EM-Workbench-for-FreeCAD/export_to_FastHenry.py
Enrico Di Lorenzo - FastFieldSolvers S.R.L 1f6777dd8f * Stabilization release
- New icons in line with Tango FreeCAD graphical guidelines and
  FreeCAD workbenches documentation names
- FHEquiv shape not visible bug fix
- Work-around of FreeCAD 0.17(.13541) issue causing re-set of Placement
  of FHNode and FHPlaneHole objects upon document re-load
- Changed FHPort property names to NodePos and NodeNeg to highlight
  node roles. WARNING: breaking compatibility with designs done
  with previous versions of the EM Workbench.
- Minor bug fixes and enhancements
2019-01-10 18:49:46 +01:00

689 lines
34 KiB
Python

#***************************************************************************
#* *
#* Copyright (c) 2018 *
#* Efficient Power Conversion Corporation, Inc. http://epc-co.com *
#* *
#* Developed by FastFieldSolvers S.R.L. under contract by EPC *
#* http://www.fastfieldsolvers.com *
#* *
#* This program is free software; you can redistribute it and/or modify *
#* it under the terms of the GNU Lesser General Public License (LGPL) *
#* as published by the Free Software Foundation; either version 2 of *
#* the License, or (at your option) any later version. *
#* for detail see the LICENCE text file. *
#* *
#* This program is distributed in the hope that it will be useful, *
#* but WITHOUT ANY WARRANTY; without even the implied warranty of *
#* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
#* GNU Library General Public License for more details. *
#* *
#* You should have received a copy of the GNU Library General Public *
#* License along with this program; if not, write to the Free Software *
#* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 *
#* USA *
#* *
#***************************************************************************
import FreeCAD, Mesh, Part, MeshPart, DraftGeomUtils, os
from FreeCAD import Vector
if FreeCAD.GuiUp:
import FreeCADGui
from PySide import QtCore, QtGui
else:
def translate(ctxt,txt):
return txt
__title__="FreeCAD E.M. FastHenry2 Macros"
__author__ = "FastFieldSolvers S.R.L."
__url__ = "http://www.fastfieldsolvers.com"
DEF_FOLDER = "."
def export_segs(filename="", disc=3, custDot="", FHbug=False, w=0, h=0, nhinc=0, nwinc=0, folder=DEF_FOLDER):
'''Export segments in FastHenry format
The function operates on the selection. The selection must be a sketch, a wire or an edge.
'filename' is the name of the export file
'disc' is the maximum number of segments into which curves will be discretized
'custDot' is a custom directive added in the output file (a string added as it is on top of the file)
'FHbug' works around a FastHenry bug happening for some very exact values of diagonal parallel segments,
giving rise to 'uh oh segments don't seem parallel' kind of errors
'w', 'h', 'nhinc', 'nwinc' are the FastHenry parameters;
if zero, they are ignored (FastHenry will use the .default values).
If 'w' is not zero, no segment shorter than abs(w)*3 will be output. Note that the end point of
the previous segment will be the starting point of the *next* segment (skipping the short one).
This might cause misalignments if there are many consecutive short segments.
If 'w' is negative, it assures that no curve will be discretized if the radius is less than w*3,
to avoid short thick (overlapping) segments.
'folder' is the folder in which 'filename' will be saved
Example:
export_segs("mysegs.inp", folder="C:/temp")
'''
# get selection
sel = FreeCADGui.Selection.getSelection()
# if no valid selection was passed
if sel == None:
return
if filename == "":
filename = sel[0].Label.replace(" ","_") + ".txt"
if not os.path.isdir(folder):
os.mkdir(folder)
with open(folder + os.sep + filename, 'w') as fid:
fid.write("* Conductor definition file for the following objects\n")
for obj in sel:
fid.write("* - " + obj.Label + "\n")
fid.write("* created using FreeCAD's ElectroMagnetic Workbench\n")
fid.write("* see http://www.freecad.org and http://www.fastfieldsolvers.com\n")
fid.write("\n")
# scan objects in selection and export to FastHenry one by one
for obj in sel:
edges_raw = []
# checking TypeId; cannot check type(obj), too generic
if obj.TypeId == "Sketcher::SketchObject":
if obj.Shape.ShapeType == "Wire":
edges_raw.extend(obj.Shape.Edges)
# compound
elif obj.TypeId == "Part::Compound":
edges_raw.extend(obj.Shape.Edges)
# line or DWire (Draft Wire)
elif obj.TypeId == "Part::Part2DObjectPython":
if obj.Shape.ShapeType == "Wire":
edges_raw.extend(obj.Shape.Edges)
# wire created by upgrading a set of (connected) edges
elif obj.TypeId == "Part::Feature":
if obj.Shape.ShapeType == "Wire":
edges_raw.extend(obj.Shape.Edges)
# any other part, provided it has a 'Shape' attribute
else:
if hasattr(obj, "Shape"):
if obj.Shape.ShapeType == "Wire":
edges_raw.extend(obj.Shape.Edges)
else:
# to be implemented?
FreeCAD.Console.PrintMessage("Unsupported object type for '" + obj.Label + "', skipping\n")
continue
# sort the edges. If the selected path is disconnected, the path will be broken!
edges = Part.__sortEdges__(edges_raw)
# TBC: join parts with additional edges, or .equiv-ing them, using distToShape between the obj.Shape
# Can happen with a compound containing different edges / wires / stetches
#edge = Part.Edge(Part.Line(Vector(154.0002, -62.6872,0), Vector(154.0002,-53.1876,0)))
#v = Part.Vertex(edges[0].Curve.StartPoint)
#v.Tolerance
#App.ActiveDocument.Shape.Shape.Vertexes[1].distToShape(App.ActiveDocument.Shape001.Shape.Vertexes[0])
# scan edges and derive nodes
nodes = []
for edge in edges:
if type(edge.Curve) == Part.Circle:
# discretize
if edge.Curve.Radius < -w*3 and w < 0:
ddisc = 1
else:
ddisc = disc
for i in range(0, ddisc):
step = (edge.LastParameter - edge.FirstParameter) / ddisc
# always skip last vertex, as the next edge will start where this finishes
nodes.append(edge.valueAt(edge.FirstParameter + i*step))
# quick & dirty trick
lastvertex = edge.valueAt(edge.LastParameter)
elif type(edge.Curve) == Part.Ellipse:
# discretize
if (edge.Curve.MajorRadius < -w*3 or edge.Curve.MinorRadius < -w*3) and w < 0:
ddisc = 1
else:
ddisc = disc
for i in range(0, ddisc):
step = (edge.LastParameter - edge.FirstParameter) / ddisc
# always skip last vertex, as the next edge will start where this finishes
nodes.append(edge.valueAt(edge.FirstParameter + i*step))
# quick & dirty trick
lastvertex = edge.valueAt(edge.LastParameter)
elif type(edge.Curve) == Part.Line:
# if w=0, the following condition is always true
if edge.Length > abs(w)*3:
nodes.append(edge.valueAt(edge.FirstParameter))
# quick & dirty trick
lastvertex = edge.valueAt(edge.LastParameter)
else:
FreeCAD.Console.PrintMessage("Unknown edge: " + str(type(edge.Curve)) + " in '" + obj.Label + "',, skipping\n")
# now add the very last vertex
nodes.append(lastvertex)
if len(nodes) < 2:
FreeCAD.Console.PrintMessage("Less than two nodes found in '" + obj.Label + "', skipping\n")
continue
# start actual object output in FastHenry format
fid.write("* " + obj.Label + "\n")
if custDot != "":
fid.write(custDot + "\n")
baseName = obj.Label.replace(" ","_") + "_"
# now create nodes
for i, node in enumerate(nodes):
# extension in the node name must be "S" for the Start node
# and "E" for the End node
if i == 0:
ext = "S"
elif i == len(nodes)-1:
ext = "E"
else:
ext = str(i)
if FHbug == True:
fid.write("N" + baseName + ext + " x=" + str(node.x) + " y=" + str(int(node.y)) + " z=" + str(node.z) + "\n")
else:
fid.write("N" + baseName + ext + " x=" + str(node.x) + " y=" + str(node.y) + " z=" + str(node.z) + "\n")
# and finally segments
for i in range(0, len(nodes)-1):
# extension in the node name must be "S" for the Start node
# and "E" for the End node
#
# start node
if i == 0:
ext1 = "S"
else:
ext1 = str(i)
# end node
if i >= len(nodes)-2:
ext2 = "E"
else:
ext2 = str(i+1)
fid.write("E" + baseName + "N" + ext1 + "N" + ext2 + " ")
fid.write("N" + baseName + ext1 + " " + "N" + baseName + ext2)
if w > 0:
fid.write(" w=" + str(w))
if h > 0:
fid.write(" h=" + str(w))
if nhinc > 0:
fid.write(" nhinc=" + str(w))
if nwinc > 0:
fid.write(" nwinc=" + str(w))
fid.write("\n")
# blank lines before next object
fid.write("\n\n")
fid.closed
def export_segs2(filename="", disc=3, custDot="", FHbug=False, breakSeg=False, w=0, h=0, nhinc=0, nwinc=0, folder=DEF_FOLDER):
'''Export segments in FastHenry format
The function operates on the selection. The selection must be a sketch, a wire or an edge.
Version 2 means it discretizes both curved and straight parts of a path. It also dumps nodes of an underlying GND plane.
'filename' is the name of the export file
'disc' is the maximum number of segments into which curves will be discretized
'custDot' is a custom directive added in the output file (a string added as it is on top of the file)
'FHbug' works around a FastHenry bug happening for some very exact values of diagonal parallel segments,
giving rise to 'uh oh segments don't seem parallel' kind of errors
'breakSeg' if true breaks also straight segments into 'disc' parts
'w', 'h', 'nhinc', 'nwinc' are the FastHenry parameters;
if zero, they are ignored (FastHenry will use the .default values).
If 'w' is not zero, no segment shorter than abs(w)*3 will be output. Note that the end point of
the previous segment will be the starting point of the *next* segment (skipping the short one).
This might cause misalignments if there are many consecutive short segments.
If 'w' is negative, it assures that no curve will be discretized if the radius is less than w*3,
to avoid short thick (overlapping) segments.
'folder' is the folder in which 'filename' will be saved
Example:
export_segs2("mysegs.inp", folder="C:/temp")
'''
# get selection
sel = FreeCADGui.Selection.getSelection()
# if no valid selection was passed
if sel == None:
return
if filename == "":
filename = sel[0].Label.replace(" ","_") + ".txt"
if not os.path.isdir(folder):
os.mkdir(folder)
with open(folder + os.sep + filename, 'w') as fid:
fid.write("* Conductor definition file for the following objects\n")
for obj in sel:
fid.write("* - " + obj.Label + "\n")
fid.write("* created using FreeCAD's ElectroMagnetic Workbench\n")
fid.write("* see http://www.freecad.org and http://www.fastfieldsolvers.com\n")
fid.write("\n")
# scan objects in selection and export to FastHenry one by one
gndplane_nodes = []
for obj in sel:
edges_raw = []
# checking TypeId; cannot check type(obj), too generic
if obj.TypeId == "Sketcher::SketchObject":
if obj.Shape.ShapeType == "Wire":
edges_raw.extend(obj.Shape.Edges)
# compound
elif obj.TypeId == "Part::Compound":
edges_raw.extend(obj.Shape.Edges)
# line or DWire (Draft Wire)
elif obj.TypeId == "Part::Part2DObjectPython":
if obj.Shape.ShapeType == "Wire":
edges_raw.extend(obj.Shape.Edges)
# wire created by upgrading a set of (connected) edges
elif obj.TypeId == "Part::Feature":
if obj.Shape.ShapeType == "Wire":
edges_raw.extend(obj.Shape.Edges)
# any other part, provided it has a 'Shape' attribute
else:
if hasattr(obj, "Shape"):
if obj.Shape.ShapeType == "Wire":
edges_raw.extend(obj.Shape.Edges)
else:
# to be implemented?
FreeCAD.Console.PrintMessage("Unsupported object type for '" + obj.Label + "', skipping\n")
continue
# sort the edges. If the selected path is disconnected, the path will be broken!
edges = Part.__sortEdges__(edges_raw)
# TBC: join parts with additional edges, or .equiv-ing them, using distToShape between the obj.Shape
# Can happen with a compound containing different edges / wires / stetches
#edge = Part.Edge(Part.Line(Vector(154.0002, -62.6872,0), Vector(154.0002,-53.1876,0)))
#v = Part.Vertex(edges[0].Curve.StartPoint)
#v.Tolerance
#App.ActiveDocument.Shape.Shape.Vertexes[1].distToShape(App.ActiveDocument.Shape001.Shape.Vertexes[0])
# scan edges and derive nodes
nodes = []
for edge in edges:
if type(edge.Curve) == Part.Circle:
# discretize
if edge.Curve.Radius < -w*3 and w < 0:
ddisc = 1
else:
ddisc = disc
for i in range(0, ddisc):
step = (edge.LastParameter - edge.FirstParameter) / ddisc
# always skip last vertex, as the next edge will start where this finishes
nodes.append(edge.valueAt(edge.FirstParameter + i*step))
# quick & dirty trick
lastvertex = edge.valueAt(edge.LastParameter)
elif type(edge.Curve) == Part.Ellipse:
# discretize
if (edge.Curve.MajorRadius < -w*3 or edge.Curve.MinorRadius < -w*3) and w < 0:
ddisc = 1
else:
ddisc = disc
for i in range(0, ddisc):
step = (edge.LastParameter - edge.FirstParameter) / ddisc
# always skip last vertex, as the next edge will start where this finishes
nodes.append(edge.valueAt(edge.FirstParameter + i*step))
# quick & dirty trick
lastvertex = edge.valueAt(edge.LastParameter)
elif type(edge.Curve) == Part.Line:
# if w=0, the following condition is always true
if edge.Length > abs(w)*3:
if breakSeg == False:
ddisc = 1
else:
ddisc = disc
for i in range(0, ddisc):
step = (edge.LastParameter - edge.FirstParameter) / ddisc
# always skip last vertex, as the next edge will start where this finishes
nodes.append(edge.valueAt(edge.FirstParameter + i*step))
# quick & dirty trick
lastvertex = edge.valueAt(edge.LastParameter)
else:
FreeCAD.Console.PrintMessage("Unknown edge: " + str(type(edge.Curve)) + " in '" + obj.Label + "',, skipping\n")
# now add the very last vertex
nodes.append(lastvertex)
if len(nodes) < 2:
FreeCAD.Console.PrintMessage("Less than two nodes found in '" + obj.Label + "', skipping\n")
continue
# start actual object output in FastHenry format
fid.write("* " + obj.Label + "\n")
if custDot != "":
fid.write(custDot + "\n")
baseName = obj.Label.replace(" ","_") + "_"
# now create nodes
for i, node in enumerate(nodes):
# extension in the node name must be "S" for the Start node
# and "E" for the End node
if i == 0:
ext = "S"
elif i == len(nodes)-1:
ext = "E"
else:
ext = str(i)
if FHbug == True:
fid.write("N" + baseName + ext + " x=" + str(node.x) + " y=" + str(int(node.y)) + " z=" + str(node.z) + "\n")
gndplane_nodes.append( (baseName+ext, str(node.x), str(int(node.y)), str(node.z)) )
else:
fid.write("N" + baseName + ext + " x=" + str(node.x) + " y=" + str(node.y) + " z=" + str(node.z) + "\n")
gndplane_nodes.append( (baseName+ext, str(node.x), str(int(node.y)), str(node.z)) )
# and finally segments
for i in range(0, len(nodes)-1):
# extension in the node name must be "S" for the Start node
# and "E" for the End node
#
# start node
if i == 0:
ext1 = "S"
else:
ext1 = str(i)
# end node
if i >= len(nodes)-2:
ext2 = "E"
else:
ext2 = str(i+1)
fid.write("E" + baseName + "N" + ext1 + "N" + ext2 + " ")
fid.write("N" + baseName + ext1 + " " + "N" + baseName + ext2)
if w > 0:
fid.write(" w=" + str(w))
if h > 0:
fid.write(" h=" + str(w))
if nhinc > 0:
fid.write(" nhinc=" + str(w))
if nwinc > 0:
fid.write(" nwinc=" + str(w))
fid.write("\n")
# blank lines before next object
fid.write("\n\n")
# create GND plane nodes
for gndplane_node in gndplane_nodes:
fid.write("+ Nplane" + gndplane_node[0] + " (" + gndplane_node[1] + "," +
gndplane_node[2] + "," + "-1.5" + ")\n" )
# blank lines before next object
fid.write("\n\n")
# create .equiv plane nodes statements
for gndplane_node in gndplane_nodes:
fid.write(".equiv Nplane" + gndplane_node[0] + " N" + gndplane_node[0] + "\n")
fid.closed
def create_FH_plane(filename="", seg1=10, seg2=10, wx=10, wy=10, name="", custDot="", thick=1.0, folder=DEF_FOLDER):
'''Create a conductive plane using primitive FastHenry segments
'filename' is the name of the export file
'seg1' is the number of segments along x
'seg2' is the number of segments along y
'wx', 'wy' are the plane dimensions along x and y
'name' is the node extension name (e.g. Nname_1_2)
'folder' is the folder in which 'filename' will be saved
Example:
create_FH_plane("plane.inp", seg1=5, seg2=3, folder="C:/temp")
'''
if filename == "":
filename = sel[0].Label.replace(" ","_") + ".txt"
if not os.path.isdir(folder):
os.mkdir(folder)
with open(folder + os.sep + filename, 'w') as fid:
fid.write("* Conductive plane built using primitive FastHenry segments\n")
fid.write("* created using FreeCAD's ElectroMagnetic Workbench\n")
fid.write("* see http://www.freecad.org and http://www.fastfieldsolvers.com\n")
fid.write("\n")
stepx = wx / seg1
stepy = wy / seg2
# lay down nodes
for i in range(0, seg1+1):
for j in range(0, seg2+1):
fid.write("N" + name + "_" + str(i) + "_" + str(j) + " x=" + str(i*stepx) + " y=" + str(j*stepy) + " z=0 \n")
# lay down segments
#
# along y
for i in range(0, seg1+1):
for j in range(0, seg2):
fid.write("E2"+ name + "_" + str(i) + "_" + str(j) + " N" + name + "_" + str(i) + "_" + str(j) + " N" + name + "_" + str(i) + "_" + str(j+1) + " w=" + str(stepx) + " h=" + str(thick) + " \n")
# along x
for j in range(0, seg2+1):
for i in range(0, seg1):
fid.write("E2"+ name + "_" + str(i) + "_" + str(j) + " N" + name + "_" + str(i) + "_" + str(j) + " N" + name + "_" + str(i+1) + "_" + str(j) + " w=" + str(stepy) + " h=" + str(thick) + " \n")
fid.write("\n")
fid.closed
def meshSolidWithSegments(obj=None,delta=1.0,deltaX=0.0,deltaY=0.0,deltaZ=0.0,stayInside=False,generateSegs=True):
''' Mesh a solid object with a grid of segments
'''
if obj == None:
return
if not hasattr(obj,"Shape"):
return
from FreeCAD import Vector
import EM_FHNode
import EM_FHSegment
import numpy as np
# if the user specified no deltaX
if deltaX <= 0.0:
deltaX = float(delta)
# if the user specified no deltaY
if deltaY <= 0.0:
deltaY = float(delta)
# if the user specified no deltaZ
if deltaZ <= 0.0:
deltaZ = float(delta)
bbox = obj.Shape.BoundBox
stepsX = int(bbox.XLength/deltaX)
deltaSideX = (bbox.XLength - deltaX * stepsX) / 2.0
stepsY = int(bbox.YLength/deltaY)
deltaSideY = (bbox.YLength - deltaY * stepsY) / 2.0
stepsZ = int(bbox.ZLength/deltaZ)
deltaSideZ = (bbox.ZLength - deltaZ * stepsZ) / 2.0
# create the 3D array of nodes
isNode=np.full((stepsX+1,stepsY+1,stepsZ+1), False, np.bool)
# and now iterate to find which node is inside the object 'obj'
pos_x = bbox.XMin + deltaSideX
for step_x in range(0,stepsX+1):
pos_y = bbox.YMin + deltaSideY
for step_y in range(0,stepsY+1):
pos_z = bbox.ZMin + deltaSideZ
for step_z in range(0,stepsZ+1):
# if the point is inside the object shape, or on the surface, flag it
if obj.Shape.isInside(Vector(pos_x,pos_y,pos_z),0.0,True):
isNode[step_x,step_y,step_z] = True
pos_z = pos_z + deltaZ
pos_y = pos_y + deltaY
pos_x = pos_x + deltaX
# if we don't need to stay within the object shape boundaries,
# the segment will overlap the shape contour (just like the uniform conductive planes)
nodes=np.full((stepsX+1,stepsY+1,stepsZ+1), None, np.object)
if stayInside == False:
pos_x = bbox.XMin + deltaSideX
for step_x in range(0,stepsX+1):
pos_y = bbox.YMin + deltaSideY
for step_y in range(0,stepsY+1):
pos_z = bbox.ZMin + deltaSideZ
for step_z in range(0,stepsZ+1):
# if the point is inside the object shape, or on the surface, flag it
if isNode[step_x,step_y,step_z] == True:
# create the node
node = EM_FHNode.makeFHNode(X=pos_x, Y=pos_y, Z=pos_z)
# store it in the array
nodes[step_x,step_y,step_z] = node
pos_z = pos_z + deltaZ
pos_y = pos_y + deltaY
pos_x = pos_x + deltaX
# if we must stay within the object shape boundaries (within the accuracy
# of the point sampling)
else:
pos_x = bbox.XMin + deltaSideX
for step_x in range(0,stepsX):
pos_y = bbox.YMin + deltaSideY
for step_y in range(0,stepsY):
pos_z = bbox.ZMin + deltaSideZ
for step_z in range(0,stepsZ):
# if all the eight cube corners are inside the object shape,
# we consider the center point well inside the object shape, i.e. also
# for a segment lying on a plane parallel to the plane xy,
# with width=deltaX, height=deltaY we are within the object
if (isNode[step_x,step_y,step_z] == True and isNode[step_x+1,step_y,step_z] == True and
isNode[step_x,step_y+1,step_z] == True and isNode[step_x+1,step_y+1,step_z] == True and
isNode[step_x,step_y,step_z+1] == True and isNode[step_x+1,step_y,step_z+1] == True and
isNode[step_x,step_y+1,step_z+1] == True and isNode[step_x+1,step_y+1,step_z+1] == True):
# create the node
node = EM_FHNode.makeFHNode(X=pos_x+deltaX/2.0, Y=pos_y+deltaY/2.0, Z=pos_z+deltaZ/2.0)
# store it in the array
nodes[step_x,step_y,step_z] = node
pos_z = pos_z + deltaZ
pos_y = pos_y + deltaY
pos_x = pos_x + deltaX
# now create the grid of segments
# first along x
for step_z in range(0,stepsZ+1):
for step_y in range(0,stepsY+1):
for step_x in range(0,stepsX):
# if the node and the next are inside the object shape, create the segment
if nodes[step_x,step_y,step_z] <> None and nodes[step_x+1,step_y,step_z] <> None:
segment = EM_FHSegment.makeFHSegment(nodeStart=nodes[step_x,step_y,step_z],nodeEnd=nodes[step_x+1,step_y,step_z],width=deltaX,height=deltaZ)
# then along y
for step_z in range(0,stepsZ+1):
for step_x in range(0,stepsX+1):
for step_y in range(0,stepsY):
# if the node and the next are inside the object shape, create the segment
if nodes[step_x,step_y,step_z] <> None and nodes[step_x,step_y+1,step_z] <> None:
segment = EM_FHSegment.makeFHSegment(nodeStart=nodes[step_x,step_y,step_z],nodeEnd=nodes[step_x,step_y+1,step_z],width=deltaY,height=deltaZ)
# finally along z
for step_x in range(0,stepsX+1):
for step_y in range(0,stepsY+1):
for step_z in range(0,stepsZ):
# if the node and the next are inside the object shape, create the segment
if nodes[step_x,step_y,step_z] <> None and nodes[step_x,step_y,step_z+1] <> None:
segment = EM_FHSegment.makeFHSegment(nodeStart=nodes[step_x,step_y,step_z],nodeEnd=nodes[step_x,step_y,step_z+1],width=deltaX,height=deltaY)
def meshSolidWithVoxels(obj=None,delta=1.0,stayInside=False):
''' Voxel a solid object
'''
if obj == None:
return
if not hasattr(obj,"Shape"):
return
from FreeCAD import Vector
import numpy as np
bbox = obj.Shape.BoundBox
stepsX = int(bbox.XLength/delta)
deltaSideX = (bbox.XLength - delta * stepsX) / 2.0
stepsY = int(bbox.YLength/delta)
deltaSideY = (bbox.YLength - delta * stepsY) / 2.0
stepsZ = int(bbox.ZLength/delta)
deltaSideZ = (bbox.ZLength - delta * stepsZ) / 2.0
print("X="+str(stepsX)+" Y="+str(stepsY)+" Z="+str(stepsZ)+" tot="+str(stepsX*stepsY*stepsZ))
# create the 3D array of nodes
isNode=np.full((stepsX+1,stepsY+1,stepsZ+1), False, np.bool)
# and now iterate to find which point is inside the object 'obj'
pos_x = bbox.XMin + deltaSideX
for step_x in range(0,stepsX+1):
pos_y = bbox.YMin + deltaSideY
for step_y in range(0,stepsY+1):
pos_z = bbox.ZMin + deltaSideZ
for step_z in range(0,stepsZ+1):
# if the point is inside the object shape, or on the surface, flag it
if obj.Shape.isInside(Vector(pos_x,pos_y,pos_z),0.0,True):
isNode[step_x,step_y,step_z] = True
pos_z = pos_z + delta
pos_y = pos_y + delta
pos_x = pos_x + delta
return isNode
# if we must don't need to stay within the object shape boundaries,
# the voxel will overlap the shape contour
# nodes=np.full((stepsX+1,stepsY+1,stepsZ+1), None, np.object)
# if stayInside == False:
# pos_x = bbox.XMin + deltaSideX
# for step_x in range(0,stepsX+1):
# pos_y = bbox.YMin + deltaSideY
# for step_y in range(0,stepsY+1):
# pos_z = bbox.ZMin + deltaSideZ
# for step_z in range(0,stepsZ+1):
# # if the point is inside the object shape, or on the surface, flag it
# if isNode[step_x,step_y,step_z] == True:
# # create the node
# node = EM_FHNode.makeFHNode(X=pos_x, Y=pos_y, Z=pos_z)
# # store it in the array
# nodes[step_x,step_y,step_z] = node
# pos_z = pos_z + deltaZ
# pos_y = pos_y + deltaY
# pos_x = pos_x + deltaX
# # if we must stay within the object shape boundaries (within the accuracy
# # of the point sampling)
# else:
# pos_x = bbox.XMin + deltaSideX
# for step_x in range(0,stepsX):
# pos_y = bbox.YMin + deltaSideY
# for step_y in range(0,stepsY):
# pos_z = bbox.ZMin + deltaSideZ
# for step_z in range(0,stepsZ):
# # if all the eight cube corners are inside the object shape,
# # we consider the center point well inside the object shape, i.e. also
# # for a segment lying on a plane parallel to the plane xy,
# # with width=deltaX, height=deltaY we are within the object
# if (isNode[step_x,step_y,step_z] == True and isNode[step_x+1,step_y,step_z] == True and
# isNode[step_x,step_y+1,step_z] == True and isNode[step_x+1,step_y+1,step_z] == True and
# isNode[step_x,step_y,step_z+1] == True and isNode[step_x+1,step_y,step_z+1] == True and
# isNode[step_x,step_y+1,step_z+1] == True and isNode[step_x+1,step_y+1,step_z+1] == True):
# # create the node
# node = EM_FHNode.makeFHNode(X=pos_x+deltaX/2.0, Y=pos_y+deltaY/2.0, Z=pos_z+deltaZ/2.0)
# # store it in the array
# nodes[step_x,step_y,step_z] = node
# pos_z = pos_z + deltaZ
# pos_y = pos_y + deltaY
# pos_x = pos_x + deltaX
# # now create the grid of segments
# # first along x
# for step_z in range(0,stepsZ+1):
# for step_y in range(0,stepsY+1):
# for step_x in range(0,stepsX):
# # if the node and the next are inside the object shape, create the segment
# if nodes[step_x,step_y,step_z] <> None and nodes[step_x+1,step_y,step_z] <> None:
# segment = EM_FHSegment.makeFHSegment(nodeStart=nodes[step_x,step_y,step_z],nodeEnd=nodes[step_x+1,step_y,step_z],width=deltaX,height=deltaZ)
# # then along y
# for step_z in range(0,stepsZ+1):
# for step_x in range(0,stepsX+1):
# for step_y in range(0,stepsY):
# # if the node and the next are inside the object shape, create the segment
# if nodes[step_x,step_y,step_z] <> None and nodes[step_x,step_y+1,step_z] <> None:
# segment = EM_FHSegment.makeFHSegment(nodeStart=nodes[step_x,step_y,step_z],nodeEnd=nodes[step_x,step_y+1,step_z],width=deltaY,height=deltaZ)
# # finally along z
# for step_x in range(0,stepsX+1):
# for step_y in range(0,stepsY+1):
# for step_z in range(0,stepsZ):
# # if the node and the next are inside the object shape, create the segment
# if nodes[step_x,step_y,step_z] <> None and nodes[step_x,step_y,step_z+1] <> None:
# segment = EM_FHSegment.makeFHSegment(nodeStart=nodes[step_x,step_y,step_z],nodeEnd=nodes[step_x,step_y,step_z+1],width=deltaX,height=deltaY)
#
#bb = App.BoundBox();
#
#objects = App.ActiveDocument.findObjects("Part::Feature")
#for object in objects:
# bb.add( object.Shape.BoundBox )
#
#print bb