Sketcher: Solver Simplification for basic case

==============================================

This commit is intended to allow to early merging to master of BSpline support. Parts of it will be reverted when a more advanced solver implementation is available.

The intention is to have an advances solver implementation in the future.

This commit cripples part of the potential functionality, but allows a very simplistic solver structure (no de Boor, no recursion).

In particular:
1. Knots are not solver parameters and the solver acts as if such a parameter did not exist.
2. For non-periodic case, the start point and the endpoint coincide with the first pole and the last pole respectively. This is only valid under certain first and last
knot multiplicity. If the user manually changes this multiplicities, the sketch will remain unsolved. For the periodic case, end and start points are not even solver
parameters as an end and start point is an ilusion and we really do not care where that happens. It is not reasonable to ask the user to constrain where this point should
be.
This commit is contained in:
Abdullah Tahiri 2017-01-13 23:42:57 +01:00
parent 0ef082bcd4
commit 1b59e74568

View File

@ -691,28 +691,44 @@ int Sketch::addBSpline(const Part::GeomBSplineCurve &bspline, bool fixed)
std::vector<double *> sweights;
for(std::vector<double>::const_iterator it = weights.begin(); it != weights.end(); ++it) {
params.push_back(new double( (*it) ));
sweights.push_back(params[params.size()-1]);
params.push_back(new double( (*it) ));
sweights.push_back(params[params.size()-1]);
}
std::vector<double *> sknots;
for(std::vector<double>::const_iterator it = knots.begin(); it != knots.end(); ++it) {
params.push_back(new double( (*it) ));
sknots.push_back(params[params.size()-1]);
double * knot = new double( (*it) );
//params.push_back(knot);
sknots.push_back(knot);
}
GCS::Point p1, p2;
params.push_back(new double(startPnt.x));
params.push_back(new double(startPnt.y));
p1.x = params[params.size()-2];
p1.y = params[params.size()-1];
double * p1x = new double(startPnt.x);
double * p1y = new double(startPnt.y);
params.push_back(new double(endPnt.x));
params.push_back(new double(endPnt.y));
p2.x = params[params.size()-2];
p2.y = params[params.size()-1];
// if periodic, startpoint and endpoint do not play a role in the solver, this removes unnecesarry DoF of determining where in the curve
// the start and the stop should be
if(!periodic) {
params.push_back(p1x);
params.push_back(p1y);
}
p1.x = p1x;
p1.y = p1y;
double * p2x = new double(endPnt.x);
double * p2y = new double(endPnt.y);
// if periodic, startpoint and endpoint do not play a role in the solver, this removes unnecesarry DoF of determining where in the curve
// the start and the stop should be
if(!periodic) {
params.push_back(p2x);
params.push_back(p2y);
}
p2.x = p2x;
p2.y = p2y;
def.startPointId = Points.size();
Points.push_back(p1);
@ -734,10 +750,13 @@ int Sketch::addBSpline(const Part::GeomBSplineCurve &bspline, bool fixed)
// store complete set
Geoms.push_back(def);
// arcs require an rule constraint for the end points
/*if (!fixed)
GCSsys.addConstraintArcOfParabolaRules(bs);*/
// WARNING: This is only valid where the multiplicity of the endpoints conforms with a BSpline
// only then the startpoint is the first control point and the endpoint is the last control point
// accordingly, it is never the case for a periodic BSpline.
if(!bs.periodic) {
GCSsys.addConstraintP2PCoincident(*(bs.poles.begin()),bs.start);
GCSsys.addConstraintP2PCoincident(*(bs.poles.end()-1),bs.end);
}
// return the position of the newly added geometry
return Geoms.size()-1;
}