+ add Levenberg-Marquardt and DogLeg algorithms in freegcs (from ickby)

+ use fallback solvers in Sketch::solve and ask for users feedback
+ improve tooltip text


git-svn-id: https://free-cad.svn.sourceforge.net/svnroot/free-cad/trunk@5112 e8eeb9e2-ec13-0410-a4a9-efa5cf37419d
This commit is contained in:
logari81 2011-11-10 18:29:52 +00:00
parent 6a9dff8129
commit 5f186325e5
4 changed files with 374 additions and 23 deletions

View File

@ -1303,22 +1303,51 @@ int Sketch::addSymmetricConstraint(int geoId1, PointPos pos1, int geoId2, PointP
int Sketch::solve() { int Sketch::solve() {
if (!isInitMove) {
GCSsys.clearByTag(-1);
GCSsys.clearByTag(-2);
InitParameters.resize(Parameters.size());
int i=0;
for (std::vector<double*>::iterator it = Parameters.begin(); it != Parameters.end(); ++it, i++) {
InitParameters[i] = **it;
GCSsys.addConstraintEqual(*it, &InitParameters[i], -2);
}
GCSsys.initSolution(Parameters);
}
Base::TimeInfo start_time; Base::TimeInfo start_time;
// solving with freegcs // solving with freegcs
int ret = GCSsys.solve(); // (either with SQP solver for two subsystems or
// with the default DogLeg solver for a single subsystem)
int ret = GCSsys.solve(GCS::DogLeg);
if (ret != GCS::Success && !isInitMove) {
// if we are not in dragging mode and the solver fails we try
// alternative solvers
ret = GCSsys.solve(GCS::BFGS);
if (ret == GCS::Success) {
Base::Console().Warning("Important: the BFGS solver succeeded where the DogLeg solver had failed.\n");
Base::Console().Warning("If you see this message please report a way of reproducing this result at\n");
Base::Console().Warning("https://sourceforge.net/apps/mantisbt/free-cad/main_page.php\n");
}
else {
ret = GCSsys.solve(GCS::LevenbergMarquardt);
if (ret == GCS::Success) {
Base::Console().Warning("Important: the LevenbergMarquardt solver succeeded where the DogLeg and BFGS solvers have failed.\n");
Base::Console().Warning("If you see this message please report a way of reproducing this result at\n");
Base::Console().Warning("https://sourceforge.net/apps/mantisbt/free-cad/main_page.php\n");
} else {
// last resort: augment the system with a second subsystem and use the SQP solver
GCSsys.clearByTag(-1);
GCSsys.clearByTag(-2);
InitParameters.resize(Parameters.size());
int i=0;
for (std::vector<double*>::iterator it = Parameters.begin(); it != Parameters.end(); ++it, i++) {
InitParameters[i] = **it;
GCSsys.addConstraintEqual(*it, &InitParameters[i], -2);
}
GCSsys.initSolution(Parameters);
ret = GCSsys.solve();
if (ret == GCS::Success) {
Base::Console().Warning("Important: the SQP solver succeeded where all single subsystem solvers have failed.\n");
Base::Console().Warning("If you see this message please report a way of reproducing this result at\n");
Base::Console().Warning("https://sourceforge.net/apps/mantisbt/free-cad/main_page.php\n");
}
}
}
}
// if successfully solve write the parameter back // if successfully solve write the parameter back
if (ret == GCS::Success) { if (ret == GCS::Success) {
GCSsys.applySolution(); GCSsys.applySolution();

View File

@ -21,6 +21,7 @@
***************************************************************************/ ***************************************************************************/
#include <iostream> #include <iostream>
#include <algorithm> #include <algorithm>
#include <cfloat>
#include "GCS.h" #include "GCS.h"
#include "qp_eq.h" #include "qp_eq.h"
@ -484,13 +485,13 @@ void System::resetToReference()
*(it->first) = it->second; *(it->first) = it->second;
} }
int System::solve(VEC_pD &params, bool isFine) int System::solve(VEC_pD &params, bool isFine, Algorithm alg)
{ {
initSolution(params); initSolution(params);
return solve(isFine); return solve(isFine, alg);
} }
int System::solve(bool isFine) int System::solve(bool isFine, Algorithm alg)
{ {
if (subsys0) { if (subsys0) {
resetToReference(); resetToReference();
@ -505,21 +506,31 @@ int System::solve(bool isFine)
else if (subsys1) else if (subsys1)
return solve(subsys0, subsys1, isFine); return solve(subsys0, subsys1, isFine);
else else
return solve(subsys0, isFine); return solve(subsys0, isFine, alg);
} }
else if (subsys1) { else if (subsys1) {
resetToReference(); resetToReference();
if (subsys2) if (subsys2)
return solve(subsys1, subsys2, isFine); return solve(subsys1, subsys2, isFine);
else else
return solve(subsys1, isFine); return solve(subsys1, isFine, alg);
} }
else else
// return success in order to permit coincidence constraints to be applied // return success in order to permit coincidence constraints to be applied
return Success; return Success;
} }
int System::solve(SubSystem *subsys, bool isFine) int System::solve(SubSystem *subsys, bool isFine, Algorithm alg)
{
if (alg == BFGS)
return solve_BFGS(subsys, isFine);
else if (alg == LevenbergMarquardt)
return solve_LM(subsys);
else if (alg == DogLeg)
return solve_DL(subsys);
}
int System::solve_BFGS(SubSystem *subsys, bool isFine)
{ {
int xsize = subsys->pSize(); int xsize = subsys->pSize();
if (xsize == 0) if (xsize == 0)
@ -594,6 +605,307 @@ int System::solve(SubSystem *subsys, bool isFine)
return Failed; return Failed;
} }
int System::solve_LM(SubSystem* subsys)
{
int xsize = subsys->pSize();
int csize = subsys->cSize();
if (xsize == 0)
return Success;
int itmax = MaxIterations*xsize;
Eigen::VectorXd e(csize), e_new(csize); // vector of all function errors (every constraint is one function)
Eigen::MatrixXd J(csize, xsize); // Jacobi of the subsystem
Eigen::VectorXd x(xsize), h(xsize), x_new(xsize), g(xsize);
Eigen::MatrixXd A;
Eigen::VectorXd diag_A(xsize);
subsys->redirectParams();
subsys->getParams(x);
subsys->calcResidual(e);
e*=-1;
double eps=1e-10, eps1=1e-80;
double tau=1e-3;
double nu=2, mu=0;
int k=0, stop=0;
for (k=0; k < itmax && !stop; ++k) {
// check error
// (logari81) why not using:
// if (e.squaredNorm() <= eps) { // error is small
if (e.dot(e) <= eps) { // error is small
stop=1;
break;
}
// J^T J, J^T e
subsys->calcJacobi(J);;
A = J.transpose()*J;
g = J.transpose()*e;
// Compute ||J^T e||_inf
double g_inf = -DBL_EPSILON; // (logari81) is this initialization correct?
for (int i=0; i < xsize; i++) {
if (g_inf < g(i))
g_inf = g(i);
diag_A(i) = A(i,i); // save diagonal entries so that augmentation can be later canceled
}
// (logari81) to be replaced with (if max(abs(g)) == max(g)):
// g_inf = g.lpNorm<Eigen::Infinity>();
// diag_A = A.diagonal();
// check for convergence
if (g_inf <= eps1) {
stop=2;
break;
}
// compute initial damping factor
if (k==0) {
double temp=-DBL_EPSILON;
for (int i=0; i < xsize; i++) {
double z=A(i,i);
if (z > temp) temp=z; // find max diagonal element
}
mu=tau*temp;
}
// (logari81) to be replaced with (diagonal of A is positive):
// if (k==0)
// mu = tau * A.diagonal().lpNorm<Eigen::Infinity>();
// determine increment using adaptive damping
while (1) {
// augment normal equations A = A+uI
for (int i=0; i < xsize; ++i)
A(i,i) += mu;
// (logari81) to be replaced with:
// mu = tau * A.diagonal().lpNorm<Eigen::Infinity>();
//solve augmented functions A*h=-g
h = A.fullPivLu().solve(g);
double rel_error = (A*h - g).norm() / g.norm();
// check if solving workes
if (rel_error < 1e-5) {
// compute par's new estimate and ||d_par||^2
x_new = x + h;
double h_norm = h.dot(h);
// (logari81) why not using:
// h_norm = h.squaredNorm();
if (h_norm <= eps1*(x.norm()*eps1)) { // relative change in p is small, stop
// (logari81) why not write:
// if (h_norm <= eps1*eps1*x.norm()) { // relative change in p is small, stop
stop=3;
break;
}
else if (h_norm >= (x.norm()+eps1)/(DBL_EPSILON*DBL_EPSILON)) { // almost singular
stop=4;
break;
}
subsys->setParams(x_new);
subsys->calcResidual(e_new);
e_new *= -1;
double error_new = e_new.dot(e_new);
double dF = e.dot(e) - error_new;
// (logari81) why not using:
// double error_new = e_new.squaredNorm();
// double dF = e.squaredNorm() - error_new;
double dL = h.dot(mu*h+g);
if (dF>0. && dL>0.) { // reduction in error, increment is accepted
double tmp=(2.0*dF/dL)-1.0;
tmp = 1.0 - pow(tmp, 3);
if (tmp <= 1./3.)
mu *= 1./3.;
else
mu *= tmp;
// (logari81) to be replaced with:
// mu *= std::max(1./3.,tmp);
nu=2;
// update par's estimate
x = x_new;
e = e_new;
break;
}
}
// if this point is reached, either the linear system could not be solved or
// the error did not reduce; in any case, the increment must be rejected
mu*=nu;
nu*=2.0;
for (int i=0; i < xsize; ++i) // restore diagonal J^T J entries
A(i,i)=diag_A(i);
}
}
if (k >= itmax)
stop = 5;
subsys->revertParams();
return (stop == 1) ? Success : Failed;
}
int System::solve_DL(SubSystem* subsys)
{
double tolg=1e-80, tolx=1e-80, tolf=1e-10;
double error, error_new;
int xsize = subsys->pSize();
int csize = subsys->cSize();
int itmax = MaxIterations*xsize;
Eigen::VectorXd x(xsize), x_new(xsize);
Eigen::VectorXd fx(csize), fx_new(csize);
Eigen::MatrixXd Jx(csize, xsize), Jx_new(csize, xsize);
Eigen::VectorXd g(xsize), h_sd(xsize), h_gn(xsize), h_dl(xsize);
subsys->redirectParams();
subsys->getParams(x);
subsys->calcResidual(fx, error);
subsys->calcJacobi(Jx);
g = -1*(Jx.transpose()*fx);
// (logari81) why not:
// g = Jx.transpose()*(-fx);
// get the infinity norm fx_inf and g_inf
double fx_inf=0, g_inf=0;
for (int i=0; i < xsize; i++)
g_inf = fabs(g(i)) > g_inf ? fabs(g(i)) : g_inf;
for (int i=0; i < csize; i++)
fx_inf = fabs(fx(i)) > fx_inf ? fabs(fx(i)) : fx_inf;
// (logari81) to be replaced with:
// double g_inf = g.lpNorm<Eigen::Infinity>();
// double f_inf = f.lpNorm<Eigen::Infinity>();
double delta=0.1;
double alpha=0.;
double nu=2.;
int k=0, stop=0, reduce=0;
while (!stop) {
// check if finished
if (fx_inf <= tolf)
stop = 1;
else if (g_inf <= tolg)
stop = 2;
else if (delta <= tolx*(tolx + x.norm()))
stop = 2;
else if (k >= itmax)
stop = 4;
else {
// get the steepest descent direction
alpha = pow(g.norm()/(Jx*g).norm() ,2);
h_sd = alpha*g;
// get the gauss-newton step
h_gn = Jx.fullPivLu().solve(-1*fx);
double rel_error = (Jx*h_gn + fx).norm() / fx.norm();
if (rel_error > 1e15)
break;
// compute the dogleg step
if (h_gn.norm() < delta) {
h_dl = h_gn;
if (h_dl.norm() <= tolx*(tolx + x.norm())) {
stop = 5;
break;
}
}
else if (alpha*g.norm() >= delta) {
h_dl = (delta/(alpha*g.norm()))*h_sd;
}
else {
//compute beta
double beta = 0;
Eigen::VectorXd b = h_gn - h_sd;
double bb = (b.transpose()*b).norm();
double gb = (h_sd.transpose()*b).norm();
double c = (delta + h_sd.norm())*(delta - h_sd.norm());
if (gb > 0)
beta = c / (gb + sqrt(pow(gb,2) + c * bb));
else
beta = (sqrt(pow(gb,2) + c * bb) - gb)/bb;
// and update h_dl and dL with beta
h_dl = h_sd + beta*b;
}
}
// see if we are already finished
if (stop)
break;
// get the new values
x_new = x + h_dl;
subsys->setParams(x_new);
subsys->calcResidual(fx_new, error_new);
subsys->calcJacobi(Jx_new);
// calculate the linear model and the update ratio
double dL = error - 0.5*pow((fx + Jx*h_dl).norm(),2);
double dF = error - error_new;
double rho = dL/dF;
if (dF > 0 && dL > 0) {
x = x_new;
Jx = Jx_new;
fx = fx_new;
error = error_new;
g = -1*(Jx.transpose()*fx);
// get infinity norms
fx_inf = g_inf = 0.;
for (int i=0; i < xsize; i++)
g_inf = fabs(g(i)) > g_inf ? fabs(g(i)) : g_inf;
for (int i=0; i < csize; i++)
fx_inf = fabs(fx(i)) > fx_inf ? fabs(fx(i)) : fx_inf;
// (logari81) to be replaced with:
// g_inf = g.lpNorm<Eigen::Infinity>();
// f_inf = f.lpNorm<Eigen::Infinity>();
}
else
rho = -1;
// update delta
if (fabs(rho-1.) < 0.2 && h_dl.norm() > delta/3. && reduce <= 0) {
delta = 3*delta;
nu = 2;
reduce = 0;
}
else if (rho < 0.25) {
delta = delta/nu;
nu = 2*nu;
reduce = 2;
}
else
reduce--;
// count this iteration and start again
k++;
}
subsys->revertParams();
return (stop == 1) ? Success : Failed;
}
// The following solver variant solves a system compound of two subsystems // The following solver variant solves a system compound of two subsystems
// treating the first of them as of higher priority than the second // treating the first of them as of higher priority than the second
int System::solve(SubSystem *subsysA, SubSystem *subsysB, bool isFine) int System::solve(SubSystem *subsysA, SubSystem *subsysB, bool isFine)

View File

@ -38,6 +38,12 @@ namespace GCS
Failed = 2 // Failed to find any solution Failed = 2 // Failed to find any solution
}; };
enum Algorithm {
BFGS = 0,
LevenbergMarquardt = 1,
DogLeg = 2
};
class System class System
{ {
// This is the main class. It holds all constraints and information // This is the main class. It holds all constraints and information
@ -60,6 +66,10 @@ namespace GCS
MAP_pD_pD reductionmap; // for simplification of equality constraints MAP_pD_pD reductionmap; // for simplification of equality constraints
bool init; bool init;
int solve_BFGS(SubSystem *subsys, bool isFine);
int solve_LM(SubSystem *subsys);
int solve_DL(SubSystem *subsys);
public: public:
System(); System();
System(std::vector<Constraint *> clist_); System(std::vector<Constraint *> clist_);
@ -117,9 +127,9 @@ namespace GCS
void initSolution(VEC_pD &params); void initSolution(VEC_pD &params);
int solve(bool isFine=true); int solve(bool isFine=true, Algorithm alg=DogLeg);
int solve(VEC_pD &params, bool isFine=true); int solve(VEC_pD &params, bool isFine=true, Algorithm alg=DogLeg);
int solve(SubSystem *subsys, bool isFine=true); int solve(SubSystem *subsys, bool isFine=true, Algorithm alg=DogLeg);
int solve(SubSystem *subsysA, SubSystem *subsysB, bool isFine=true); int solve(SubSystem *subsysA, SubSystem *subsysB, bool isFine=true);
void getSubSystems(std::vector<SubSystem *> &subsysvec); void getSubSystems(std::vector<SubSystem *> &subsysvec);

View File

@ -59,7 +59,7 @@ CmdSketcherNewSketch::CmdSketcherNewSketch()
sAppModule = "Sketcher"; sAppModule = "Sketcher";
sGroup = QT_TR_NOOP("Sketcher"); sGroup = QT_TR_NOOP("Sketcher");
sMenuText = QT_TR_NOOP("Create sketch"); sMenuText = QT_TR_NOOP("Create sketch");
sToolTipText = QT_TR_NOOP("Create a new sketch"); sToolTipText = QT_TR_NOOP("Create a new or edit the selected sketch");
sWhatsThis = sToolTipText; sWhatsThis = sToolTipText;
sStatusTip = sToolTipText; sStatusTip = sToolTipText;
sPixmap = "Sketcher_NewSketch"; sPixmap = "Sketcher_NewSketch";