+ implement Python interface to discretize wires or edge with given deflection or number of points

git-svn-id: https://free-cad.svn.sourceforge.net/svnroot/free-cad/trunk@5423 e8eeb9e2-ec13-0410-a4a9-efa5cf37419d
This commit is contained in:
wmayer 2012-01-24 15:23:58 +00:00
parent 2fd3f1634e
commit 1aa7e55e92
6 changed files with 129 additions and 14 deletions

View File

@ -23,7 +23,7 @@
</Methode>
<Methode Name="discretize">
<Documentation>
<UserDocu>Discretizes the curve using a given deflection and returns a list of points</UserDocu>
<UserDocu>Discretizes the curve using a given deflection or number of points and returns a list of points</UserDocu>
</Documentation>
</Methode>
<Methode Name="value">

View File

@ -108,22 +108,33 @@ PyObject* GeometryCurvePy::toShape(PyObject *args)
PyObject* GeometryCurvePy::discretize(PyObject *args)
{
double d;
if (!PyArg_ParseTuple(args, "d", &d))
PyObject* defl_or_num;
if (!PyArg_ParseTuple(args, "O", &defl_or_num))
return 0;
try {
Handle_Geom_Geometry g = getGeometryPtr()->handle();
Handle_Geom_Curve c = Handle_Geom_Curve::DownCast(g);
try {
if (!c.IsNull()) {
GeomAdaptor_Curve curve_adaptator(c);
GeomAdaptor_Curve adapt(c);
GCPnts_UniformAbscissa discretizer;
discretizer.Initialize (curve_adaptator, d);
if (PyInt_Check(defl_or_num)) {
int num = PyInt_AsLong(defl_or_num);
discretizer.Initialize (adapt, num);
}
else if (PyFloat_Check(defl_or_num)) {
double defl = PyFloat_AsDouble(defl_or_num);
discretizer.Initialize (adapt, defl);
}
else {
PyErr_SetString(PyExc_TypeError, "Either int or float expected");
return 0;
}
if (discretizer.IsDone () && discretizer.NbPoints () > 0) {
Py::List points;
int nbPoints = discretizer.NbPoints ();
for (int i=1; i<=nbPoints; i++) {
gp_Pnt p = curve_adaptator.Value (discretizer.Parameter (i));
gp_Pnt p = adapt.Value (discretizer.Parameter (i));
points.append(Py::Vector(Base::Vector3d(p.X(),p.Y(),p.Z())));
}

View File

@ -59,6 +59,11 @@
<UserDocu>Set the tolerance for the edge.</UserDocu>
</Documentation>
</Methode>
<Methode Name="discretize">
<Documentation>
<UserDocu>Discretizes the edge using a given deflection or number of points and returns a list of points</UserDocu>
</Documentation>
</Methode>
<Attribute Name="Tolerance">
<Documentation>
<UserDocu>Set or get the tolerance of the vertex</UserDocu>

View File

@ -53,6 +53,7 @@
#include <BRepGProp.hxx>
#include <GProp_GProps.hxx>
#include <GCPnts_AbscissaPoint.hxx>
#include <GCPnts_UniformAbscissa.hxx>
#include <Base/VectorPy.h>
#include <Base/GeometryPyCXX.h>
@ -396,6 +397,52 @@ PyObject* TopoShapeEdgePy::derivative3At(PyObject *args)
}
}
PyObject* TopoShapeEdgePy::discretize(PyObject *args)
{
PyObject* defl_or_num;
if (!PyArg_ParseTuple(args, "O", &defl_or_num))
return 0;
try {
BRepAdaptor_Curve adapt(TopoDS::Edge(getTopoShapePtr()->_Shape));
GCPnts_UniformAbscissa discretizer;
if (PyInt_Check(defl_or_num)) {
int num = PyInt_AsLong(defl_or_num);
discretizer.Initialize (adapt, num);
}
else if (PyFloat_Check(defl_or_num)) {
double defl = PyFloat_AsDouble(defl_or_num);
discretizer.Initialize (adapt, defl);
}
else {
PyErr_SetString(PyExc_TypeError, "Either int or float expected");
return 0;
}
if (discretizer.IsDone () && discretizer.NbPoints () > 0) {
Py::List points;
int nbPoints = discretizer.NbPoints ();
for (int i=1; i<=nbPoints; i++) {
gp_Pnt p = adapt.Value (discretizer.Parameter (i));
points.append(Py::Vector(Base::Vector3d(p.X(),p.Y(),p.Z())));
}
return Py::new_reference_to(points);
}
else {
PyErr_SetString(PyExc_Exception, "Descretization of curve failed");
return 0;
}
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PyExc_Exception, e->GetMessageString());
return 0;
}
PyErr_SetString(PyExc_Exception, "Geometry is not a curve");
return 0;
}
PyObject* TopoShapeEdgePy::setTolerance(PyObject *args)
{
double tol;

View File

@ -49,6 +49,11 @@
<UserDocu>Approximate B-Spline-curve from this wire</UserDocu>
</Documentation>
</Methode>
<Methode Name="discretize">
<Documentation>
<UserDocu>Discretizes the wire using a given deflection or number of points and returns a list of points</UserDocu>
</Documentation>
</Methode>
<Attribute Name="CenterOfMass" ReadOnly="true">
<Documentation>
<UserDocu>Returns the center of mass of the current system.

View File

@ -37,6 +37,7 @@
#include <BRepGProp.hxx>
#include <GProp_GProps.hxx>
#include <GCPnts_UniformAbscissa.hxx>
#include <Base/VectorPy.h>
#include <Base/GeometryPyCXX.h>
@ -320,6 +321,52 @@ PyObject* TopoShapeWirePy::approximate(PyObject *args)
}
}
PyObject* TopoShapeWirePy::discretize(PyObject *args)
{
PyObject* defl_or_num;
if (!PyArg_ParseTuple(args, "O", &defl_or_num))
return 0;
try {
BRepAdaptor_CompCurve adapt(TopoDS::Wire(getTopoShapePtr()->_Shape));
GCPnts_UniformAbscissa discretizer;
if (PyInt_Check(defl_or_num)) {
int num = PyInt_AsLong(defl_or_num);
discretizer.Initialize (adapt, num);
}
else if (PyFloat_Check(defl_or_num)) {
double defl = PyFloat_AsDouble(defl_or_num);
discretizer.Initialize (adapt, defl);
}
else {
PyErr_SetString(PyExc_TypeError, "Either int or float expected");
return 0;
}
if (discretizer.IsDone () && discretizer.NbPoints () > 0) {
Py::List points;
int nbPoints = discretizer.NbPoints ();
for (int i=1; i<=nbPoints; i++) {
gp_Pnt p = adapt.Value (discretizer.Parameter (i));
points.append(Py::Vector(Base::Vector3d(p.X(),p.Y(),p.Z())));
}
return Py::new_reference_to(points);
}
else {
PyErr_SetString(PyExc_Exception, "Descretization of wire failed");
return 0;
}
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PyExc_Exception, e->GetMessageString());
return 0;
}
PyErr_SetString(PyExc_Exception, "Geometry is not a curve");
return 0;
}
Py::Object TopoShapeWirePy::getCenterOfMass(void) const
{
GProp_GProps props;