhinc=" + str(w)) if nwinc > 0: fid.write(" nwinc=" + str(w)) fid.write("\n") # blank lines before next object fid.write("\n\n") fid.closed def export_segs2(filename="", disc=3, custDot="", FHbug=False, breakSeg=False, w=0, h=0, nhinc=0, nwinc=0, folder=DEF_FOLDER): '''Export segments in FastHenry format The function operates on the selection. The selection must be a sketch, a wire or an edge. Version 2 means it discretizes both curved and straight parts of a path. It also dumps nodes of an underlying GND plane. 'filename' is the name of the export file 'disc' is the maximum number of segments into which curves will be discretized 'custDot' is a custom directive added in the output file (a string added as it is on top of the file) 'FHbug' works around a FastHenry bug happening for some very exact values of diagonal parallel segments, giving rise to 'uh oh segments don't seem parallel' kind of errors 'breakSeg' if true breaks also straight segments into 'disc' parts 'w', 'h', 'nhinc', 'nwinc' are the FastHenry parameters; if zero, they are ignored (FastHenry will use the .default values). If 'w' is not zero, no segment shorter than abs(w)*3 will be output. Note that the end point of the previous segment will be the starting point of the *next* segment (skipping the short one). This might cause misalignments if there are many consecutive short segments. If 'w' is negative, it assures that no curve will be discretized if the radius is less than w*3, to avoid short thick (overlapping) segments. 'folder' is the folder in which 'filename' will be saved Example: export_segs2("mysegs.inp", folder="C:/temp") ''' # get selection sel = FreeCADGui.Selection.getSelection() # if no valid selection was passed if sel == None: return if filename == "": filename = sel[0].Label.replace(" ","_") + ".txt" if not os.path.isdir(folder): os.mkdir(folder) with open(folder + os.sep + filename, 'w') as fid: fid.write("* Conductor definition file for the following objects\n") for obj in sel: fid.write("* - " + obj.Label + "\n") fid.write("* created using FreeCAD's ElectroMagnetic Workbench\n") fid.write("* see http://www.freecad.org and http://www.fastfieldsolvers.com\n") fid.write("\n") # scan objects in selection and export to FastHenry one by one gndplane_nodes = [] for obj in sel: edges_raw = [] # checking TypeId; cannot check type(obj), too generic if obj.TypeId == "Sketcher::SketchObject": if obj.Shape.ShapeType == "Wire": edges_raw.extend(obj.Shape.Edges) # compound elif obj.TypeId == "Part::Compound": edges_raw.extend(obj.Shape.Edges) # line or DWire (Draft Wire) elif obj.TypeId == "Part::Part2DObjectPython": if obj.Shape.ShapeType == "Wire": edges_raw.extend(obj.Shape.Edges) # wire created by upgrading a set of (connected) edges elif obj.TypeId == "Part::Feature": if obj.Shape.ShapeType == "Wire": edges_raw.extend(obj.Shape.Edges) # any other part, provided it has a 'Shape' attribute else: if hasattr(obj, "Shape"): if obj.Shape.ShapeType == "Wire": edges_raw.extend(obj.Shape.Edges) else: # to be implemented? FreeCAD.Console.PrintMessage("Unsupported object type for '" + obj.Label + "', skipping\n") continue # sort the edges. If the selected path is disconnected, the path will be broken! edges = Part.__sortEdges__(edges_raw) # scan edges and derive nodes nodes = [] for edge in edges: if type(edge.Curve) == Part.Circle: # discretize if edge.Curve.Radius < -w*3 and w < 0: ddisc = 1 else: ddisc = disc for i in range(0, ddisc): step = (edge.LastParameter - edge.FirstParameter) / ddisc # always skip last vertex, as the next edge will start where this finishes nodes.append(edge.valueAt(edge.FirstParameter + i*step)) # quick & dirty trick lastvertex = edge.valueAt(edge.LastParameter) elif type(edge.Curve) == Part.Ellipse: # discretize if (edge.Curve.MajorRadius < -w*3 or edge.Curve.MinorRadius < -w*3) and w < 0: ddisc = 1 else: ddisc = disc for i in range(0, ddisc): step = (edge.LastParameter - edge.FirstParameter) / ddisc # always skip last vertex, as the next edge will start where this finishes nodes.append(edge.valueAt(edge.FirstParameter + i*step)) # quick & dirty trick lastvertex = edge.valueAt(edge.LastParameter) elif type(edge.Curve) == Part.Line: # if w=0, the following condition is always true if edge.Length > abs(w)*3: if breakSeg == False: ddisc = 1 else: ddisc = disc for i in range(0, ddisc): step = (edge.LastParameter - edge.FirstParameter) / ddisc # always skip last vertex, as the next edge will start where this finishes nodes.append(edge.valueAt(edge.FirstParameter + i*step)) # quick & dirty trick lastvertex = edge.valueAt(edge.LastParameter) else: FreeCAD.Console.PrintMessage("Unknown edge: " + str(type(edge.Curve)) + " in '" + obj.Label + "',, skipping\n") # now add the very last vertex nodes.append(lastvertex) if len(nodes) < 2: FreeCAD.Console.PrintMessage("Less than two nodes found in '" + obj.Label + "', skipping\n") continue # start actual object output in FastHenry format fid.write("* " + obj.Label + "\n") if custDot != "": fid.write(custDot + "\n") baseName = obj.Label.replace(" ","_") + "_" # now create nodes for i, node in enumerate(nodes): # extension in the node name must be "S" for the Start node # and "E" for the End node if i == 0: ext = "S" elif i == len(nodes)-1: ext = "E" else: ext = str(i) if FHbug == True: fid.write("N" + baseName + ext + " x=" + str(node.x) + " y=" + str(int(node.y)) + " z=" + str(node.z) + "\n") gndplane_nodes.append( (baseName+ext, str(node.x), str(int(node.y)), str(node.z)) ) else: fid.write("N" + baseName + ext + " x=" + str(node.x) + " y=" + str(node.y) + " z=" + str(node.z) + "\n") gndplane_nodes.append( (baseName+ext, str(node.x), str(int(node.y)), str(node.z)) ) # and finally segments for i in range(0, len(nodes)-1): # extension in the node name must be "S" for the Start node # and "E" for the End node # # start node if i == 0: ext1 = "S" else: ext1 = str(i) # end node if i >= len(nodes)-2: ext2 = "E" else: ext2 = str(i+1) fid.write("E" + baseName + "N" + ext1 + "N" + ext2 + " ") fid.write("N" + baseName + ext1 + " " + "N" + baseName + ext2) if w > 0: fid.write(" w=" + str(w)) if h > 0: fid.write(" h=" + str(w)) if nhinc > 0: fid.write(" nhinc=" + str(w)) if nwinc > 0: fid.write(" nwinc=" + str(w)) fid.write("\n") # blank lines before next object fid.write("\n\n") # create GND plane nodes for gndplane_node in gndplane_nodes: fid.write("+ Nplane" + gndplane_node[0] + " (" + gndplane_node[1] + "," + gndplane_node[2] + "," + "-1.5" + ")\n" ) # blank lines before next object fid.write("\n\n") # create .equiv plane nodes statements for gndplane_node in gndplane_nodes: fid.write(".equiv Nplane" + gndplane_node[0] + " N" + gndplane_node[0] + "\n") fid.closed def create_FH_plane(filename="", seg1=10, seg2=10, wx=10, wy=10, name="", custDot="", thick=1.0, folder=DEF_FOLDER): '''Create a conductive plane using primitive FastHenry segments 'filename' is the name of the export file 'seg1' is the number of segments along x 'seg2' is the number of segments along y 'wx', 'wy' are the plane dimensions along x and y 'name' is the node extension name (e.g. Nname_1_2) 'folder' is the folder in which 'filename' will be saved Example: create_FH_plane("plane.inp", seg1=5, seg2=3, folder="C:/temp") ''' if filename == "": filename = sel[0].Label.replace(" ","_") + ".txt" if not os.path.isdir(folder): os.mkdir(folder) with open(folder + os.sep + filename, 'w') as fid: fid.write("* Conductive plane built using primitive FastHenry segments\n") fid.write("* created using FreeCAD's ElectroMagnetic Workbench\n") fid.write("* see http://www.freecad.org and http://www.fastfieldsolvers.com\n") fid.write("\n") stepx = wx / seg1 stepy = wy / seg2 # lay down nodes for i in range(0, seg1+1): for j in range(0, seg2+1): fid.write("N" + name + "_" + str(i) + "_" + str(j) + " x=" + str(i*stepx) + " y=" + str(j*stepy) + " z=0 \n") # lay down segments # # along y for i in range(0, seg1+1): for j in range(0, seg2): fid.write("E2"+ name + "_" + str(i) + "_" + str(j) + " N" + name + "_" + str(i) + "_" + str(j) + " N" + name + "_" + str(i) + "_" + str(j+1) + " w=" + str(stepx) + " h=" + str(thick) + " \n") # along x for j in range(0, seg2+1): for i in range(0, seg1): fid.write("E2"+ name + "_" + str(i) + "_" + str(j) + " N" + name + "_" + str(i) + "_" + str(j) + " N" + name + "_" + str(i+1) + "_" + str(j) + " w=" + str(stepy) + " h=" + str(thick) + " \n") fid.write("\n") fid.closed def meshSolidWithSegments(obj=None,delta=1.0,deltaX=0.0,deltaY=0.0,deltaZ=0.0,stayInside=False,generateSegs=True): ''' Mesh a solid object with a grid of segments ''' if obj == None: return if not hasattr(obj,"Shape"): return from FreeCAD import Vector import EM_FHNode import EM_FHSegment import numpy as np # if the user specified no deltaX if deltaX <= 0.0: deltaX = float(delta) # if the user specified no deltaY if deltaY <= 0.0: deltaY = float(delta) # if the user specified no deltaZ if deltaZ <= 0.0: deltaZ = float(delta) bbox = obj.Shape.BoundBox stepsX = int(bbox.XLength/deltaX) deltaSideX = (bbox.XLength - deltaX * stepsX) / 2.0 stepsY = int(bbox.YLength/deltaY) deltaSideY = (bbox.YLength - deltaY * stepsY) / 2.0 stepsZ = int(bbox.ZLength/deltaZ) deltaSideZ = (bbox.ZLength - deltaZ * stepsZ) / 2.0 # create the 3D array of nodes isNode=np.full((stepsX+1,stepsY+1,stepsZ+1), False, np.bool) # and now iterate to find which node is inside the object 'obj' pos_x = bbox.XMin + deltaSideX for step_x in range(0,stepsX+1): pos_y = bbox.YMin + deltaSideY for step_y in range(0,stepsY+1): pos_z = bbox.ZMin + deltaSideZ for step_z in range(0,stepsZ+1): # if the point is inside the object shape, or on the surface, flag it if obj.Shape.isInside(Vector(pos_x,pos_y,pos_z),0.0,True): isNode[step_x,step_y,step_z] = True pos_z = pos_z + deltaZ pos_y = pos_y + deltaY pos_x = pos_x + deltaX # if we don't need to stay within the object shape boundaries, # the segment will overlap the shape contour (just like the uniform conductive planes) nodes=np.full((stepsX+1,stepsY+1,stepsZ+1), None, np.object) if stayInside == False: pos_x = bbox.XMin + deltaSideX for step_x in range(0,stepsX+1): pos_y = bbox.YMin + deltaSideY for step_y in range(0,stepsY+1): pos_z = bbox.ZMin + deltaSideZ for step_z in range(0,stepsZ+1): # if the point is inside the object shape, or on the surface, flag it if isNode[step_x,step_y,step_z] == True: # create the node node = EM_FHNode.makeFHNode(X=pos_x, Y=pos_y, Z=pos_z) # store it in the array nodes[step_x,step_y,step_z] = node pos_z = pos_z + deltaZ pos_y = pos_y + deltaY pos_x = pos_x + deltaX # if we must stay within the object shape boundaries (within the accuracy # of the point sampling) else: pos_x = bbox.XMin + deltaSideX for step_x in range(0,stepsX): pos_y = bbox.YMin + deltaSideY for step_y in range(0,stepsY): pos_z = bbox.ZMin + deltaSideZ for step_z in range(0,stepsZ): # if all the eight cube corners are inside the object shape, # we consider the center point well inside the object shape, i.e. also # for a segment lying on a plane parallel to the plane xy, # with width=deltaX, height=deltaY we are within the object if (isNode[step_x,step_y,step_z] == True and isNode[step_x+1,step_y,step_z] == True and isNode[step_x,step_y+1,step_z] == True and isNode[step_x+1,step_y+1,step_z] == True and isNode[step_x,step_y,step_z+1] == True and isNode[step_x+1,step_y,step_z+1] == True and isNode[step_x,step_y+1,step_z+1] == True and isNode[step_x+1,step_y+1,step_z+1] == True): # create the node node = EM_FHNode.makeFHNode(X=pos_x+deltaX/2.0, Y=pos_y+deltaY/2.0, Z=pos_z+deltaZ/2.0) # store it in the array nodes[step_x,step_y,step_z] = node pos_z = pos_z + deltaZ pos_y = pos_y + deltaY pos_x = pos_x + deltaX # now create the grid of segments # first along x for step_z in range(0,stepsZ+1): for step_y in range(0,stepsY+1): for step_x in range(0,stepsX): # if the node and the next are inside the object shape, create the segment if nodes[step_x,step_y,step_z] != None and nodes[step_x+1,step_y,step_z] != None: segment = EM_FHSegment.makeFHSegment(nodeStart=nodes[step_x,step_y,step_z],nodeEnd=nodes[step_x+1,step_y,step_z],width=deltaX,height=deltaZ) # then along y for step_z in range(0,stepsZ+1): for step_x in range(0,stepsX+1): for step_y in range(0,stepsY): # if the node and the next are inside the object shape, create the segment if nodes[step_x,step_y,step_z] != None and nodes[step_x,step_y+1,step_z] != None: segment = EM_FHSegment.makeFHSegment(nodeStart=nodes[step_x,step_y,step_z],nodeEnd=nodes[step_x,step_y+1,step_z],width=deltaY,height=deltaZ) # finally along z for step_x in range(0,stepsX+1): for step_y in range(0,stepsY+1): for step_z in range(0,stepsZ): # if the node and the next are inside the object shape, create the segment if nodes[step_x,step_y,step_z] != None and nodes[step_x,step_y,step_z+1] != None: segment = EM_FHSegment.makeFHSegment(nodeStart=nodes[step_x,step_y,step_z],nodeEnd=nodes[step_x,step_y,step_z+1],width=deltaX,height=deltaY) def meshSolidWithVoxels(obj=None,delta=1.0): ''' Voxelize a solid object ''' if obj == None: return if not hasattr(obj,"Shape"): return from FreeCAD import Vector import numpy as np bbox = obj.Shape.BoundBox stepsX = int(bbox.XLength/delta) deltaSideX = (bbox.XLength - delta * stepsX) / 2.0 stepsY = int(bbox.YLength/delta) deltaSideY = (bbox.YLength - delta * stepsY) / 2.0 stepsZ = int(bbox.ZLength/delta) deltaSideZ = (bbox.ZLength - delta * stepsZ) / 2.0 print("X="+str(stepsX)+" Y="+str(stepsY)+" Z="+str(stepsZ)+" tot="+str(stepsX*stepsY*stepsZ)) # create the 3D array of nodes isNode=np.full((stepsX+1,stepsY+1,stepsZ+1), False, np.bool) # and now iterate to find which point is inside the object 'obj' pos_x = bbox.XMin + deltaSideX for step_x in range(0,stepsX+1): pos_y = bbox.YMin + deltaSideY for step_y in range(0,stepsY+1): pos_z = bbox.ZMin + deltaSideZ for step_z in range(0,stepsZ+1): # if the point is inside the object shape, or on the surface, flag it if obj.Shape.isInside(Vector(pos_x,pos_y,pos_z),0.0,True): isNode[step_x,step_y,step_z] = True pos_z = pos_z + delta pos_y = pos_y + delta pos_x = pos_x + delta return isNode def getContainingBBox(objs): ''' Get the bounding box containing all the listed objects 'objs' is the list of FreeCAD objects Returns the global bounding box. If the list is None, or is not a list, or if the object have no Shape, the returned BoundBox is None ''' # create an empty bbox gbbox = None isfirst = True # if 'objs' is not None if objs: if isinstance(objs,list): for obj in objs: if hasattr(obj,"Shape"): if isfirst: gbbox = obj.Shape.BoundBox isfirst = False else: gbbox.add(obj.Shape.BoundBox) return gbbox def createVoxelSpace(bbox,delta): ''' Creates the voxel tensor (3D array) in the given bounding box 'bbox' is the overall FreeCAD.BoundBox bounding box 'delta' is the voxels size length Returns a voxel tensor as a Numpy 3D array. If gbbox is None, returns None ''' if bbox == None: return None if delta == None: return None # add 1.0 to always cover the bbox space with the voxels stepsX = int(bbox.XLength/delta + 1.0) stepsY = int(bbox.YLength/delta + 1.0) stepsZ = int(bbox.ZLength/delta + 1.0) # debug print("X="+str(stepsX)+" Y="+str(stepsY)+" Z="+str(stepsZ)+" tot="+str(stepsX*stepsY*stepsZ)) # create the 3D array of nodes as 16-bit integers (max 65k different conductivities) voxelSpace=np.full((stepsX+1,stepsY+1,stepsZ+1), 0, np.int16) return voxelSpace def voxelizeConductor(obj,condIndex,gbbox,delta,voxelSpace): ''' Voxelize a solid object. The function will modify the 'voxelSpace' by marking with 'condIndex' all the voxels that sample the object 'obj' internal. 'obj' is the object to voxelize 'condIndex' (integer) is the index of the object. It defines the object conductivity. 'gbbox' (FreeCAD.BoundBox) is the overall bounding box 'delta' is the voxels size length 'voxelSpace' (Numpy 3D array) is the voxel tensor of the overall space ''' if obj == None: return if not hasattr(obj,"Shape"): return # get this object bbox bbox = obj.Shape.BoundBox # now must find the voxel set that contains the object bounding box # find the voxel that contains the bbox min point min_x = int((bbox.XMin - gbbox.XMin)/delta) min_y = int((bbox.YMin - gbbox.YMin)/delta) min_z = int((bbox.ZMin - gbbox.ZMin)/delta) # find the voxel that contains the bbox max point max_x = int((bbox.XMax - gbbox.XMin)/delta) max_y = int((bbox.YMax - gbbox.YMin)/delta) max_z = int((bbox.ZMax - gbbox.ZMin)/delta) # and now iterate to find which voxel is inside the object 'obj', # sampling based on the voxel centers pos_x = gbbox.XMin + min_x * delta + delta/2.0 for step_x in range(min_x,max_x+1): pos_y = gbbox.YMin + min_y * delta + delta/2.0 for step_y in range(min_y,max_y+1): pos_z = gbbox.ZMin + min_z * delta + delta/2.0 for step_z in range(min_z,max_z+1): # if the point is inside the object shape, or on the surface, flag it if obj.Shape.isInside(Vector(pos_x,pos_y,pos_z),0.0,True): # debug #print("pos_x="+str(pos_x)+" pos_y="+str(pos_y)+" pos_z="+str(pos_z)) voxelSpace[step_x,step_y,step_z] = condIndex pos_z = pos_z + delta pos_y = pos_y + delta pos_x = pos_x + delta def createVoxelShell(obj,condIndex,gbbox,delta,voxelSpace=None): ''' Creates a shell composed by the external faces of a voxelized object. 'obj' is the object whose shell must be created 'condIndex' (integer) is the index of the object. It defines the object conductivity. 'gbbox' (FreeCAD.BoundBox) is the overall bounding box 'delta' is the voxels size length 'voxelSpace' (Numpy 3D array) is the voxel tensor of the overall space ''' if voxelSpace == None: return if not hasattr(obj,"Shape"): return surfList = [] # get the object's bbox bbox = obj.Shape.BoundBox # now must find the voxel set that contains the object bounding box # find the voxel that contains the bbox min point min_x = int((bbox.XMin - gbbox.XMin)/delta) min_y = int((bbox.YMin - gbbox.YMin)/delta) min_z = int((bbox.ZMin - gbbox.ZMin)/delta) # find the voxel that contains the bbox max point max_x = int((bbox.XMax - gbbox.XMin)/delta) max_y = int((bbox.YMax - gbbox.YMin)/delta) max_z = int((bbox.ZMax - gbbox.ZMin)/delta) # this is half the side of the voxel halfdelta = delta/2.0 # array to find the six neighbour sides = [(1,0,0), (-1,0,0), (0,1,0), (0,-1,0), (0,0,1), (0,0,-1)] # vertexes of the six faces vertexes = [[Vector(delta,0,0), Vector(delta,delta,0), Vector(delta,delta,delta), Vector(delta,0,delta)], [Vector(0,0,0), Vector(0,0,delta), Vector(0,delta,delta), Vector(0,delta,0)], [Vector(0,delta,0), Vector(0,delta,delta), Vector(delta,delta,delta), Vector(delta,delta,0)], [Vector(0,0,0), Vector(delta,0,0), Vector(delta,0,delta), Vector(0,0,delta)], [Vector(0,0,delta), Vector(delta,0,delta), Vector(delta,delta,delta), Vector(0,delta,delta)], [Vector(0,0,0), Vector(0,delta,0), Vector(delta,delta,0), Vector(delta,0,0)]] # and now iterate to find which voxel is inside the object 'obj', # sampling based on the voxel centers vbase = Vector(gbbox.XMin + min_x * delta, gbbox.YMin + min_y * delta, gbbox.ZMin + min_z * delta) for step_x in range(min_x,max_x+1): vbase.y = gbbox.YMin + min_y * delta for step_y in range(min_y,max_y+1): vbase.z = gbbox.ZMin + min_z * delta for step_z in range(min_z,max_z+1): # check if voxel is belonging to the given object if voxelSpace[step_x,step_y,step_z] == condIndex: # scan the six neighbour voxels, to see if they are belonging to the same conductor or not. # If they are not belonging to the same conductor, or if the voxel space is finished, the current voxel # side in the direction of the empty voxel is an external surface for side, vertex in zip(sides,vertexes): is_surface = False nextVoxelIndexes = [step_x+side[0],step_y+side[1],step_z+side[2]] if (nextVoxelIndexes[0] > max_x or nextVoxelIndexes[0] < 0 or nextVoxelIndexes[1] > max_y or nextVoxelIndexes[1] < 0 or nextVoxelIndexes[2] > max_z or nextVoxelIndexes[2] < 0): is_surface = True else: if voxelSpace[nextVoxelIndexes[0],nextVoxelIndexes[1],nextVoxelIndexes[2]] != condIndex: is_surface = True if is_surface == True: # debug #print("pos_x="+str(vbase.x)+" pos_y="+str(vbase.y)+" pos_z="+str(vbase.z)) # create the face # calculate the vertexes v11 = vbase + vertex[0] v12 = vbase + vertex[1] v13 = vbase + vertex[2] v14 = vbase + vertex[3] # now make the face poly = Part.makePolygon( [v11,v12,v13,v14,v11]) face = Part.Face(poly) surfList.append(face) vbase.z += delta vbase.y += delta vbase.x += delta # create a shell. Does not need to be solid. objShell = Part.makeShell(surfList) return objShell def findContactVoxelSurfaces(face,condIndex,gbbox,delta,voxelSpace=None,createShell=False): ''' Find the voxel surface sides corresponding to the given contact surface (face) of an object. The object must have already been voxelized. 'face' is the object face 'condIndex' (integer) is the index of the object to which the face belongs. It defines the object conductivity. 'gbbox' (FreeCAD.BoundBox) is the overall bounding box 'delta' is the voxels size length 'voxelSpace' (Numpy 3D array) is the voxel tensor of the overall space 'createShell' (bool) creates a shell out of the contact faces Returns a list of surfaces in the format [x,y,z,voxside] where x, y, z are the voxel position indexes, while voxside is '+x', '-x', '+y', '-y', '+z', '-z' according the the impacted surface of the voxel ''' if voxelSpace == None: return surfList = [] contactList = [] # get the face's bbox bbox = face.BoundBox # now must find the voxel set that contains the face bounding box # with a certain slack - it could be the next voxel, # if the surface is at the boundary between voxels. # Find the voxel that contains the bbox min point min_x = int((bbox.XMin - gbbox.XMin)/delta)-1 min_y = int((bbox.YMin - gbbox.YMin)/delta)-1 min_z = int((bbox.ZMin - gbbox.ZMin)/delta)-1 # find the voxel that contains the bbox max point max_x = int((bbox.XMax - gbbox.XMin)/delta)+1 max_y = int((bbox.YMax - gbbox.YMin)/delta)+1 max_z = int((bbox.ZMax - gbbox.ZMin)/delta)+1 # debug #print(str(min_x)+" "+str(min_y)+" "+str(min_z)+" "+str(max_x)+" "+str(max_y)+" "+str(max_z)) # create a Part.Vertex that we can use to test the distance # to the face (as it is a TopoShape) vec = FreeCAD.Vector(0,0,0) testVertex = Part.Vertex(vec) # this is half the side of the voxel halfdelta = delta/2.0 # small displacement w.r.t. delta epsdelta = delta/100.0 # array to find the six neighbour sides = [(1,0,0), (-1,0,0), (0,1,0), (0,-1,0), (0,0,1), (0,0,-1)] # string describing the side sideStrs = ['+x', '-x', '+y', '-y', '+z', '-z'] # centers of the sides, with respect to the lower corner (with the smallest coordinates) sideCenters = [Vector(delta,halfdelta,halfdelta), Vector(0.0,halfdelta,halfdelta), Vector(halfdelta,delta,halfdelta), Vector(halfdelta,0.0,halfdelta), Vector(halfdelta,halfdelta,delta), Vector(halfdelta,halfdelta,0.0)] # vertexes of the six faces (with a slight offset) vertexes = [[Vector(delta+epsdelta,0,0), Vector(delta+epsdelta,delta,0), Vector(delta+epsdelta,delta,delta), Vector(delta+epsdelta,0,delta)], [Vector(-epsdelta,0,0), Vector(-epsdelta,0,delta), Vector(-epsdelta,delta,delta), Vector(-epsdelta,delta,0)], [Vector(0,delta+epsdelta,0), Vector(0,delta+epsdelta,delta), Vector(delta,delta+epsdelta,delta), Vector(delta,delta+epsdelta,0)], [Vector(0,-epsdelta,0), Vector(delta,-epsdelta,0), Vector(delta,-epsdelta,delta), Vector(0,-epsdelta,delta)], [Vector(0,0,delta+epsdelta), Vector(delta,0,delta+epsdelta), Vector(delta,delta,delta+epsdelta), Vector(0,delta,delta+epsdelta)], [Vector(0,0,-epsdelta), Vector(0,delta,-epsdelta), Vector(delta,delta,-epsdelta), Vector(delta,0,-epsdelta)]] # and now iterate to find which voxel is inside the bounding box of the 'face', vbase = Vector(gbbox.XMin + min_x * delta, gbbox.YMin + min_y * delta, gbbox.ZMin + min_z * delta) for step_x in range(min_x,max_x+1): vbase.y = gbbox.YMin + min_y * delta for step_y in range(min_y,max_y+1): vbase.z = gbbox.ZMin + min_z * delta for step_z in range(min_z,max_z+1): # check if voxel is belonging to the given object if voxelSpace[step_x,step_y,step_z] == condIndex: # scan the six neighbour voxels, to see if they are belonging to the same conductor or not. # If they are not belonging to the same conductor, or if the voxel space is finished, the current voxel # side in the direction of the empty voxel is an external surface for side, sideStr, sideCenter, vertex in zip(sides,sideStrs,sideCenters,vertexes): is_surface = False nextVoxelIndexes = [step_x+side[0],step_y+side[1],step_z+side[2]] if (nextVoxelIndexes[0] > max_x or nextVoxelIndexes[0] < 0 or nextVoxelIndexes[1] > max_y or nextVoxelIndexes[1] < 0 or nextVoxelIndexes[2] > max_z or nextVoxelIndexes[2] < 0): is_surface = True else: if voxelSpace[nextVoxelIndexes[0],nextVoxelIndexes[1],nextVoxelIndexes[2]] != condIndex: is_surface = True if is_surface == True: # debug #print("pos_x="+str(vbase.x)+" pos_y="+str(vbase.y)+" pos_z="+str(vbase.z)) testVertex.Placement.Base = vbase + sideCenter # if the point is close enough to the face, we consider # the voxel surface as belonging to the voxelized face dist = testVertex.distToShape(face) # debug #print(str(dist)) if abs(dist[0]) < halfdelta: contactList.append([step_x,step_y,step_z,sideStr]) if createShell: # create the face # calculate the vertexes v11 = vbase + vertex[0] v12 = vbase + vertex[1] v13 = vbase + vertex[2] v14 = vbase + vertex[3] # now make the face poly = Part.makePolygon( [v11,v12,v13,v14,v11]) contFace = Part.Face(poly) surfList.append(contFace) vbase.z += delta vbase.y += delta vbase.x += delta contactShell = None if createShell: if surfList != []: # create a shell. Does not need to be solid. contactShell = Part.makeShell(surfList) return [contactList,contactShell] #bb = App.BoundBox(); # #objects = App.ActiveDocument.findObjects("Part::Feature") #for object in objects: # bb.add( object.Shape.BoundBox ) # #print bb