PathHelix: Drop requirement of scipy.spatial
It was deemed that scipy is too heavy a requirement for FreeCAD just for this little feature. Fortunately it was possible to extract the k-d tree module from scipy with just minor modifications - it is quite self-contained. Now, only numpy is required.
This commit is contained in:
parent
cd3c1d574e
commit
1edc151c5d
|
@ -53,6 +53,7 @@ SET(PathScripts_SRCS
|
|||
PathScripts/PathStock.py
|
||||
PathScripts/PathStop.py
|
||||
PathScripts/PathHelix.py
|
||||
PathScripts/kdtree.py
|
||||
PathScripts/PathSurface.py
|
||||
PathScripts/PathToolLenOffset.py
|
||||
PathScripts/PathToolLibraryManager.py
|
||||
|
|
|
@ -198,7 +198,11 @@ def helix_cut(center, r_out, r_in, dr, zmax, zmin, dz, safe_z, tool_diameter, vf
|
|||
return out
|
||||
|
||||
def features_by_centers(base, features):
|
||||
import scipy.spatial
|
||||
try:
|
||||
from scipy.spatial import KDTree
|
||||
except ImportError:
|
||||
from PathScripts.kdtree import KDTree
|
||||
|
||||
features = sorted(features,
|
||||
key = lambda feature : getattr(base.Shape, feature).Surface.Radius,
|
||||
reverse = True)
|
||||
|
@ -206,7 +210,7 @@ def features_by_centers(base, features):
|
|||
coordinates = [(cylinder.Surface.Center.x, cylinder.Surface.Center.y) for cylinder in
|
||||
[getattr(base.Shape, feature) for feature in features]]
|
||||
|
||||
tree = scipy.spatial.KDTree(coordinates)
|
||||
tree = KDTree(coordinates)
|
||||
seen = {}
|
||||
|
||||
by_centers = {}
|
||||
|
|
943
src/Mod/Path/PathScripts/kdtree.py
Normal file
943
src/Mod/Path/PathScripts/kdtree.py
Normal file
|
@ -0,0 +1,943 @@
|
|||
# Copyright Anne M. Archibald 2008
|
||||
# Released under the scipy license
|
||||
#
|
||||
# Copyright (c) 2001, 2002 Enthought, Inc.
|
||||
# All rights reserved.
|
||||
#
|
||||
# Copyright (c) 2003-2016 SciPy Developers.
|
||||
# All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions are met:
|
||||
#
|
||||
# a. Redistributions of source code must retain the above copyright notice,
|
||||
# this list of conditions and the following disclaimer.
|
||||
# b. Redistributions in binary form must reproduce the above copyright
|
||||
# notice, this list of conditions and the following disclaimer in the
|
||||
# documentation and/or other materials provided with the distribution.
|
||||
# c. Neither the name of Enthought nor the names of the SciPy Developers
|
||||
# may be used to endorse or promote products derived from this software
|
||||
# without specific prior written permission.
|
||||
#
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS
|
||||
# BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
|
||||
# OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
||||
# THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
from __future__ import division, print_function, absolute_import
|
||||
|
||||
import sys
|
||||
import numpy as np
|
||||
from heapq import heappush, heappop
|
||||
|
||||
__all__ = ['minkowski_distance_p', 'minkowski_distance',
|
||||
'distance_matrix',
|
||||
'Rectangle', 'KDTree']
|
||||
|
||||
|
||||
def minkowski_distance_p(x, y, p=2):
|
||||
"""
|
||||
Compute the p-th power of the L**p distance between two arrays.
|
||||
|
||||
For efficiency, this function computes the L**p distance but does
|
||||
not extract the pth root. If `p` is 1 or infinity, this is equal to
|
||||
the actual L**p distance.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : (M, K) array_like
|
||||
Input array.
|
||||
y : (N, K) array_like
|
||||
Input array.
|
||||
p : float, 1 <= p <= infinity
|
||||
Which Minkowski p-norm to use.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> minkowski_distance_p([[0,0],[0,0]], [[1,1],[0,1]])
|
||||
array([2, 1])
|
||||
|
||||
"""
|
||||
x = np.asarray(x)
|
||||
y = np.asarray(y)
|
||||
if p == np.inf:
|
||||
return np.amax(np.abs(y-x), axis=-1)
|
||||
elif p == 1:
|
||||
return np.sum(np.abs(y-x), axis=-1)
|
||||
else:
|
||||
return np.sum(np.abs(y-x)**p, axis=-1)
|
||||
|
||||
|
||||
def minkowski_distance(x, y, p=2):
|
||||
"""
|
||||
Compute the L**p distance between two arrays.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : (M, K) array_like
|
||||
Input array.
|
||||
y : (N, K) array_like
|
||||
Input array.
|
||||
p : float, 1 <= p <= infinity
|
||||
Which Minkowski p-norm to use.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> minkowski_distance([[0,0],[0,0]], [[1,1],[0,1]])
|
||||
array([ 1.41421356, 1. ])
|
||||
|
||||
"""
|
||||
x = np.asarray(x)
|
||||
y = np.asarray(y)
|
||||
if p == np.inf or p == 1:
|
||||
return minkowski_distance_p(x, y, p)
|
||||
else:
|
||||
return minkowski_distance_p(x, y, p)**(1./p)
|
||||
|
||||
|
||||
class Rectangle(object):
|
||||
"""Hyperrectangle class.
|
||||
|
||||
Represents a Cartesian product of intervals.
|
||||
"""
|
||||
def __init__(self, maxes, mins):
|
||||
"""Construct a hyperrectangle."""
|
||||
self.maxes = np.maximum(maxes,mins).astype(np.float)
|
||||
self.mins = np.minimum(maxes,mins).astype(np.float)
|
||||
self.m, = self.maxes.shape
|
||||
|
||||
def __repr__(self):
|
||||
return "<Rectangle %s>" % list(zip(self.mins, self.maxes))
|
||||
|
||||
def volume(self):
|
||||
"""Total volume."""
|
||||
return np.prod(self.maxes-self.mins)
|
||||
|
||||
def split(self, d, split):
|
||||
"""
|
||||
Produce two hyperrectangles by splitting.
|
||||
|
||||
In general, if you need to compute maximum and minimum
|
||||
distances to the children, it can be done more efficiently
|
||||
by updating the maximum and minimum distances to the parent.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
d : int
|
||||
Axis to split hyperrectangle along.
|
||||
split :
|
||||
Input.
|
||||
|
||||
"""
|
||||
mid = np.copy(self.maxes)
|
||||
mid[d] = split
|
||||
less = Rectangle(self.mins, mid)
|
||||
mid = np.copy(self.mins)
|
||||
mid[d] = split
|
||||
greater = Rectangle(mid, self.maxes)
|
||||
return less, greater
|
||||
|
||||
def min_distance_point(self, x, p=2.):
|
||||
"""
|
||||
Return the minimum distance between input and points in the hyperrectangle.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
Input.
|
||||
p : float, optional
|
||||
Input.
|
||||
|
||||
"""
|
||||
return minkowski_distance(0, np.maximum(0,np.maximum(self.mins-x,x-self.maxes)),p)
|
||||
|
||||
def max_distance_point(self, x, p=2.):
|
||||
"""
|
||||
Return the maximum distance between input and points in the hyperrectangle.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
Input array.
|
||||
p : float, optional
|
||||
Input.
|
||||
|
||||
"""
|
||||
return minkowski_distance(0, np.maximum(self.maxes-x,x-self.mins),p)
|
||||
|
||||
def min_distance_rectangle(self, other, p=2.):
|
||||
"""
|
||||
Compute the minimum distance between points in the two hyperrectangles.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
other : hyperrectangle
|
||||
Input.
|
||||
p : float
|
||||
Input.
|
||||
|
||||
"""
|
||||
return minkowski_distance(0, np.maximum(0,np.maximum(self.mins-other.maxes,other.mins-self.maxes)),p)
|
||||
|
||||
def max_distance_rectangle(self, other, p=2.):
|
||||
"""
|
||||
Compute the maximum distance between points in the two hyperrectangles.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
other : hyperrectangle
|
||||
Input.
|
||||
p : float, optional
|
||||
Input.
|
||||
|
||||
"""
|
||||
return minkowski_distance(0, np.maximum(self.maxes-other.mins,other.maxes-self.mins),p)
|
||||
|
||||
|
||||
class KDTree(object):
|
||||
"""
|
||||
kd-tree for quick nearest-neighbor lookup
|
||||
|
||||
This class provides an index into a set of k-dimensional points which
|
||||
can be used to rapidly look up the nearest neighbors of any point.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : (N,K) array_like
|
||||
The data points to be indexed. This array is not copied, and
|
||||
so modifying this data will result in bogus results.
|
||||
leafsize : int, optional
|
||||
The number of points at which the algorithm switches over to
|
||||
brute-force. Has to be positive.
|
||||
|
||||
Raises
|
||||
------
|
||||
RuntimeError
|
||||
The maximum recursion limit can be exceeded for large data
|
||||
sets. If this happens, either increase the value for the `leafsize`
|
||||
parameter or increase the recursion limit by::
|
||||
|
||||
>>> import sys
|
||||
>>> sys.setrecursionlimit(10000)
|
||||
|
||||
Notes
|
||||
-----
|
||||
The algorithm used is described in Maneewongvatana and Mount 1999.
|
||||
The general idea is that the kd-tree is a binary tree, each of whose
|
||||
nodes represents an axis-aligned hyperrectangle. Each node specifies
|
||||
an axis and splits the set of points based on whether their coordinate
|
||||
along that axis is greater than or less than a particular value.
|
||||
|
||||
During construction, the axis and splitting point are chosen by the
|
||||
"sliding midpoint" rule, which ensures that the cells do not all
|
||||
become long and thin.
|
||||
|
||||
The tree can be queried for the r closest neighbors of any given point
|
||||
(optionally returning only those within some maximum distance of the
|
||||
point). It can also be queried, with a substantial gain in efficiency,
|
||||
for the r approximate closest neighbors.
|
||||
|
||||
For large dimensions (20 is already large) do not expect this to run
|
||||
significantly faster than brute force. High-dimensional nearest-neighbor
|
||||
queries are a substantial open problem in computer science.
|
||||
|
||||
The tree also supports all-neighbors queries, both with arrays of points
|
||||
and with other kd-trees. These do use a reasonably efficient algorithm,
|
||||
but the kd-tree is not necessarily the best data structure for this
|
||||
sort of calculation.
|
||||
|
||||
"""
|
||||
def __init__(self, data, leafsize=10):
|
||||
self.data = np.asarray(data)
|
||||
self.n, self.m = np.shape(self.data)
|
||||
self.leafsize = int(leafsize)
|
||||
if self.leafsize < 1:
|
||||
raise ValueError("leafsize must be at least 1")
|
||||
self.maxes = np.amax(self.data,axis=0)
|
||||
self.mins = np.amin(self.data,axis=0)
|
||||
|
||||
self.tree = self.__build(np.arange(self.n), self.maxes, self.mins)
|
||||
|
||||
class node(object):
|
||||
if sys.version_info[0] >= 3:
|
||||
def __lt__(self, other):
|
||||
return id(self) < id(other)
|
||||
|
||||
def __gt__(self, other):
|
||||
return id(self) > id(other)
|
||||
|
||||
def __le__(self, other):
|
||||
return id(self) <= id(other)
|
||||
|
||||
def __ge__(self, other):
|
||||
return id(self) >= id(other)
|
||||
|
||||
def __eq__(self, other):
|
||||
return id(self) == id(other)
|
||||
|
||||
class leafnode(node):
|
||||
def __init__(self, idx):
|
||||
self.idx = idx
|
||||
self.children = len(idx)
|
||||
|
||||
class innernode(node):
|
||||
def __init__(self, split_dim, split, less, greater):
|
||||
self.split_dim = split_dim
|
||||
self.split = split
|
||||
self.less = less
|
||||
self.greater = greater
|
||||
self.children = less.children+greater.children
|
||||
|
||||
def __build(self, idx, maxes, mins):
|
||||
if len(idx) <= self.leafsize:
|
||||
return KDTree.leafnode(idx)
|
||||
else:
|
||||
data = self.data[idx]
|
||||
# maxes = np.amax(data,axis=0)
|
||||
# mins = np.amin(data,axis=0)
|
||||
d = np.argmax(maxes-mins)
|
||||
maxval = maxes[d]
|
||||
minval = mins[d]
|
||||
if maxval == minval:
|
||||
# all points are identical; warn user?
|
||||
return KDTree.leafnode(idx)
|
||||
data = data[:,d]
|
||||
|
||||
# sliding midpoint rule; see Maneewongvatana and Mount 1999
|
||||
# for arguments that this is a good idea.
|
||||
split = (maxval+minval)/2
|
||||
less_idx = np.nonzero(data <= split)[0]
|
||||
greater_idx = np.nonzero(data > split)[0]
|
||||
if len(less_idx) == 0:
|
||||
split = np.amin(data)
|
||||
less_idx = np.nonzero(data <= split)[0]
|
||||
greater_idx = np.nonzero(data > split)[0]
|
||||
if len(greater_idx) == 0:
|
||||
split = np.amax(data)
|
||||
less_idx = np.nonzero(data < split)[0]
|
||||
greater_idx = np.nonzero(data >= split)[0]
|
||||
if len(less_idx) == 0:
|
||||
# _still_ zero? all must have the same value
|
||||
if not np.all(data == data[0]):
|
||||
raise ValueError("Troublesome data array: %s" % data)
|
||||
split = data[0]
|
||||
less_idx = np.arange(len(data)-1)
|
||||
greater_idx = np.array([len(data)-1])
|
||||
|
||||
lessmaxes = np.copy(maxes)
|
||||
lessmaxes[d] = split
|
||||
greatermins = np.copy(mins)
|
||||
greatermins[d] = split
|
||||
return KDTree.innernode(d, split,
|
||||
self.__build(idx[less_idx],lessmaxes,mins),
|
||||
self.__build(idx[greater_idx],maxes,greatermins))
|
||||
|
||||
def __query(self, x, k=1, eps=0, p=2, distance_upper_bound=np.inf):
|
||||
|
||||
side_distances = np.maximum(0,np.maximum(x-self.maxes,self.mins-x))
|
||||
if p != np.inf:
|
||||
side_distances **= p
|
||||
min_distance = np.sum(side_distances)
|
||||
else:
|
||||
min_distance = np.amax(side_distances)
|
||||
|
||||
# priority queue for chasing nodes
|
||||
# entries are:
|
||||
# minimum distance between the cell and the target
|
||||
# distances between the nearest side of the cell and the target
|
||||
# the head node of the cell
|
||||
q = [(min_distance,
|
||||
tuple(side_distances),
|
||||
self.tree)]
|
||||
# priority queue for the nearest neighbors
|
||||
# furthest known neighbor first
|
||||
# entries are (-distance**p, i)
|
||||
neighbors = []
|
||||
|
||||
if eps == 0:
|
||||
epsfac = 1
|
||||
elif p == np.inf:
|
||||
epsfac = 1/(1+eps)
|
||||
else:
|
||||
epsfac = 1/(1+eps)**p
|
||||
|
||||
if p != np.inf and distance_upper_bound != np.inf:
|
||||
distance_upper_bound = distance_upper_bound**p
|
||||
|
||||
while q:
|
||||
min_distance, side_distances, node = heappop(q)
|
||||
if isinstance(node, KDTree.leafnode):
|
||||
# brute-force
|
||||
data = self.data[node.idx]
|
||||
ds = minkowski_distance_p(data,x[np.newaxis,:],p)
|
||||
for i in range(len(ds)):
|
||||
if ds[i] < distance_upper_bound:
|
||||
if len(neighbors) == k:
|
||||
heappop(neighbors)
|
||||
heappush(neighbors, (-ds[i], node.idx[i]))
|
||||
if len(neighbors) == k:
|
||||
distance_upper_bound = -neighbors[0][0]
|
||||
else:
|
||||
# we don't push cells that are too far onto the queue at all,
|
||||
# but since the distance_upper_bound decreases, we might get
|
||||
# here even if the cell's too far
|
||||
if min_distance > distance_upper_bound*epsfac:
|
||||
# since this is the nearest cell, we're done, bail out
|
||||
break
|
||||
# compute minimum distances to the children and push them on
|
||||
if x[node.split_dim] < node.split:
|
||||
near, far = node.less, node.greater
|
||||
else:
|
||||
near, far = node.greater, node.less
|
||||
|
||||
# near child is at the same distance as the current node
|
||||
heappush(q,(min_distance, side_distances, near))
|
||||
|
||||
# far child is further by an amount depending only
|
||||
# on the split value
|
||||
sd = list(side_distances)
|
||||
if p == np.inf:
|
||||
min_distance = max(min_distance, abs(node.split-x[node.split_dim]))
|
||||
elif p == 1:
|
||||
sd[node.split_dim] = np.abs(node.split-x[node.split_dim])
|
||||
min_distance = min_distance - side_distances[node.split_dim] + sd[node.split_dim]
|
||||
else:
|
||||
sd[node.split_dim] = np.abs(node.split-x[node.split_dim])**p
|
||||
min_distance = min_distance - side_distances[node.split_dim] + sd[node.split_dim]
|
||||
|
||||
# far child might be too far, if so, don't bother pushing it
|
||||
if min_distance <= distance_upper_bound*epsfac:
|
||||
heappush(q,(min_distance, tuple(sd), far))
|
||||
|
||||
if p == np.inf:
|
||||
return sorted([(-d,i) for (d,i) in neighbors])
|
||||
else:
|
||||
return sorted([((-d)**(1./p),i) for (d,i) in neighbors])
|
||||
|
||||
def query(self, x, k=1, eps=0, p=2, distance_upper_bound=np.inf):
|
||||
"""
|
||||
Query the kd-tree for nearest neighbors
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like, last dimension self.m
|
||||
An array of points to query.
|
||||
k : integer
|
||||
The number of nearest neighbors to return.
|
||||
eps : nonnegative float
|
||||
Return approximate nearest neighbors; the kth returned value
|
||||
is guaranteed to be no further than (1+eps) times the
|
||||
distance to the real kth nearest neighbor.
|
||||
p : float, 1<=p<=infinity
|
||||
Which Minkowski p-norm to use.
|
||||
1 is the sum-of-absolute-values "Manhattan" distance
|
||||
2 is the usual Euclidean distance
|
||||
infinity is the maximum-coordinate-difference distance
|
||||
distance_upper_bound : nonnegative float
|
||||
Return only neighbors within this distance. This is used to prune
|
||||
tree searches, so if you are doing a series of nearest-neighbor
|
||||
queries, it may help to supply the distance to the nearest neighbor
|
||||
of the most recent point.
|
||||
|
||||
Returns
|
||||
-------
|
||||
d : array of floats
|
||||
The distances to the nearest neighbors.
|
||||
If x has shape tuple+(self.m,), then d has shape tuple if
|
||||
k is one, or tuple+(k,) if k is larger than one. Missing
|
||||
neighbors are indicated with infinite distances. If k is None,
|
||||
then d is an object array of shape tuple, containing lists
|
||||
of distances. In either case the hits are sorted by distance
|
||||
(nearest first).
|
||||
i : array of integers
|
||||
The locations of the neighbors in self.data. i is the same
|
||||
shape as d.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from PathScripts import kdtree
|
||||
>>> x, y = np.mgrid[0:5, 2:8]
|
||||
>>> tree = kdtree.KDTree(zip(x.ravel(), y.ravel()))
|
||||
>>> tree.data
|
||||
array([[0, 2],
|
||||
[0, 3],
|
||||
[0, 4],
|
||||
[0, 5],
|
||||
[0, 6],
|
||||
[0, 7],
|
||||
[1, 2],
|
||||
[1, 3],
|
||||
[1, 4],
|
||||
[1, 5],
|
||||
[1, 6],
|
||||
[1, 7],
|
||||
[2, 2],
|
||||
[2, 3],
|
||||
[2, 4],
|
||||
[2, 5],
|
||||
[2, 6],
|
||||
[2, 7],
|
||||
[3, 2],
|
||||
[3, 3],
|
||||
[3, 4],
|
||||
[3, 5],
|
||||
[3, 6],
|
||||
[3, 7],
|
||||
[4, 2],
|
||||
[4, 3],
|
||||
[4, 4],
|
||||
[4, 5],
|
||||
[4, 6],
|
||||
[4, 7]])
|
||||
>>> pts = np.array([[0, 0], [2.1, 2.9]])
|
||||
>>> tree.query(pts)
|
||||
(array([ 2. , 0.14142136]), array([ 0, 13]))
|
||||
|
||||
"""
|
||||
x = np.asarray(x)
|
||||
if np.shape(x)[-1] != self.m:
|
||||
raise ValueError("x must consist of vectors of length %d but has shape %s" % (self.m, np.shape(x)))
|
||||
if p < 1:
|
||||
raise ValueError("Only p-norms with 1<=p<=infinity permitted")
|
||||
retshape = np.shape(x)[:-1]
|
||||
if retshape != ():
|
||||
if k is None:
|
||||
dd = np.empty(retshape,dtype=np.object)
|
||||
ii = np.empty(retshape,dtype=np.object)
|
||||
elif k > 1:
|
||||
dd = np.empty(retshape+(k,),dtype=np.float)
|
||||
dd.fill(np.inf)
|
||||
ii = np.empty(retshape+(k,),dtype=np.int)
|
||||
ii.fill(self.n)
|
||||
elif k == 1:
|
||||
dd = np.empty(retshape,dtype=np.float)
|
||||
dd.fill(np.inf)
|
||||
ii = np.empty(retshape,dtype=np.int)
|
||||
ii.fill(self.n)
|
||||
else:
|
||||
raise ValueError("Requested %s nearest neighbors; acceptable numbers are integers greater than or equal to one, or None")
|
||||
for c in np.ndindex(retshape):
|
||||
hits = self.__query(x[c], k=k, eps=eps, p=p, distance_upper_bound=distance_upper_bound)
|
||||
if k is None:
|
||||
dd[c] = [d for (d,i) in hits]
|
||||
ii[c] = [i for (d,i) in hits]
|
||||
elif k > 1:
|
||||
for j in range(len(hits)):
|
||||
dd[c+(j,)], ii[c+(j,)] = hits[j]
|
||||
elif k == 1:
|
||||
if len(hits) > 0:
|
||||
dd[c], ii[c] = hits[0]
|
||||
else:
|
||||
dd[c] = np.inf
|
||||
ii[c] = self.n
|
||||
return dd, ii
|
||||
else:
|
||||
hits = self.__query(x, k=k, eps=eps, p=p, distance_upper_bound=distance_upper_bound)
|
||||
if k is None:
|
||||
return [d for (d,i) in hits], [i for (d,i) in hits]
|
||||
elif k == 1:
|
||||
if len(hits) > 0:
|
||||
return hits[0]
|
||||
else:
|
||||
return np.inf, self.n
|
||||
elif k > 1:
|
||||
dd = np.empty(k,dtype=np.float)
|
||||
dd.fill(np.inf)
|
||||
ii = np.empty(k,dtype=np.int)
|
||||
ii.fill(self.n)
|
||||
for j in range(len(hits)):
|
||||
dd[j], ii[j] = hits[j]
|
||||
return dd, ii
|
||||
else:
|
||||
raise ValueError("Requested %s nearest neighbors; acceptable numbers are integers greater than or equal to one, or None")
|
||||
|
||||
def __query_ball_point(self, x, r, p=2., eps=0):
|
||||
R = Rectangle(self.maxes, self.mins)
|
||||
|
||||
def traverse_checking(node, rect):
|
||||
if rect.min_distance_point(x, p) > r / (1. + eps):
|
||||
return []
|
||||
elif rect.max_distance_point(x, p) < r * (1. + eps):
|
||||
return traverse_no_checking(node)
|
||||
elif isinstance(node, KDTree.leafnode):
|
||||
d = self.data[node.idx]
|
||||
return node.idx[minkowski_distance(d, x, p) <= r].tolist()
|
||||
else:
|
||||
less, greater = rect.split(node.split_dim, node.split)
|
||||
return traverse_checking(node.less, less) + \
|
||||
traverse_checking(node.greater, greater)
|
||||
|
||||
def traverse_no_checking(node):
|
||||
if isinstance(node, KDTree.leafnode):
|
||||
return node.idx.tolist()
|
||||
else:
|
||||
return traverse_no_checking(node.less) + \
|
||||
traverse_no_checking(node.greater)
|
||||
|
||||
return traverse_checking(self.tree, R)
|
||||
|
||||
def query_ball_point(self, x, r, p=2., eps=0):
|
||||
"""Find all points within distance r of point(s) x.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like, shape tuple + (self.m,)
|
||||
The point or points to search for neighbors of.
|
||||
r : positive float
|
||||
The radius of points to return.
|
||||
p : float, optional
|
||||
Which Minkowski p-norm to use. Should be in the range [1, inf].
|
||||
eps : nonnegative float, optional
|
||||
Approximate search. Branches of the tree are not explored if their
|
||||
nearest points are further than ``r / (1 + eps)``, and branches are
|
||||
added in bulk if their furthest points are nearer than
|
||||
``r * (1 + eps)``.
|
||||
|
||||
Returns
|
||||
-------
|
||||
results : list or array of lists
|
||||
If `x` is a single point, returns a list of the indices of the
|
||||
neighbors of `x`. If `x` is an array of points, returns an object
|
||||
array of shape tuple containing lists of neighbors.
|
||||
|
||||
Notes
|
||||
-----
|
||||
If you have many points whose neighbors you want to find, you may save
|
||||
substantial amounts of time by putting them in a KDTree and using
|
||||
query_ball_tree.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from PathScripts import kdtree
|
||||
>>> x, y = np.mgrid[0:4, 0:4]
|
||||
>>> points = zip(x.ravel(), y.ravel())
|
||||
>>> tree = kdtree.KDTree(points)
|
||||
>>> tree.query_ball_point([2, 0], 1)
|
||||
[4, 8, 9, 12]
|
||||
|
||||
"""
|
||||
x = np.asarray(x)
|
||||
if x.shape[-1] != self.m:
|
||||
raise ValueError("Searching for a %d-dimensional point in a "
|
||||
"%d-dimensional KDTree" % (x.shape[-1], self.m))
|
||||
if len(x.shape) == 1:
|
||||
return self.__query_ball_point(x, r, p, eps)
|
||||
else:
|
||||
retshape = x.shape[:-1]
|
||||
result = np.empty(retshape, dtype=np.object)
|
||||
for c in np.ndindex(retshape):
|
||||
result[c] = self.__query_ball_point(x[c], r, p=p, eps=eps)
|
||||
return result
|
||||
|
||||
def query_ball_tree(self, other, r, p=2., eps=0):
|
||||
"""Find all pairs of points whose distance is at most r
|
||||
|
||||
Parameters
|
||||
----------
|
||||
other : KDTree instance
|
||||
The tree containing points to search against.
|
||||
r : float
|
||||
The maximum distance, has to be positive.
|
||||
p : float, optional
|
||||
Which Minkowski norm to use. `p` has to meet the condition
|
||||
``1 <= p <= infinity``.
|
||||
eps : float, optional
|
||||
Approximate search. Branches of the tree are not explored
|
||||
if their nearest points are further than ``r/(1+eps)``, and
|
||||
branches are added in bulk if their furthest points are nearer
|
||||
than ``r * (1+eps)``. `eps` has to be non-negative.
|
||||
|
||||
Returns
|
||||
-------
|
||||
results : list of lists
|
||||
For each element ``self.data[i]`` of this tree, ``results[i]`` is a
|
||||
list of the indices of its neighbors in ``other.data``.
|
||||
|
||||
"""
|
||||
results = [[] for i in range(self.n)]
|
||||
|
||||
def traverse_checking(node1, rect1, node2, rect2):
|
||||
if rect1.min_distance_rectangle(rect2, p) > r/(1.+eps):
|
||||
return
|
||||
elif rect1.max_distance_rectangle(rect2, p) < r*(1.+eps):
|
||||
traverse_no_checking(node1, node2)
|
||||
elif isinstance(node1, KDTree.leafnode):
|
||||
if isinstance(node2, KDTree.leafnode):
|
||||
d = other.data[node2.idx]
|
||||
for i in node1.idx:
|
||||
results[i] += node2.idx[minkowski_distance(d,self.data[i],p) <= r].tolist()
|
||||
else:
|
||||
less, greater = rect2.split(node2.split_dim, node2.split)
|
||||
traverse_checking(node1,rect1,node2.less,less)
|
||||
traverse_checking(node1,rect1,node2.greater,greater)
|
||||
elif isinstance(node2, KDTree.leafnode):
|
||||
less, greater = rect1.split(node1.split_dim, node1.split)
|
||||
traverse_checking(node1.less,less,node2,rect2)
|
||||
traverse_checking(node1.greater,greater,node2,rect2)
|
||||
else:
|
||||
less1, greater1 = rect1.split(node1.split_dim, node1.split)
|
||||
less2, greater2 = rect2.split(node2.split_dim, node2.split)
|
||||
traverse_checking(node1.less,less1,node2.less,less2)
|
||||
traverse_checking(node1.less,less1,node2.greater,greater2)
|
||||
traverse_checking(node1.greater,greater1,node2.less,less2)
|
||||
traverse_checking(node1.greater,greater1,node2.greater,greater2)
|
||||
|
||||
def traverse_no_checking(node1, node2):
|
||||
if isinstance(node1, KDTree.leafnode):
|
||||
if isinstance(node2, KDTree.leafnode):
|
||||
for i in node1.idx:
|
||||
results[i] += node2.idx.tolist()
|
||||
else:
|
||||
traverse_no_checking(node1, node2.less)
|
||||
traverse_no_checking(node1, node2.greater)
|
||||
else:
|
||||
traverse_no_checking(node1.less, node2)
|
||||
traverse_no_checking(node1.greater, node2)
|
||||
|
||||
traverse_checking(self.tree, Rectangle(self.maxes, self.mins),
|
||||
other.tree, Rectangle(other.maxes, other.mins))
|
||||
return results
|
||||
|
||||
def query_pairs(self, r, p=2., eps=0):
|
||||
"""
|
||||
Find all pairs of points within a distance.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
r : positive float
|
||||
The maximum distance.
|
||||
p : float, optional
|
||||
Which Minkowski norm to use. `p` has to meet the condition
|
||||
``1 <= p <= infinity``.
|
||||
eps : float, optional
|
||||
Approximate search. Branches of the tree are not explored
|
||||
if their nearest points are further than ``r/(1+eps)``, and
|
||||
branches are added in bulk if their furthest points are nearer
|
||||
than ``r * (1+eps)``. `eps` has to be non-negative.
|
||||
|
||||
Returns
|
||||
-------
|
||||
results : set
|
||||
Set of pairs ``(i,j)``, with ``i < j``, for which the corresponding
|
||||
positions are close.
|
||||
|
||||
"""
|
||||
results = set()
|
||||
|
||||
def traverse_checking(node1, rect1, node2, rect2):
|
||||
if rect1.min_distance_rectangle(rect2, p) > r/(1.+eps):
|
||||
return
|
||||
elif rect1.max_distance_rectangle(rect2, p) < r*(1.+eps):
|
||||
traverse_no_checking(node1, node2)
|
||||
elif isinstance(node1, KDTree.leafnode):
|
||||
if isinstance(node2, KDTree.leafnode):
|
||||
# Special care to avoid duplicate pairs
|
||||
if id(node1) == id(node2):
|
||||
d = self.data[node2.idx]
|
||||
for i in node1.idx:
|
||||
for j in node2.idx[minkowski_distance(d,self.data[i],p) <= r]:
|
||||
if i < j:
|
||||
results.add((i,j))
|
||||
else:
|
||||
d = self.data[node2.idx]
|
||||
for i in node1.idx:
|
||||
for j in node2.idx[minkowski_distance(d,self.data[i],p) <= r]:
|
||||
if i < j:
|
||||
results.add((i,j))
|
||||
elif j < i:
|
||||
results.add((j,i))
|
||||
else:
|
||||
less, greater = rect2.split(node2.split_dim, node2.split)
|
||||
traverse_checking(node1,rect1,node2.less,less)
|
||||
traverse_checking(node1,rect1,node2.greater,greater)
|
||||
elif isinstance(node2, KDTree.leafnode):
|
||||
less, greater = rect1.split(node1.split_dim, node1.split)
|
||||
traverse_checking(node1.less,less,node2,rect2)
|
||||
traverse_checking(node1.greater,greater,node2,rect2)
|
||||
else:
|
||||
less1, greater1 = rect1.split(node1.split_dim, node1.split)
|
||||
less2, greater2 = rect2.split(node2.split_dim, node2.split)
|
||||
traverse_checking(node1.less,less1,node2.less,less2)
|
||||
traverse_checking(node1.less,less1,node2.greater,greater2)
|
||||
|
||||
# Avoid traversing (node1.less, node2.greater) and
|
||||
# (node1.greater, node2.less) (it's the same node pair twice
|
||||
# over, which is the source of the complication in the
|
||||
# original KDTree.query_pairs)
|
||||
if id(node1) != id(node2):
|
||||
traverse_checking(node1.greater,greater1,node2.less,less2)
|
||||
|
||||
traverse_checking(node1.greater,greater1,node2.greater,greater2)
|
||||
|
||||
def traverse_no_checking(node1, node2):
|
||||
if isinstance(node1, KDTree.leafnode):
|
||||
if isinstance(node2, KDTree.leafnode):
|
||||
# Special care to avoid duplicate pairs
|
||||
if id(node1) == id(node2):
|
||||
for i in node1.idx:
|
||||
for j in node2.idx:
|
||||
if i < j:
|
||||
results.add((i,j))
|
||||
else:
|
||||
for i in node1.idx:
|
||||
for j in node2.idx:
|
||||
if i < j:
|
||||
results.add((i,j))
|
||||
elif j < i:
|
||||
results.add((j,i))
|
||||
else:
|
||||
traverse_no_checking(node1, node2.less)
|
||||
traverse_no_checking(node1, node2.greater)
|
||||
else:
|
||||
# Avoid traversing (node1.less, node2.greater) and
|
||||
# (node1.greater, node2.less) (it's the same node pair twice
|
||||
# over, which is the source of the complication in the
|
||||
# original KDTree.query_pairs)
|
||||
if id(node1) == id(node2):
|
||||
traverse_no_checking(node1.less, node2.less)
|
||||
traverse_no_checking(node1.less, node2.greater)
|
||||
traverse_no_checking(node1.greater, node2.greater)
|
||||
else:
|
||||
traverse_no_checking(node1.less, node2)
|
||||
traverse_no_checking(node1.greater, node2)
|
||||
|
||||
traverse_checking(self.tree, Rectangle(self.maxes, self.mins),
|
||||
self.tree, Rectangle(self.maxes, self.mins))
|
||||
return results
|
||||
|
||||
def count_neighbors(self, other, r, p=2.):
|
||||
"""
|
||||
Count how many nearby pairs can be formed.
|
||||
|
||||
Count the number of pairs (x1,x2) can be formed, with x1 drawn
|
||||
from self and x2 drawn from `other`, and where
|
||||
``distance(x1, x2, p) <= r``.
|
||||
This is the "two-point correlation" described in Gray and Moore 2000,
|
||||
"N-body problems in statistical learning", and the code here is based
|
||||
on their algorithm.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
other : KDTree instance
|
||||
The other tree to draw points from.
|
||||
r : float or one-dimensional array of floats
|
||||
The radius to produce a count for. Multiple radii are searched with
|
||||
a single tree traversal.
|
||||
p : float, 1<=p<=infinity
|
||||
Which Minkowski p-norm to use
|
||||
|
||||
Returns
|
||||
-------
|
||||
result : int or 1-D array of ints
|
||||
The number of pairs. Note that this is internally stored in a numpy
|
||||
int, and so may overflow if very large (2e9).
|
||||
|
||||
"""
|
||||
def traverse(node1, rect1, node2, rect2, idx):
|
||||
min_r = rect1.min_distance_rectangle(rect2,p)
|
||||
max_r = rect1.max_distance_rectangle(rect2,p)
|
||||
c_greater = r[idx] > max_r
|
||||
result[idx[c_greater]] += node1.children*node2.children
|
||||
idx = idx[(min_r <= r[idx]) & (r[idx] <= max_r)]
|
||||
if len(idx) == 0:
|
||||
return
|
||||
|
||||
if isinstance(node1,KDTree.leafnode):
|
||||
if isinstance(node2,KDTree.leafnode):
|
||||
ds = minkowski_distance(self.data[node1.idx][:,np.newaxis,:],
|
||||
other.data[node2.idx][np.newaxis,:,:],
|
||||
p).ravel()
|
||||
ds.sort()
|
||||
result[idx] += np.searchsorted(ds,r[idx],side='right')
|
||||
else:
|
||||
less, greater = rect2.split(node2.split_dim, node2.split)
|
||||
traverse(node1, rect1, node2.less, less, idx)
|
||||
traverse(node1, rect1, node2.greater, greater, idx)
|
||||
else:
|
||||
if isinstance(node2,KDTree.leafnode):
|
||||
less, greater = rect1.split(node1.split_dim, node1.split)
|
||||
traverse(node1.less, less, node2, rect2, idx)
|
||||
traverse(node1.greater, greater, node2, rect2, idx)
|
||||
else:
|
||||
less1, greater1 = rect1.split(node1.split_dim, node1.split)
|
||||
less2, greater2 = rect2.split(node2.split_dim, node2.split)
|
||||
traverse(node1.less,less1,node2.less,less2,idx)
|
||||
traverse(node1.less,less1,node2.greater,greater2,idx)
|
||||
traverse(node1.greater,greater1,node2.less,less2,idx)
|
||||
traverse(node1.greater,greater1,node2.greater,greater2,idx)
|
||||
|
||||
R1 = Rectangle(self.maxes, self.mins)
|
||||
R2 = Rectangle(other.maxes, other.mins)
|
||||
if np.shape(r) == ():
|
||||
r = np.array([r])
|
||||
result = np.zeros(1,dtype=int)
|
||||
traverse(self.tree, R1, other.tree, R2, np.arange(1))
|
||||
return result[0]
|
||||
elif len(np.shape(r)) == 1:
|
||||
r = np.asarray(r)
|
||||
n, = r.shape
|
||||
result = np.zeros(n,dtype=int)
|
||||
traverse(self.tree, R1, other.tree, R2, np.arange(n))
|
||||
return result
|
||||
else:
|
||||
raise ValueError("r must be either a single value or a one-dimensional array of values")
|
||||
|
||||
|
||||
def distance_matrix(x,y,p=2,threshold=1000000):
|
||||
"""
|
||||
Compute the distance matrix.
|
||||
|
||||
Returns the matrix of all pair-wise distances.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : (M, K) array_like
|
||||
TODO: description needed
|
||||
y : (N, K) array_like
|
||||
TODO: description needed
|
||||
p : float, 1 <= p <= infinity
|
||||
Which Minkowski p-norm to use.
|
||||
threshold : positive int
|
||||
If ``M * N * K`` > `threshold`, algorithm uses a Python loop instead
|
||||
of large temporary arrays.
|
||||
|
||||
Returns
|
||||
-------
|
||||
result : (M, N) ndarray
|
||||
Distance matrix.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> distance_matrix([[0,0],[0,1]], [[1,0],[1,1]])
|
||||
array([[ 1. , 1.41421356],
|
||||
[ 1.41421356, 1. ]])
|
||||
|
||||
"""
|
||||
|
||||
x = np.asarray(x)
|
||||
m, k = x.shape
|
||||
y = np.asarray(y)
|
||||
n, kk = y.shape
|
||||
|
||||
if k != kk:
|
||||
raise ValueError("x contains %d-dimensional vectors but y contains %d-dimensional vectors" % (k, kk))
|
||||
|
||||
if m*n*k <= threshold:
|
||||
return minkowski_distance(x[:,np.newaxis,:],y[np.newaxis,:,:],p)
|
||||
else:
|
||||
result = np.empty((m,n),dtype=np.float) # FIXME: figure out the best dtype
|
||||
if m < n:
|
||||
for i in range(m):
|
||||
result[i,:] = minkowski_distance(x[i],y,p)
|
||||
else:
|
||||
for j in range(n):
|
||||
result[:,j] = minkowski_distance(x,y[j],p)
|
||||
return result
|
Loading…
Reference in New Issue
Block a user