Panoul Desenare vă permite de transpuneţi creaţiile 3D pe hârtie. That is, to put views of your models in a 2D window and to insert that window in a drawing, for example a sheet with a border, a title and your logo and finally print that sheet. The Drawing module is currently under construction and more or less a technology preview!
Unelte pentru crearea, configurarea si exportul foilor de desen 2D
Notă The Draft View tool is used mainly to place Draft objects on paper. It has a couple of extra capabilities over the standard Drawing tools, and supports specific objects like Draft dimensions.
In the picture you see the main concepts of the Drawing module. The document contains a shape object (Schenkel) which we want to extract to a drawing. Therefore a "Page" is created. A page gets instantiated through a template, in this case the "A3_Landscape" template. The template is an SVG document which can hold your usual page frame, your logo or comply to your presentation standards.
In this page we can insert one or more views. Each view has a position on the page (Properties X,Y), a scale factor (Property scale) and additional properties. Every time the page or the view or the referenced object changes the page gets regenerated and the page display updated.
At the moment the end user(GUI) workflow is very limited, so the scripting API is more interesting. Here follow examples on how to use the scripting API of the drawing module.
Here a script that can easily fill the Macro_CartoucheFC leaf FreeCAD A3_Landscape.
First of all you need the Part and the Drawing module:
import FreeCAD, Part, Drawing
Create a small sample part
Part.show(Part.makeBox(100,100,100).cut(Part.makeCylinder(80,100)).cut(Part.makeBox(90,40,100)).cut(Part.makeBox(20,85,100)))
Direct projection. The G0 means hard edge, the G1 is tangent continuous.
Shape = App.ActiveDocument.Shape.Shape [visibleG0,visibleG1,hiddenG0,hiddenG1] = Drawing.project(Shape) print "visible edges:", len(visibleG0.Edges) print "hidden edges:", len(hiddenG0.Edges)
Everything was projected on the Z-plane:
print "Bnd Box shape: X=",Shape.BoundBox.XLength," Y=",Shape.BoundBox.YLength," Z=",Shape.BoundBox.ZLength print "Bnd Box project: X=",visibleG0.BoundBox.XLength," Y=",visibleG0.BoundBox.YLength," Z=",visibleG0.BoundBox.ZLength
Different projection vector
[visibleG0,visibleG1,hiddenG0,hiddenG1] = Drawing.project(Shape,App.Vector(1,1,1))
Project to SVG
resultSVG = Drawing.projectToSVG(Shape,App.Vector(1,1,1)) print resultSVG
Create the body
import FreeCAD import Part import Drawing # Create three boxes and a cylinder App.ActiveDocument.addObject("Part::Box","Box") App.ActiveDocument.Box.Length=100.00 App.ActiveDocument.Box.Width=100.00 App.ActiveDocument.Box.Height=100.00 App.ActiveDocument.addObject("Part::Box","Box1") App.ActiveDocument.Box1.Length=90.00 App.ActiveDocument.Box1.Width=40.00 App.ActiveDocument.Box1.Height=100.00 App.ActiveDocument.addObject("Part::Box","Box2") App.ActiveDocument.Box2.Length=20.00 App.ActiveDocument.Box2.Width=85.00 App.ActiveDocument.Box2.Height=100.00 App.ActiveDocument.addObject("Part::Cylinder","Cylinder") App.ActiveDocument.Cylinder.Radius=80.00 App.ActiveDocument.Cylinder.Height=100.00 App.ActiveDocument.Cylinder.Angle=360.00 # Fuse two boxes and the cylinder App.ActiveDocument.addObject("Part::Fuse","Fusion") App.ActiveDocument.Fusion.Base = App.ActiveDocument.Cylinder App.ActiveDocument.Fusion.Tool = App.ActiveDocument.Box1 App.ActiveDocument.addObject("Part::Fuse","Fusion1") App.ActiveDocument.Fusion1.Base = App.ActiveDocument.Box2 App.ActiveDocument.Fusion1.Tool = App.ActiveDocument.Fusion # Cut the fused shapes from the first box App.ActiveDocument.addObject("Part::Cut","Shape") App.ActiveDocument.Shape.Base = App.ActiveDocument.Box App.ActiveDocument.Shape.Tool = App.ActiveDocument.Fusion1 # Hide all the intermediate shapes Gui.ActiveDocument.Box.Visibility=False Gui.ActiveDocument.Box1.Visibility=False Gui.ActiveDocument.Box2.Visibility=False Gui.ActiveDocument.Cylinder.Visibility=False Gui.ActiveDocument.Fusion.Visibility=False Gui.ActiveDocument.Fusion1.Visibility=False
Insert a Page object and assign a template
App.ActiveDocument.addObject('Drawing::FeaturePage','Page') App.ActiveDocument.Page.Template = App.getResourceDir()+'Mod/Drawing/Templates/A3_Landscape.svg'
Create a view on the "Shape" object, define the position and scale and assign it to a Page
App.ActiveDocument.addObject('Drawing::FeatureViewPart','View') App.ActiveDocument.View.Source = App.ActiveDocument.Shape App.ActiveDocument.View.Direction = (0.0,0.0,1.0) App.ActiveDocument.View.X = 10.0 App.ActiveDocument.View.Y = 10.0 App.ActiveDocument.Page.addObject(App.ActiveDocument.View)
Create a second view on the same object but this time the view will be rotated by 90 degrees.
App.ActiveDocument.addObject('Drawing::FeatureViewPart','ViewRot') App.ActiveDocument.ViewRot.Source = App.ActiveDocument.Shape App.ActiveDocument.ViewRot.Direction = (0.0,0.0,1.0) App.ActiveDocument.ViewRot.X = 290.0 App.ActiveDocument.ViewRot.Y = 30.0 App.ActiveDocument.ViewRot.Scale = 1.0 App.ActiveDocument.ViewRot.Rotation = 90.0 App.ActiveDocument.Page.addObject(App.ActiveDocument.ViewRot)
Create a third view on the same object but with an isometric view direction. The hidden lines are activated too.
App.ActiveDocument.addObject('Drawing::FeatureViewPart','ViewIso') App.ActiveDocument.ViewIso.Source = App.ActiveDocument.Shape App.ActiveDocument.ViewIso.Direction = (1.0,1.0,1.0) App.ActiveDocument.ViewIso.X = 335.0 App.ActiveDocument.ViewIso.Y = 140.0 App.ActiveDocument.ViewIso.ShowHiddenLines = True App.ActiveDocument.Page.addObject(App.ActiveDocument.ViewIso)
Change something and update. The update process changes the view and the page.
App.ActiveDocument.View.X = 30.0 App.ActiveDocument.View.Y = 30.0 App.ActiveDocument.View.Scale = 1.5 App.ActiveDocument.recompute()
Get the SVG fragment of a single view
ViewSVG = App.ActiveDocument.View.ViewResult print ViewSVG
Get the whole result page (it's a file in the document's temporary directory, only read permission)
print "Resulting SVG document: ",App.ActiveDocument.Page.PageResult file = open(App.ActiveDocument.Page.PageResult,"r") print "Result page is ",len(file.readlines())," lines long"
Important: free the file!
del file
Insert a view with your own content:
App.ActiveDocument.addObject('Drawing::FeatureView','ViewSelf') App.ActiveDocument.ViewSelf.ViewResult = """<g id="ViewSelf" stroke="rgb(0, 0, 0)" stroke-width="0.35" stroke-linecap="butt" stroke-linejoin="miter" transform="translate(30,30)" fill="#00cc00" > <ellipse cx="40" cy="40" rx="30" ry="15"/> </g>""" App.ActiveDocument.Page.addObject(App.ActiveDocument.ViewSelf) App.ActiveDocument.recompute() del ViewSVG
That leads to the following result:
Drawing dimensions an tolerances are still under development but you can get some basic functionality with a bit of work.
First you need to get the gdtsvg python module from here (WARNING: This could be broken at any time!):
https://github.com/jcc242/FreeCAD
To get a feature control frame, try out the following:
import gdtsvg as g # Import the module, I like to give it an easy handle ourFrame = g.ControlFrame("0","0", g.Perpendicularity(), ".5", g.Diameter(), g.ModifyingSymbols("M"), "A", g.ModifyingSymbols("F"), "B", g.ModifyingSymbols("L"), "C", g.ModifyingSymbols("I"))
Here is a good breakdown of the contents of a feature control frame: http://www.cadblog.net/adding-geometric-tolerances.htm
The parameters to pass to control frame are:
The ControlFrame function returns a type containing (svg string, overall width of control frame, overall height of control frame)
To get a dimension, try out the following:
import gdtsvg ourDimension = linearDimension(point1, point2, textpoint, dimensiontext, linestyle=getStyle("visible"), arrowstyle=getStyle("filled"), textstyle=getStyle("text")
Inputs for linear dimension are:
With those two, you can proceed as above for displaying them on the drawing page. This module is very buggy and can be broken at any given moment, bug reports are welcome on the github page for now, or contact jcc242 on the forums if you post a bug somewhere else.
FreeCAD comes bundled with a set of default templates, but you can find more on the Drawing templates page.
Some notes on the programming side of the drawing module will be added to the Drawing Documentation page. This is to help quickly understand how the drawing module works, enabling programmers to rapidly start programming for it.