add fcgear

http://forum.freecadweb.org/viewtopic.php?f=9&t=5703
This commit is contained in:
jriegel 2014-02-16 16:44:07 +01:00
parent c9c24cf0b6
commit 587f6b220b
7 changed files with 539 additions and 0 deletions

View File

@ -27,6 +27,18 @@ INSTALL(
Scripts/Spring.py
DESTINATION
Mod/PartDesign/Scripts
)
INSTALL(
FILES
fcgear/__init__.py
fcgear/fcgear.py
fcgear/fcgeardialog.py
fcgear/involute.py
fcgear/svggear.py
DESTINATION
Mod/PartDesign/fcgear
)
SET(WizardShaft_SRCS

View File

@ -0,0 +1,30 @@
================================================
FCGear: an Involute Gear Generator for FreeCAD
================================================
This is a simple gear generation tool usable in FreeCAD. The tooth
profiles are approximations of the ideal involutes by Bezier curves,
according the paper:
Approximation of Involute Curves for CAD-System Processing
Higuchi et al. approximation to an involute.
ref: YNU Digital Eng Lab Memorandum 05-1
http://maekawalab-ynu.com/papers.html
This code is based on the JavaScript implementation of the published
method provided by A.R. Collins in his gearUtils.js tool:
Based on gearUtils-03.js by Dr A.R.Collins
Latest version: <www.arc.id.au/gearDrawing.html>
Also took inspirations from the Inkscape extension provided by Matthew
Dockrey on
https://github.com/attoparsec/inkscape-extensions.git
The simplest way to use it is to copy the example macro file
gear.FCMacro to ~/.FreeCAD/ (make sure the fcgear directory is in the
FreeCAD's Python path).
Copyright 2014 David Douard <david.douard@gmail.com>.
Distributed under the LGPL licence.

View File

View File

@ -0,0 +1,108 @@
# (c) 2014 David Douard <david.douard@gmail.com>
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License (LGPL)
# as published by the Free Software Foundation; either version 2 of
# the License, or (at your option) any later version.
# for detail see the LICENCE text file.
#
# FCGear is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General Public
# License along with FCGear; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
from math import cos, sin, pi, acos, asin, atan, sqrt
import FreeCAD, FreeCADGui, Part
from FreeCAD import Base, Console
import involute
reload(involute)
rotate = involute.rotate
def makeGear(m, Z, angle, split=True):
if FreeCAD.ActiveDocument is None:
FreeCAD.newDocument("Gear")
doc = FreeCAD.ActiveDocument
w = FCWireBuilder()
involute.CreateExternalGear(w, m, Z, angle, split)
gearw = Part.Wire([o.toShape() for o in w.wire])
gear = doc.addObject("Part::Feature", "Gear")
gear.Shape = gearw
return gear
class FCWireBuilder(object):
"""A helper class to prepare a Part.Wire object"""
def __init__(self):
self.pos = None
self.theta = 0.0
self.wire = []
def move(self, p):
"""set current position"""
self.pos = Base.Vector(*p)
def line(self, p):
"""Add a segment between self.pos and p"""
p = rotate(p, self.theta)
end = Base.Vector(*p)
self.wire.append(Part.Line(self.pos, end))
self.pos = end
def arc(self, p, r, sweep):
""""Add an arc from self.pos to p which radius is r
sweep (0 or 1) determine the orientation of the arc
"""
p = rotate(p, self.theta)
end = Base.Vector(*p)
mid = Base.Vector(*(midpoints(p, self.pos, r)[sweep]))
self.wire.append(Part.Arc(self.pos, mid, end))
self.pos = end
def curve(self, *points):
"""Add a Bezier curve from self.pos to points[-1]
every other points are the control points of the Bezier curve (which
will thus be of degree len(points) )
"""
points = [Base.Vector(*rotate(p, self.theta)) for p in points]
bz = Part.BezierCurve()
bz.setPoles([self.pos] + points)
self.wire.append(bz)
self.pos = points[-1]
def close(self):
pass
def midpoints(p1, p2, r):
"""A very ugly function that returns the midpoint of a p1 and p2
on the circle which radius is r and which pass throught p1 and
p2
Return the 2 possible solutions
"""
vx, vy = p2[0]-p1[0], p2[1]-p1[1]
b = (vx**2 + vy**2)**.5
v = (vx/b, vy/b)
cosA = b**2 / (2*b*r)
A = acos(cosA)
vx, vy = rotate(v, A)
c1 = (p1[0]+r*vx, p1[1]+r*vy)
m1x, m1y = ((p1[0]+p2[0])/2 - c1[0], (p1[1]+p2[1])/2 - c1[1])
dm1 = (m1x**2+m1y**2)**.5
m1x, m1y = (c1[0] + r*m1x/dm1, c1[1] + r*m1y/dm1)
m1 = (m1x, m1y)
vx, vy = rotate(v, -A)
c2 = (p1[0]+r*vx, p1[1]+r*vy)
m2x, m2y = ((p1[0]+p2[0])/2 - c2[0], (p1[1]+p2[1])/2 - c2[1])
dm2 = (m2x**2+m2y**2)**.5
m2x, m2y = (c2[0] + r*m2x/dm2, c2[1] + r*m2y/dm2)
m2 = (m2x, m2y)
return m1, m2

View File

@ -0,0 +1,67 @@
# (c) 2014 David Douard <david.douard@gmail.com>
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License (LGPL)
# as published by the Free Software Foundation; either version 2 of
# the License, or (at your option) any later version.
# for detail see the LICENCE text file.
#
# FCGear is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General Public
# License along with FCGear; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
from PyQt4 import QtGui as qt
import fcgear
import FreeCAD, FreeCADGui
class GearCreationFrame(qt.QFrame):
def __init__(self, parent=None):
super(GearCreationFrame, self).__init__(parent)
self.Z = qt.QSpinBox(value=26)
self.m = qt.QDoubleSpinBox(value=2.5)
self.angle = qt.QDoubleSpinBox(value=20)
self.split = qt.QComboBox()
self.split.addItems(['2x3', '1x4'])
l = qt.QFormLayout(self)
l.setFieldGrowthPolicy(l.ExpandingFieldsGrow)
l.addRow('Number of teeth:', self.Z)
l.addRow('Modules (mm):', self.m)
l.addRow('Pressure angle:', self.angle)
l.addRow('Number of curves:', self.split)
class GearDialog(qt.QDialog):
def __init__(self, parent=None):
super(GearDialog, self).__init__(parent)
self.gc = GearCreationFrame()
btns = qt.QDialogButtonBox.Ok | qt.QDialogButtonBox.Cancel
buttonBox = qt.QDialogButtonBox(btns,
accepted=self.accept,
rejected=self.reject)
l = qt.QVBoxLayout(self)
l.addWidget(self.gc)
l.addWidget(buttonBox)
self.setWindowTitle('Gear cration dialog')
def accept(self):
if FreeCAD.ActiveDocument is None:
FreeCAD.newDocument("Gear")
gear = fcgear.makeGear(self.gc.m.value(),
self.gc.Z.value(),
self.gc.angle.value(),
not self.gc.split.currentIndex())
FreeCADGui.SendMsgToActiveView("ViewFit")
return super(GearDialog, self).accept()
if __name__ == '__main__':
a = qt.QApplication([])
w = GearDialog()
w.show()
a.exec_()

View File

@ -0,0 +1,251 @@
# (c) 2014 David Douard <david.douard@gmail.com>
# Based on https://github.com/attoparsec/inkscape-extensions.git
# Based on gearUtils-03.js by Dr A.R.Collins
# http://www.arc.id.au/gearDrawing.html
#
# Calculation of Bezier coefficients for
# Higuchi et al. approximation to an involute.
# ref: YNU Digital Eng Lab Memorandum 05-1
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License (LGPL)
# as published by the Free Software Foundation; either version 2 of
# the License, or (at your option) any later version.
# for detail see the LICENCE text file.
#
# FCGear is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General Public
# License along with FCGear; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
from math import cos, sin, pi, acos, asin, atan, sqrt
def CreateExternalGear(w, m, Z, phi, split=True):
"""
Create an external gear
w is wirebuilder object (in which the gear will be constructed)
if split is True, each profile of a teeth will consist in 2 Bezier
curves of degree 3, otherwise it will be made of one Bezier curve
of degree 4
"""
# ****** external gear specifications
addendum = m # distance from pitch circle to tip circle
dedendum = 1.25 * m # pitch circle to root, sets clearance
clearance = dedendum - addendum
# Calculate radii
Rpitch = Z * m / 2 # pitch circle radius
Rb = Rpitch*cos(phi * pi / 180) # base circle radius
Ra = Rpitch + addendum # tip (addendum) circle radius
Rroot = Rpitch - dedendum # root circle radius
fRad = 1.5 * clearance # fillet radius, max 1.5*clearance
Rf = sqrt((Rroot + fRad)**2 - fRad**2) # radius at top of fillet
if (Rb < Rf):
Rf = Rroot + clearance
# ****** calculate angles (all in radians)
pitchAngle = 2 * pi / Z # angle subtended by whole tooth (rads)
baseToPitchAngle = genInvolutePolar(Rb, Rpitch)
pitchToFilletAngle = baseToPitchAngle # profile starts at base circle
if (Rf > Rb): # start profile at top of fillet (if its greater)
pitchToFilletAngle -= genInvolutePolar(Rb, Rf)
filletAngle = atan(fRad / (fRad + Rroot)) # radians
# ****** generate Higuchi involute approximation
fe = 1 # fraction of profile length at end of approx
fs = 0.01 # fraction of length offset from base to avoid singularity
if (Rf > Rb):
fs = (Rf**2 - Rb**2) / (Ra**2 - Rb**2) # offset start to top of fillet
if split:
# approximate in 2 sections, split 25% along the involute
fm = fs + (fe - fs) / 4 # fraction of length at junction (25% along profile)
dedInv = BezCoeffs(m, Z, phi, 3, fs, fm)
addInv = BezCoeffs(m, Z, phi, 3, fm, fe)
# join the 2 sets of coeffs (skip duplicate mid point)
inv = dedInv + addInv[1:]
else:
inv = BezCoeffs(m, Z, phi, 4, fs, fe)
# create the back profile of tooth (mirror image)
invR = []
for i, pt in enumerate(inv):
# rotate all points to put pitch point at y = 0
ptx, pty = inv[i] = rotate(pt, -baseToPitchAngle - pitchAngle / 4)
# generate the back of tooth profile nodes, mirror coords in X axis
invR.append((ptx, -pty))
# ****** calculate section junction points R=back of tooth, Next=front of next tooth)
fillet = toCartesian(Rf, -pitchAngle / 4 - pitchToFilletAngle) # top of fillet
filletR = [fillet[0], -fillet[1]] # flip to make same point on back of tooth
rootR = toCartesian(Rroot, pitchAngle / 4 + pitchToFilletAngle + filletAngle)
rootNext = toCartesian(Rroot, 3 * pitchAngle / 4 - pitchToFilletAngle - filletAngle)
filletNext = rotate(fillet, pitchAngle) # top of fillet, front of next tooth
# Build the shapes using FreeCAD.Part
t_inc = 2.0 * pi / float(Z)
thetas = [(x * t_inc) for x in range(Z)]
w.move(fillet) # start at top of fillet
for theta in thetas:
w.theta = theta
if (Rf < Rb):
w.line(inv[0]) # line from fillet up to base circle
if split:
w.curve(inv[1], inv[2], inv[3])
w.curve(inv[4], inv[5], inv[6])
w.arc(invR[6], Ra, 1) # arc across addendum circle
w.curve(invR[5], invR[4], invR[3])
w.curve(invR[2], invR[1], invR[0])
else:
w.curve(*inv[1:])
w.arc(invR[-1], Ra, 1) # arc across addendum circle
w.curve(*invR[-2::-1])
if (Rf < Rb):
w.line(filletR) # line down to topof fillet
if (rootNext[1] > rootR[1]): # is there a section of root circle between fillets?
w.arc(rootR, fRad, 0) # back fillet
w.arc(rootNext, Rroot, 1) # root circle arc
w.arc(filletNext, fRad, 0)
w.close()
return w
def genInvolutePolar(Rb, R):
"""returns the involute angle as function of radius R.
Rb = base circle radius
"""
return (sqrt(R*R - Rb*Rb) / Rb) - acos(Rb / R)
def rotate(pt, rads):
"rotate pt by rads radians about origin"
sinA = sin(rads)
cosA = cos(rads)
return (pt[0] * cosA - pt[1] * sinA,
pt[0] * sinA + pt[1] * cosA)
def toCartesian(radius, angle):
"convert polar coords to cartesian"
return [radius * cos(angle), radius * sin(angle)]
def chebyExpnCoeffs(j, func):
N = 50 # a suitably large number N>>p
c = 0
for k in xrange(1, N + 1):
c += func(cos(pi * (k - 0.5) / N)) * cos(pi * j * (k - 0.5) / N)
return 2 *c / N
def chebyPolyCoeffs(p, func):
coeffs = [0]*(p+1)
fnCoeff = []
T = [coeffs[:] for i in range(p+1)]
T[0][0] = 1
T[1][1] = 1
# now generate the Chebyshev polynomial coefficient using
# formula T(k+1) = 2xT(k) - T(k-1) which yields
# T = [ [ 1, 0, 0, 0, 0, 0], # T0(x) = +1
# [ 0, 1, 0, 0, 0, 0], # T1(x) = 0 +x
# [-1, 0, 2, 0, 0, 0], # T2(x) = -1 0 +2xx
# [ 0, -3, 0, 4, 0, 0], # T3(x) = 0 -3x 0 +4xxx
# [ 1, 0, -8, 0, 8, 0], # T4(x) = +1 0 -8xx 0 +8xxxx
# [ 0, 5, 0,-20, 0, 16], # T5(x) = 0 5x 0 -20xxx 0 +16xxxxx
# ... ]
for k in xrange(1, p):
for j in xrange(len(T[k]) - 1):
T[k + 1][j + 1] = 2 * T[k][j]
for j in xrange(len(T[k - 1])):
T[k + 1][j] -= T[k - 1][j]
# convert the chebyshev function series into a simple polynomial
# and collect like terms, out T polynomial coefficients
for k in xrange(p + 1):
fnCoeff.append(chebyExpnCoeffs(k, func))
for k in xrange(p + 1):
for pwr in xrange(p + 1):
coeffs[pwr] += fnCoeff[k] * T[k][pwr]
coeffs[0] -= fnCoeff[0] / 2 # fix the 0th coeff
return coeffs
def binom(n, k):
coeff = 1
for i in xrange(n - k + 1, n + 1):
coeff *= i
for i in xrange(1, k + 1):
coeff /= i
return coeff
def bezCoeff(i, p, polyCoeffs):
'''generate the polynomial coeffs in one go'''
return sum(binom(i, j) * polyCoeffs[j] / binom(p, j) for j in range(i+1))
# Parameters:
# module - sets the size of teeth (see gear design texts)
# numTeeth - number of teeth on the gear
# pressure angle - angle in degrees, usually 14.5 or 20
# order - the order of the Bezier curve to be fitted [3, 4, 5, ..]
# fstart - fraction of distance along tooth profile to start
# fstop - fraction of distance along profile to stop
def BezCoeffs(module, numTeeth, pressureAngle, order, fstart, fstop):
Rpitch = module * numTeeth / 2 # pitch circle radius
phi = pressureAngle # pressure angle
Rb = Rpitch * cos(phi * pi / 180) # base circle radius
Ra = Rpitch + module # addendum radius (outer radius)
ta = sqrt(Ra * Ra - Rb * Rb) / Rb # involute angle at addendum
te = sqrt(fstop) * ta # involute angle, theta, at end of approx
ts = sqrt(fstart) * ta # involute angle, theta, at start of approx
p = order # order of Bezier approximation
def involuteXbez(t):
"Equation of involute using the Bezier parameter t as variable"
# map t (0 <= t <= 1) onto x (where -1 <= x <= 1)
x = t * 2 - 1
# map theta (where ts <= theta <= te) from x (-1 <=x <= 1)
theta = x * (te - ts) / 2 + (ts + te) / 2
return Rb * (cos(theta) + theta * sin(theta))
def involuteYbez(t):
"Equation of involute using the Bezier parameter t as variable"
# map t (0 <= t <= 1) onto x (where -1 <= x <= 1)
x = t * 2 - 1
# map theta (where ts <= theta <= te) from x (-1 <=x <= 1)
theta = x * (te - ts) / 2 + (ts + te) / 2
return Rb * (sin(theta) - theta * cos(theta))
# calc Bezier coeffs
bzCoeffs = []
polyCoeffsX = chebyPolyCoeffs(p, involuteXbez)
polyCoeffsY = chebyPolyCoeffs(p, involuteYbez)
for i in xrange(p + 1):
bx = bezCoeff(i, p, polyCoeffsX)
by = bezCoeff(i, p, polyCoeffsY)
bzCoeffs.append((bx, by))
return bzCoeffs

View File

@ -0,0 +1,71 @@
# (c) 2014 David Douard <david.douard@gmail.com>
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License (LGPL)
# as published by the Free Software Foundation; either version 2 of
# the License, or (at your option) any later version.
# for detail see the LICENCE text file.
#
# FCGear is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General Public
# License along with FCGear; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
import itertools
from math import cos, sin
from involute import CreateExternalGear, rotate
def makeGear(m, Z, angle):
w = SVGWireBuilder()
CreateExternalGear(w, m, Z, angle)
return '\n'.join(w.svg)
class SVGWireBuilder(object):
def __init__(self):
self.theta = 0.0
self.pos = None
self.svg = []
def move(self, p):
p = rotate(p, self.theta)
self.svg.append('M %s,%s' % (p[0], p[1]))
self.pos = p
def line(self, p):
p = rotate(p, self.theta)
self.svg.append('L %s,%s' % (p[0], p[1]))
self.pos = p
def arc(self, p, r, sweep):
p = rotate(p, self.theta)
self.svg.append('A %s,%s 0,0,%s %s,%s' % (r, r, str(sweep), p[0], p[1]))
self.pos = p
def curve(self, *points):
"""Add a Bezier curve from self.pos to points[-1]
every other points are the control points of the Bezier curve (which
will thus be of degree len(points) )
"""
assert len(points) == 3
points = [rotate(p, self.theta) for p in points]
self.svg.append('C %s,%s %s,%s %s,%s' % tuple(itertools.chain(*points)))
self.pos = points[-1]
def close(self):
self.svg.append('Z')
if __name__ == '__main__':
from optparse import OptionParser
p = OptionParser()
p.add_option('-a', '--angle', help='pressure angle',
dest='angle', default=20)
opts, args = p.parse_args()
if len(args) != 2:
p.error()
m, Z = [float(v) for v in args]
print makeGear(m, int(Z), float(opts.angle))