Arch Concept

This page is an attempt to collect ideas about parametric design in the field of architecture for building the Arch Module. Since it is a bit different than the mech engineering field, I want to define concepts a bit better before thinking about how to start implementing it... Feel free to add your ideas!

Similar software

File formats

General concepts

About archetypes

Archetypes (object types)

Wall

Wall is a vertical building component that follows a path on a defined level (i.e. first floor, third floor, etc.) or is extruded horizontally from a vertical surface. Walls are made of several layers (materials, each one with specific thickness and thermal properties), and allow for openings (resulted from subtractions) or appendices (unions). When two different walls intersect, user can select the option to connect the two walls (with similar structure). All parameters of a wall are available for future structural and thermal calculations, as well to generate reports (bill of materials). So for a wall, face areas, volumes, material quantities, etc. are directly inserted in the bill of materials and cost estimate.

As mentioned, walls in BIM are defined by a line/polyline/etc. that represents the "center-line" of the wall. This line can be aligned with the exterior face of the wall, interior face of the wall, or the center or the wall, or if user chose to, it can be custom defined. Walls have several parameters that define them:

- level in which wall is placed( i.e. first floor, basement, fifth floor, etc.)
- width
- height
- composition

The level in which walls are placed, require a previous insertion of that "level" by user. Once a level is inserted in the BIM model, that creates automatically a horizontal section, that in turn will generate a "sheet", i.e. once I insert level called "First Floor" at height 0.00 that will automatically section all the visible elements at that height (plus and minus up and down so doors/windows/openings will be visible in that floor plan). Levels and elevations are similar in concept, as basically both are "section planes" located to a certain position/rotation in the 3D space.

Walls allow for insertions of libraries like: doors, windows, curtain walls, and other custom made objects that require an opening in that wall. If just an opening is required, that can be inserted as well.

Door/Window (Insert element)

Doors and windows are really the same thing, a totally object which can have a lot of parameters to define its shape, and an invisible volume that is used to cut openings through receiving walls. They are typically inserted into a wall, but not always. since they can differ much, they should be easy to design.

Roof

Roof is simply a handy way to calculate roof slope intersections

Slab

Slab is horizontal, made from extruding vertically a closed wire or face, should connect by material to other structural members, and can have a number of appendices (union) or holes (subtraction), and layers (materials). The horizontal areas and volume must be calculated

Beam/Pillar (Structural element)

A closed wire or face extruded in any direction, can have a number of appendices (union) or holes (subtraction).

Assembly

A group of windows that can be shaped as a whole

Generic mechanisms

Energy Analysis

Daylight Simulation

HVAC & Natural Ventilation

Capturing Building Knowledge

The effort to create a module that will make it possible for FreeCAD to provide a contemporary building information modeling (BIM) environment is underway. The effort is geared towards bringing its capabilities to compare to those of more mature architectural modeling systems such as Revit. We recognize the limitations in available implementations of BIM one of which is the ignorance of building knowledge. For this reason we are also pursuing a parallel goal of developing capabilities that will enable FreeCAD capture such knowledge typically created mostly in the early design stage but also in the later detail design stage. In the following sections, we document capabilities that are not so common in available tools but which we believe are more appropriate and efficient in capturing building knowledge and information from concept to demolition. The following sections provide specifications and guidelines regarding the "what" part of this effort. We shall fill in the "how" as our effort progresses. Needless to say, things will change or be amended as our understanding and implementation comes together.

Procedure Descriptions to Identify Objects

The building design session begins on the site where the designer establishes the north-direction and introduces appropriate setbacks according to the building code applicable in the design locale. By doing this the maximum footprint for the new building is established.

Object 1: Building Site

There is only one building site in a project. This object should be created as soon as the decision to design a house is made by the designer. It should exist as a form of container (because it secludes a space. More on this later) with sides, a top and a bottom. The sides can then be interactively defines in terms of length and angle. It should also be possible to add or remove sides as needed. Although the bottom is created flat, it can also be redefined with contours to provide appropriate slope. The bottom is the only part of the site that should be visible.

Object 2: North-Direction

The north direction is an object that establishes the angle in the direction of true north. It is a part of the site and makes it possible for the site to determine the prevailing winds, the movement of the sun, etc.

Object 3: SetBack

These are distances from the boundaries of the site which are required by code. They are part of the site but require certain parameters to be provided in order to determine which boundaries and what distances. For example the setback from the boundary next to the street may be different from the setback from a boundary next to a neighboring site. This information can be provided interactively but with the north-direction established, it is possible for the designer to enter this information during the collection of the requirements for the design. The setback, like the site, is a type of container object.

Object 4: Building Level

At this point the maximum footprint for the building has been established. This footprint represents the first building level. The building level is an object that makes it possible to integrate the different building systems. Examples of building systems are architectural, structural, electrical, etc. The building level, like the building site, is a form of container. There can be one or more levels which are typically stacked on top of each other starting from the bottom. The first level is established after designating the setback for all site boundaries. Additional levels can be created but only the elevation of the bottom is modified as the boundaries of the level are invisible.

Object 5: Building Space

The space is defined to satisfy the main function of the building such as a space for sleeping, eating, relaxing, working, etc. Spaces are created and grouped inside levels. There are different types of spaces which provide the appropriate functions in different building types. For example in a residential building type there are 4 main types including sleeping, living, service and traffic.

Object 6: Space Object

This represents everything else that can be located in a space. Each object will have certain fundamental knowledge of its requirements. For example to describe an area for sitting, an object with at least a seat area, a leg room and maximum height requirements will be necessary.

Object 7: Building Container

Most of the objects described so far are types of containers. Containers have an interior area that are secluded by boundaries. There are Bottom, Top and Side boundaries. Two containers can share a side boundary. When this sharing occurs a special Share-Side object replaces the individual sides from each of the participating containers. It establishes a link between the two containers and makes it possible for them to communicate. For example when there is a shared side between a sleeping and a service space such as a bathroom and a bedroom, that side will expect some form of treatment for noise dampening to avoid flooding the sleeping area with too much noise. Each boundary in a container has a Form. A form is a container-type object that can have the necessary descriptions or Property of materials typical in building envelops.

Object Diagram

The following diagram illustrates the relationship between all objects described so far.

Objects for capturing building knowledge
Online version: "http://www.freecadweb.org/wiki/index.php?title=Arch_Concept&oldid=122795"

Navigation menu