+ add methods to get GProps from curves and surfaces
This commit is contained in:
parent
0a4b08fcb6
commit
5ff38ba7d5
|
@ -145,15 +145,6 @@ Part.show(s)
|
|||
</Documentation>
|
||||
<Parameter Name="Curve" Type="Object"/>
|
||||
</Attribute>
|
||||
<Attribute Name="CenterOfMass" ReadOnly="true">
|
||||
<Documentation>
|
||||
<UserDocu>Returns the center of mass of the current system.
|
||||
If the gravitational field is uniform, it is the center of gravity.
|
||||
The coordinates returned for the center of mass are expressed in the
|
||||
absolute Cartesian coordinate system.</UserDocu>
|
||||
</Documentation>
|
||||
<Parameter Name="CenterOfMass" Type="Object"/>
|
||||
</Attribute>
|
||||
<Attribute Name="Closed" ReadOnly="true">
|
||||
<Documentation>
|
||||
<UserDocu>Returns true of the edge is closed</UserDocu>
|
||||
|
@ -166,6 +157,64 @@ absolute Cartesian coordinate system.</UserDocu>
|
|||
</Documentation>
|
||||
<Parameter Name="Degenerated" Type="Boolean"/>
|
||||
</Attribute>
|
||||
<Attribute Name="Mass" ReadOnly="true">
|
||||
<Documentation>
|
||||
<UserDocu>Returns the mass of the current system.</UserDocu>
|
||||
</Documentation>
|
||||
<Parameter Name="Mass" Type="Object"/>
|
||||
</Attribute>
|
||||
<Attribute Name="CenterOfMass" ReadOnly="true">
|
||||
<Documentation>
|
||||
<UserDocu>Returns the center of mass of the current system.
|
||||
If the gravitational field is uniform, it is the center of gravity.
|
||||
The coordinates returned for the center of mass are expressed in the
|
||||
absolute Cartesian coordinate system.</UserDocu>
|
||||
</Documentation>
|
||||
<Parameter Name="CenterOfMass" Type="Object"/>
|
||||
</Attribute>
|
||||
<Attribute Name="MatrixOfInertia" ReadOnly="true">
|
||||
<Documentation>
|
||||
<UserDocu>Returns the matrix of inertia. It is a symmetrical matrix.
|
||||
The coefficients of the matrix are the quadratic moments of
|
||||
inertia.
|
||||
|
||||
| Ixx Ixy Ixz 0 |
|
||||
| Ixy Iyy Iyz 0 |
|
||||
| Ixz Iyz Izz 0 |
|
||||
| 0 0 0 1 |
|
||||
|
||||
The moments of inertia are denoted by Ixx, Iyy, Izz.
|
||||
The products of inertia are denoted by Ixy, Ixz, Iyz.
|
||||
The matrix of inertia is returned in the central coordinate
|
||||
system (G, Gx, Gy, Gz) where G is the centre of mass of the
|
||||
system and Gx, Gy, Gz the directions parallel to the X(1,0,0)
|
||||
Y(0,1,0) Z(0,0,1) directions of the absolute cartesian
|
||||
coordinate system.</UserDocu>
|
||||
</Documentation>
|
||||
<Parameter Name="MatrixOfInertia" Type="Object"/>
|
||||
</Attribute>
|
||||
<Attribute Name="StaticMoments" ReadOnly="true">
|
||||
<Documentation>
|
||||
<UserDocu>Returns Ix, Iy, Iz, the static moments of inertia of the
|
||||
current system; i.e. the moments of inertia about the
|
||||
three axes of the Cartesian coordinate system.</UserDocu>
|
||||
</Documentation>
|
||||
<Parameter Name="StaticMoments" Type="Object"/>
|
||||
</Attribute>
|
||||
<Attribute Name="PrincipalProperties" ReadOnly="true">
|
||||
<Documentation>
|
||||
<UserDocu>Computes the principal properties of inertia of the current system.
|
||||
There is always a set of axes for which the products
|
||||
of inertia of a geometric system are equal to 0; i.e. the
|
||||
matrix of inertia of the system is diagonal. These axes
|
||||
are the principal axes of inertia. Their origin is
|
||||
coincident with the center of mass of the system. The
|
||||
associated moments are called the principal moments of inertia.
|
||||
This function computes the eigen values and the
|
||||
eigen vectors of the matrix of inertia of the system.</UserDocu>
|
||||
</Documentation>
|
||||
<Parameter Name="PrincipalProperties" Type="Dict"/>
|
||||
</Attribute>
|
||||
<ClassDeclarations>
|
||||
</ClassDeclarations>
|
||||
</PythonExport>
|
||||
|
|
|
@ -33,6 +33,7 @@
|
|||
# include <BRepLProp_CLProps.hxx>
|
||||
# include <BRepLProp_CurveTool.hxx>
|
||||
# include <GProp_GProps.hxx>
|
||||
# include <GProp_PrincipalProps.hxx>
|
||||
# include <Geom_Circle.hxx>
|
||||
# include <Geom_Curve.hxx>
|
||||
# include <Geom_Ellipse.hxx>
|
||||
|
@ -67,6 +68,7 @@
|
|||
#include <Base/VectorPy.h>
|
||||
#include <Base/GeometryPyCXX.h>
|
||||
|
||||
#include "Tools.h"
|
||||
#include "OCCError.h"
|
||||
#include "TopoShape.h"
|
||||
#include "TopoShapeFacePy.h"
|
||||
|
@ -756,6 +758,14 @@ Py::Float TopoShapeEdgePy::getLastParameter(void) const
|
|||
return Py::Float(t);
|
||||
}
|
||||
|
||||
Py::Object TopoShapeEdgePy::getMass(void) const
|
||||
{
|
||||
GProp_GProps props;
|
||||
BRepGProp::LinearProperties(getTopoShapePtr()->_Shape, props);
|
||||
double c = props.Mass();
|
||||
return Py::Float(c);
|
||||
}
|
||||
|
||||
Py::Object TopoShapeEdgePy::getCenterOfMass(void) const
|
||||
{
|
||||
GProp_GProps props;
|
||||
|
@ -764,6 +774,66 @@ Py::Object TopoShapeEdgePy::getCenterOfMass(void) const
|
|||
return Py::Vector(Base::Vector3d(c.X(),c.Y(),c.Z()));
|
||||
}
|
||||
|
||||
Py::Object TopoShapeEdgePy::getMatrixOfInertia(void) const
|
||||
{
|
||||
GProp_GProps props;
|
||||
BRepGProp::LinearProperties(getTopoShapePtr()->_Shape, props);
|
||||
gp_Mat m = props.MatrixOfInertia();
|
||||
Base::Matrix4D mat;
|
||||
for (int i=0; i<3; i++) {
|
||||
for (int j=0; j<3; j++) {
|
||||
mat[i][j] = m(i+1,j+1);
|
||||
}
|
||||
}
|
||||
return Py::Matrix(mat);
|
||||
}
|
||||
|
||||
Py::Object TopoShapeEdgePy::getStaticMoments(void) const
|
||||
{
|
||||
GProp_GProps props;
|
||||
BRepGProp::LinearProperties(getTopoShapePtr()->_Shape, props);
|
||||
Standard_Real lx,ly,lz;
|
||||
props.StaticMoments(lx,ly,lz);
|
||||
Py::Tuple tuple(3);
|
||||
tuple.setItem(0, Py::Float(lx));
|
||||
tuple.setItem(1, Py::Float(ly));
|
||||
tuple.setItem(2, Py::Float(lz));
|
||||
return tuple;
|
||||
}
|
||||
|
||||
Py::Dict TopoShapeEdgePy::getPrincipalProperties(void) const
|
||||
{
|
||||
GProp_GProps props;
|
||||
BRepGProp::LinearProperties(getTopoShapePtr()->_Shape, props);
|
||||
GProp_PrincipalProps pprops = props.PrincipalProperties();
|
||||
|
||||
Py::Dict dict;
|
||||
dict.setItem("SymmetryAxis", Py::Boolean(pprops.HasSymmetryAxis() ? true : false));
|
||||
dict.setItem("SymmetryPoint", Py::Boolean(pprops.HasSymmetryPoint() ? true : false));
|
||||
Standard_Real lx,ly,lz;
|
||||
pprops.Moments(lx,ly,lz);
|
||||
Py::Tuple tuple(3);
|
||||
tuple.setItem(0, Py::Float(lx));
|
||||
tuple.setItem(1, Py::Float(ly));
|
||||
tuple.setItem(2, Py::Float(lz));
|
||||
dict.setItem("Moments",tuple);
|
||||
dict.setItem("FirstAxisOfInertia",Py::Vector(Base::convertTo
|
||||
<Base::Vector3d>(pprops.FirstAxisOfInertia())));
|
||||
dict.setItem("SecondAxisOfInertia",Py::Vector(Base::convertTo
|
||||
<Base::Vector3d>(pprops.SecondAxisOfInertia())));
|
||||
dict.setItem("ThirdAxisOfInertia",Py::Vector(Base::convertTo
|
||||
<Base::Vector3d>(pprops.ThirdAxisOfInertia())));
|
||||
|
||||
Standard_Real Rxx,Ryy,Rzz;
|
||||
pprops.RadiusOfGyration(Rxx,Ryy,Rzz);
|
||||
Py::Tuple rog(3);
|
||||
rog.setItem(0, Py::Float(Rxx));
|
||||
rog.setItem(1, Py::Float(Ryy));
|
||||
rog.setItem(2, Py::Float(Rzz));
|
||||
dict.setItem("RadiusOfGyration",rog);
|
||||
return dict;
|
||||
}
|
||||
|
||||
Py::Boolean TopoShapeEdgePy::getClosed(void) const
|
||||
{
|
||||
if (getTopoShapePtr()->_Shape.IsNull())
|
||||
|
|
|
@ -100,16 +100,63 @@ deprecated -- please use OuterWire</UserDocu>
|
|||
</Documentation>
|
||||
<Parameter Name="OuterWire" Type="Object"/>
|
||||
</Attribute>
|
||||
<Attribute Name="CenterOfMass" ReadOnly="true">
|
||||
<Documentation>
|
||||
<UserDocu>
|
||||
Returns the center of mass of the current system.
|
||||
If the gravitational field is uniform, it is the center of gravity.
|
||||
The coordinates returned for the center of mass are expressed in the
|
||||
absolute Cartesian coordinate system.
|
||||
</UserDocu>
|
||||
</Documentation>
|
||||
<Parameter Name="CenterOfMass" Type="Object"/>
|
||||
</Attribute>
|
||||
<Attribute Name="Mass" ReadOnly="true">
|
||||
<Documentation>
|
||||
<UserDocu>Returns the mass of the current system.</UserDocu>
|
||||
</Documentation>
|
||||
<Parameter Name="Mass" Type="Object"/>
|
||||
</Attribute>
|
||||
<Attribute Name="CenterOfMass" ReadOnly="true">
|
||||
<Documentation>
|
||||
<UserDocu>Returns the center of mass of the current system.
|
||||
If the gravitational field is uniform, it is the center of gravity.
|
||||
The coordinates returned for the center of mass are expressed in the
|
||||
absolute Cartesian coordinate system.</UserDocu>
|
||||
</Documentation>
|
||||
<Parameter Name="CenterOfMass" Type="Object"/>
|
||||
</Attribute>
|
||||
<Attribute Name="MatrixOfInertia" ReadOnly="true">
|
||||
<Documentation>
|
||||
<UserDocu>Returns the matrix of inertia. It is a symmetrical matrix.
|
||||
The coefficients of the matrix are the quadratic moments of
|
||||
inertia.
|
||||
|
||||
| Ixx Ixy Ixz 0 |
|
||||
| Ixy Iyy Iyz 0 |
|
||||
| Ixz Iyz Izz 0 |
|
||||
| 0 0 0 1 |
|
||||
|
||||
The moments of inertia are denoted by Ixx, Iyy, Izz.
|
||||
The products of inertia are denoted by Ixy, Ixz, Iyz.
|
||||
The matrix of inertia is returned in the central coordinate
|
||||
system (G, Gx, Gy, Gz) where G is the centre of mass of the
|
||||
system and Gx, Gy, Gz the directions parallel to the X(1,0,0)
|
||||
Y(0,1,0) Z(0,0,1) directions of the absolute cartesian
|
||||
coordinate system.</UserDocu>
|
||||
</Documentation>
|
||||
<Parameter Name="MatrixOfInertia" Type="Object"/>
|
||||
</Attribute>
|
||||
<Attribute Name="StaticMoments" ReadOnly="true">
|
||||
<Documentation>
|
||||
<UserDocu>Returns Ix, Iy, Iz, the static moments of inertia of the
|
||||
current system; i.e. the moments of inertia about the
|
||||
three axes of the Cartesian coordinate system.</UserDocu>
|
||||
</Documentation>
|
||||
<Parameter Name="StaticMoments" Type="Object"/>
|
||||
</Attribute>
|
||||
<Attribute Name="PrincipalProperties" ReadOnly="true">
|
||||
<Documentation>
|
||||
<UserDocu>Computes the principal properties of inertia of the current system.
|
||||
There is always a set of axes for which the products
|
||||
of inertia of a geometric system are equal to 0; i.e. the
|
||||
matrix of inertia of the system is diagonal. These axes
|
||||
are the principal axes of inertia. Their origin is
|
||||
coincident with the center of mass of the system. The
|
||||
associated moments are called the principal moments of inertia.
|
||||
This function computes the eigen values and the
|
||||
eigen vectors of the matrix of inertia of the system.</UserDocu>
|
||||
</Documentation>
|
||||
<Parameter Name="PrincipalProperties" Type="Dict"/>
|
||||
</Attribute>
|
||||
</PythonExport>
|
||||
</GenerateModel>
|
||||
|
|
|
@ -61,6 +61,7 @@
|
|||
#include <BRepPrimAPI_MakeHalfSpace.hxx>
|
||||
#include <BRepGProp.hxx>
|
||||
#include <GProp_GProps.hxx>
|
||||
#include <GProp_PrincipalProps.hxx>
|
||||
#include <BRepLProp_SurfaceTool.hxx>
|
||||
#include <BRepGProp_Face.hxx>
|
||||
#include <GeomLProp_SLProps.hxx>
|
||||
|
@ -85,6 +86,7 @@
|
|||
#include "SurfaceOfExtrusionPy.h"
|
||||
#include "ToroidPy.h"
|
||||
#include "OCCError.h"
|
||||
#include "Tools.h"
|
||||
|
||||
using namespace Part;
|
||||
|
||||
|
@ -688,6 +690,14 @@ Py::Object TopoShapeFacePy::getOuterWire(void) const
|
|||
return Py::Object();
|
||||
}
|
||||
|
||||
Py::Object TopoShapeFacePy::getMass(void) const
|
||||
{
|
||||
GProp_GProps props;
|
||||
BRepGProp::SurfaceProperties(getTopoShapePtr()->_Shape, props);
|
||||
double c = props.Mass();
|
||||
return Py::Float(c);
|
||||
}
|
||||
|
||||
Py::Object TopoShapeFacePy::getCenterOfMass(void) const
|
||||
{
|
||||
GProp_GProps props;
|
||||
|
@ -696,6 +706,66 @@ Py::Object TopoShapeFacePy::getCenterOfMass(void) const
|
|||
return Py::Vector(Base::Vector3d(c.X(),c.Y(),c.Z()));
|
||||
}
|
||||
|
||||
Py::Object TopoShapeFacePy::getMatrixOfInertia(void) const
|
||||
{
|
||||
GProp_GProps props;
|
||||
BRepGProp::SurfaceProperties(getTopoShapePtr()->_Shape, props);
|
||||
gp_Mat m = props.MatrixOfInertia();
|
||||
Base::Matrix4D mat;
|
||||
for (int i=0; i<3; i++) {
|
||||
for (int j=0; j<3; j++) {
|
||||
mat[i][j] = m(i+1,j+1);
|
||||
}
|
||||
}
|
||||
return Py::Matrix(mat);
|
||||
}
|
||||
|
||||
Py::Object TopoShapeFacePy::getStaticMoments(void) const
|
||||
{
|
||||
GProp_GProps props;
|
||||
BRepGProp::SurfaceProperties(getTopoShapePtr()->_Shape, props);
|
||||
Standard_Real lx,ly,lz;
|
||||
props.StaticMoments(lx,ly,lz);
|
||||
Py::Tuple tuple(3);
|
||||
tuple.setItem(0, Py::Float(lx));
|
||||
tuple.setItem(1, Py::Float(ly));
|
||||
tuple.setItem(2, Py::Float(lz));
|
||||
return tuple;
|
||||
}
|
||||
|
||||
Py::Dict TopoShapeFacePy::getPrincipalProperties(void) const
|
||||
{
|
||||
GProp_GProps props;
|
||||
BRepGProp::SurfaceProperties(getTopoShapePtr()->_Shape, props);
|
||||
GProp_PrincipalProps pprops = props.PrincipalProperties();
|
||||
|
||||
Py::Dict dict;
|
||||
dict.setItem("SymmetryAxis", Py::Boolean(pprops.HasSymmetryAxis() ? true : false));
|
||||
dict.setItem("SymmetryPoint", Py::Boolean(pprops.HasSymmetryPoint() ? true : false));
|
||||
Standard_Real lx,ly,lz;
|
||||
pprops.Moments(lx,ly,lz);
|
||||
Py::Tuple tuple(3);
|
||||
tuple.setItem(0, Py::Float(lx));
|
||||
tuple.setItem(1, Py::Float(ly));
|
||||
tuple.setItem(2, Py::Float(lz));
|
||||
dict.setItem("Moments",tuple);
|
||||
dict.setItem("FirstAxisOfInertia",Py::Vector(Base::convertTo
|
||||
<Base::Vector3d>(pprops.FirstAxisOfInertia())));
|
||||
dict.setItem("SecondAxisOfInertia",Py::Vector(Base::convertTo
|
||||
<Base::Vector3d>(pprops.SecondAxisOfInertia())));
|
||||
dict.setItem("ThirdAxisOfInertia",Py::Vector(Base::convertTo
|
||||
<Base::Vector3d>(pprops.ThirdAxisOfInertia())));
|
||||
|
||||
Standard_Real Rxx,Ryy,Rzz;
|
||||
pprops.RadiusOfGyration(Rxx,Ryy,Rzz);
|
||||
Py::Tuple rog(3);
|
||||
rog.setItem(0, Py::Float(Rxx));
|
||||
rog.setItem(1, Py::Float(Ryy));
|
||||
rog.setItem(2, Py::Float(Rzz));
|
||||
dict.setItem("RadiusOfGyration",rog);
|
||||
return dict;
|
||||
}
|
||||
|
||||
PyObject *TopoShapeFacePy::getCustomAttributes(const char* attr) const
|
||||
{
|
||||
return 0;
|
||||
|
|
|
@ -34,5 +34,63 @@
|
|||
<UserDocu>Make a half-space solid by this shell and a reference point.</UserDocu>
|
||||
</Documentation>
|
||||
</Methode>
|
||||
<Attribute Name="Mass" ReadOnly="true">
|
||||
<Documentation>
|
||||
<UserDocu>Returns the mass of the current system.</UserDocu>
|
||||
</Documentation>
|
||||
<Parameter Name="Mass" Type="Object"/>
|
||||
</Attribute>
|
||||
<Attribute Name="CenterOfMass" ReadOnly="true">
|
||||
<Documentation>
|
||||
<UserDocu>Returns the center of mass of the current system.
|
||||
If the gravitational field is uniform, it is the center of gravity.
|
||||
The coordinates returned for the center of mass are expressed in the
|
||||
absolute Cartesian coordinate system.</UserDocu>
|
||||
</Documentation>
|
||||
<Parameter Name="CenterOfMass" Type="Object"/>
|
||||
</Attribute>
|
||||
<Attribute Name="MatrixOfInertia" ReadOnly="true">
|
||||
<Documentation>
|
||||
<UserDocu>Returns the matrix of inertia. It is a symmetrical matrix.
|
||||
The coefficients of the matrix are the quadratic moments of
|
||||
inertia.
|
||||
|
||||
| Ixx Ixy Ixz 0 |
|
||||
| Ixy Iyy Iyz 0 |
|
||||
| Ixz Iyz Izz 0 |
|
||||
| 0 0 0 1 |
|
||||
|
||||
The moments of inertia are denoted by Ixx, Iyy, Izz.
|
||||
The products of inertia are denoted by Ixy, Ixz, Iyz.
|
||||
The matrix of inertia is returned in the central coordinate
|
||||
system (G, Gx, Gy, Gz) where G is the centre of mass of the
|
||||
system and Gx, Gy, Gz the directions parallel to the X(1,0,0)
|
||||
Y(0,1,0) Z(0,0,1) directions of the absolute cartesian
|
||||
coordinate system.</UserDocu>
|
||||
</Documentation>
|
||||
<Parameter Name="MatrixOfInertia" Type="Object"/>
|
||||
</Attribute>
|
||||
<Attribute Name="StaticMoments" ReadOnly="true">
|
||||
<Documentation>
|
||||
<UserDocu>Returns Ix, Iy, Iz, the static moments of inertia of the
|
||||
current system; i.e. the moments of inertia about the
|
||||
three axes of the Cartesian coordinate system.</UserDocu>
|
||||
</Documentation>
|
||||
<Parameter Name="StaticMoments" Type="Object"/>
|
||||
</Attribute>
|
||||
<Attribute Name="PrincipalProperties" ReadOnly="true">
|
||||
<Documentation>
|
||||
<UserDocu>Computes the principal properties of inertia of the current system.
|
||||
There is always a set of axes for which the products
|
||||
of inertia of a geometric system are equal to 0; i.e. the
|
||||
matrix of inertia of the system is diagonal. These axes
|
||||
are the principal axes of inertia. Their origin is
|
||||
coincident with the center of mass of the system. The
|
||||
associated moments are called the principal moments of inertia.
|
||||
This function computes the eigen values and the
|
||||
eigen vectors of the matrix of inertia of the system.</UserDocu>
|
||||
</Documentation>
|
||||
<Parameter Name="PrincipalProperties" Type="Dict"/>
|
||||
</Attribute>
|
||||
</PythonExport>
|
||||
</GenerateModel>
|
||||
|
|
|
@ -26,6 +26,9 @@
|
|||
# include <gp_Ax1.hxx>
|
||||
# include <BRep_Builder.hxx>
|
||||
# include <BRepCheck_Analyzer.hxx>
|
||||
# include <BRepGProp.hxx>
|
||||
# include <GProp_GProps.hxx>
|
||||
# include <GProp_PrincipalProps.hxx>
|
||||
# include <TopoDS.hxx>
|
||||
# include <TopoDS_Shell.hxx>
|
||||
# include <ShapeUpgrade_ShellSewing.hxx>
|
||||
|
@ -38,6 +41,7 @@
|
|||
#include <Base/GeometryPyCXX.h>
|
||||
|
||||
#include "OCCError.h"
|
||||
#include "Tools.h"
|
||||
#include "TopoShape.h"
|
||||
#include "TopoShapeCompoundPy.h"
|
||||
#include "TopoShapeCompSolidPy.h"
|
||||
|
@ -198,6 +202,82 @@ PyObject* TopoShapeShellPy::makeHalfSpace(PyObject *args)
|
|||
}
|
||||
}
|
||||
|
||||
Py::Object TopoShapeShellPy::getMass(void) const
|
||||
{
|
||||
GProp_GProps props;
|
||||
BRepGProp::SurfaceProperties(getTopoShapePtr()->_Shape, props);
|
||||
double c = props.Mass();
|
||||
return Py::Float(c);
|
||||
}
|
||||
|
||||
Py::Object TopoShapeShellPy::getCenterOfMass(void) const
|
||||
{
|
||||
GProp_GProps props;
|
||||
BRepGProp::SurfaceProperties(getTopoShapePtr()->_Shape, props);
|
||||
gp_Pnt c = props.CentreOfMass();
|
||||
return Py::Vector(Base::Vector3d(c.X(),c.Y(),c.Z()));
|
||||
}
|
||||
|
||||
Py::Object TopoShapeShellPy::getMatrixOfInertia(void) const
|
||||
{
|
||||
GProp_GProps props;
|
||||
BRepGProp::SurfaceProperties(getTopoShapePtr()->_Shape, props);
|
||||
gp_Mat m = props.MatrixOfInertia();
|
||||
Base::Matrix4D mat;
|
||||
for (int i=0; i<3; i++) {
|
||||
for (int j=0; j<3; j++) {
|
||||
mat[i][j] = m(i+1,j+1);
|
||||
}
|
||||
}
|
||||
return Py::Matrix(mat);
|
||||
}
|
||||
|
||||
Py::Object TopoShapeShellPy::getStaticMoments(void) const
|
||||
{
|
||||
GProp_GProps props;
|
||||
BRepGProp::SurfaceProperties(getTopoShapePtr()->_Shape, props);
|
||||
Standard_Real lx,ly,lz;
|
||||
props.StaticMoments(lx,ly,lz);
|
||||
Py::Tuple tuple(3);
|
||||
tuple.setItem(0, Py::Float(lx));
|
||||
tuple.setItem(1, Py::Float(ly));
|
||||
tuple.setItem(2, Py::Float(lz));
|
||||
return tuple;
|
||||
}
|
||||
|
||||
Py::Dict TopoShapeShellPy::getPrincipalProperties(void) const
|
||||
{
|
||||
GProp_GProps props;
|
||||
BRepGProp::SurfaceProperties(getTopoShapePtr()->_Shape, props);
|
||||
GProp_PrincipalProps pprops = props.PrincipalProperties();
|
||||
|
||||
Py::Dict dict;
|
||||
dict.setItem("SymmetryAxis", Py::Boolean(pprops.HasSymmetryAxis() ? true : false));
|
||||
dict.setItem("SymmetryPoint", Py::Boolean(pprops.HasSymmetryPoint() ? true : false));
|
||||
Standard_Real lx,ly,lz;
|
||||
pprops.Moments(lx,ly,lz);
|
||||
Py::Tuple tuple(3);
|
||||
tuple.setItem(0, Py::Float(lx));
|
||||
tuple.setItem(1, Py::Float(ly));
|
||||
tuple.setItem(2, Py::Float(lz));
|
||||
dict.setItem("Moments",tuple);
|
||||
dict.setItem("FirstAxisOfInertia",Py::Vector(Base::convertTo
|
||||
<Base::Vector3d>(pprops.FirstAxisOfInertia())));
|
||||
dict.setItem("SecondAxisOfInertia",Py::Vector(Base::convertTo
|
||||
<Base::Vector3d>(pprops.SecondAxisOfInertia())));
|
||||
dict.setItem("ThirdAxisOfInertia",Py::Vector(Base::convertTo
|
||||
<Base::Vector3d>(pprops.ThirdAxisOfInertia())));
|
||||
|
||||
Standard_Real Rxx,Ryy,Rzz;
|
||||
pprops.RadiusOfGyration(Rxx,Ryy,Rzz);
|
||||
Py::Tuple rog(3);
|
||||
rog.setItem(0, Py::Float(Rxx));
|
||||
rog.setItem(1, Py::Float(Ryy));
|
||||
rog.setItem(2, Py::Float(Rzz));
|
||||
dict.setItem("RadiusOfGyration",rog);
|
||||
return dict;
|
||||
}
|
||||
|
||||
PyObject *TopoShapeShellPy::getCustomAttributes(const char* /*attr*/) const
|
||||
{
|
||||
return 0;
|
||||
|
|
|
@ -91,14 +91,63 @@ Part.show(s)
|
|||
</UserDocu>
|
||||
</Documentation>
|
||||
</Methode>
|
||||
<Attribute Name="Mass" ReadOnly="true">
|
||||
<Documentation>
|
||||
<UserDocu>Returns the mass of the current system.</UserDocu>
|
||||
</Documentation>
|
||||
<Parameter Name="Mass" Type="Object"/>
|
||||
</Attribute>
|
||||
<Attribute Name="CenterOfMass" ReadOnly="true">
|
||||
<Documentation>
|
||||
<UserDocu>Returns the center of mass of the current system.
|
||||
<UserDocu>Returns the center of mass of the current system.
|
||||
If the gravitational field is uniform, it is the center of gravity.
|
||||
The coordinates returned for the center of mass are expressed in the
|
||||
absolute Cartesian coordinate system.</UserDocu>
|
||||
</Documentation>
|
||||
<Parameter Name="CenterOfMass" Type="Object"/>
|
||||
</Attribute>
|
||||
<Attribute Name="MatrixOfInertia" ReadOnly="true">
|
||||
<Documentation>
|
||||
<UserDocu>Returns the matrix of inertia. It is a symmetrical matrix.
|
||||
The coefficients of the matrix are the quadratic moments of
|
||||
inertia.
|
||||
|
||||
| Ixx Ixy Ixz 0 |
|
||||
| Ixy Iyy Iyz 0 |
|
||||
| Ixz Iyz Izz 0 |
|
||||
| 0 0 0 1 |
|
||||
|
||||
The moments of inertia are denoted by Ixx, Iyy, Izz.
|
||||
The products of inertia are denoted by Ixy, Ixz, Iyz.
|
||||
The matrix of inertia is returned in the central coordinate
|
||||
system (G, Gx, Gy, Gz) where G is the centre of mass of the
|
||||
system and Gx, Gy, Gz the directions parallel to the X(1,0,0)
|
||||
Y(0,1,0) Z(0,0,1) directions of the absolute cartesian
|
||||
coordinate system.</UserDocu>
|
||||
</Documentation>
|
||||
<Parameter Name="MatrixOfInertia" Type="Object"/>
|
||||
</Attribute>
|
||||
<Attribute Name="StaticMoments" ReadOnly="true">
|
||||
<Documentation>
|
||||
<UserDocu>Returns Ix, Iy, Iz, the static moments of inertia of the
|
||||
current system; i.e. the moments of inertia about the
|
||||
three axes of the Cartesian coordinate system.</UserDocu>
|
||||
</Documentation>
|
||||
<Parameter Name="StaticMoments" Type="Object"/>
|
||||
</Attribute>
|
||||
<Attribute Name="PrincipalProperties" ReadOnly="true">
|
||||
<Documentation>
|
||||
<UserDocu>Computes the principal properties of inertia of the current system.
|
||||
There is always a set of axes for which the products
|
||||
of inertia of a geometric system are equal to 0; i.e. the
|
||||
matrix of inertia of the system is diagonal. These axes
|
||||
are the principal axes of inertia. Their origin is
|
||||
coincident with the center of mass of the system. The
|
||||
associated moments are called the principal moments of inertia.
|
||||
This function computes the eigen values and the
|
||||
eigen vectors of the matrix of inertia of the system.</UserDocu>
|
||||
</Documentation>
|
||||
<Parameter Name="PrincipalProperties" Type="Dict"/>
|
||||
</Attribute>
|
||||
</PythonExport>
|
||||
</GenerateModel>
|
||||
|
|
|
@ -37,6 +37,7 @@
|
|||
|
||||
#include <BRepGProp.hxx>
|
||||
#include <GProp_GProps.hxx>
|
||||
#include <GProp_PrincipalProps.hxx>
|
||||
#include <GCPnts_UniformAbscissa.hxx>
|
||||
#include <GCPnts_UniformDeflection.hxx>
|
||||
#include <GCPnts_TangentialDeflection.hxx>
|
||||
|
@ -54,6 +55,7 @@
|
|||
#include "TopoShapeWirePy.h"
|
||||
#include "TopoShapeWirePy.cpp"
|
||||
#include "OCCError.h"
|
||||
#include "Tools.h"
|
||||
|
||||
using namespace Part;
|
||||
|
||||
|
@ -499,6 +501,14 @@ PyObject* TopoShapeWirePy::discretize(PyObject *args, PyObject *kwds)
|
|||
return 0;
|
||||
}
|
||||
|
||||
Py::Object TopoShapeWirePy::getMass(void) const
|
||||
{
|
||||
GProp_GProps props;
|
||||
BRepGProp::LinearProperties(getTopoShapePtr()->_Shape, props);
|
||||
double c = props.Mass();
|
||||
return Py::Float(c);
|
||||
}
|
||||
|
||||
Py::Object TopoShapeWirePy::getCenterOfMass(void) const
|
||||
{
|
||||
GProp_GProps props;
|
||||
|
@ -507,6 +517,66 @@ Py::Object TopoShapeWirePy::getCenterOfMass(void) const
|
|||
return Py::Vector(Base::Vector3d(c.X(),c.Y(),c.Z()));
|
||||
}
|
||||
|
||||
Py::Object TopoShapeWirePy::getMatrixOfInertia(void) const
|
||||
{
|
||||
GProp_GProps props;
|
||||
BRepGProp::LinearProperties(getTopoShapePtr()->_Shape, props);
|
||||
gp_Mat m = props.MatrixOfInertia();
|
||||
Base::Matrix4D mat;
|
||||
for (int i=0; i<3; i++) {
|
||||
for (int j=0; j<3; j++) {
|
||||
mat[i][j] = m(i+1,j+1);
|
||||
}
|
||||
}
|
||||
return Py::Matrix(mat);
|
||||
}
|
||||
|
||||
Py::Object TopoShapeWirePy::getStaticMoments(void) const
|
||||
{
|
||||
GProp_GProps props;
|
||||
BRepGProp::LinearProperties(getTopoShapePtr()->_Shape, props);
|
||||
Standard_Real lx,ly,lz;
|
||||
props.StaticMoments(lx,ly,lz);
|
||||
Py::Tuple tuple(3);
|
||||
tuple.setItem(0, Py::Float(lx));
|
||||
tuple.setItem(1, Py::Float(ly));
|
||||
tuple.setItem(2, Py::Float(lz));
|
||||
return tuple;
|
||||
}
|
||||
|
||||
Py::Dict TopoShapeWirePy::getPrincipalProperties(void) const
|
||||
{
|
||||
GProp_GProps props;
|
||||
BRepGProp::LinearProperties(getTopoShapePtr()->_Shape, props);
|
||||
GProp_PrincipalProps pprops = props.PrincipalProperties();
|
||||
|
||||
Py::Dict dict;
|
||||
dict.setItem("SymmetryAxis", Py::Boolean(pprops.HasSymmetryAxis() ? true : false));
|
||||
dict.setItem("SymmetryPoint", Py::Boolean(pprops.HasSymmetryPoint() ? true : false));
|
||||
Standard_Real lx,ly,lz;
|
||||
pprops.Moments(lx,ly,lz);
|
||||
Py::Tuple tuple(3);
|
||||
tuple.setItem(0, Py::Float(lx));
|
||||
tuple.setItem(1, Py::Float(ly));
|
||||
tuple.setItem(2, Py::Float(lz));
|
||||
dict.setItem("Moments",tuple);
|
||||
dict.setItem("FirstAxisOfInertia",Py::Vector(Base::convertTo
|
||||
<Base::Vector3d>(pprops.FirstAxisOfInertia())));
|
||||
dict.setItem("SecondAxisOfInertia",Py::Vector(Base::convertTo
|
||||
<Base::Vector3d>(pprops.SecondAxisOfInertia())));
|
||||
dict.setItem("ThirdAxisOfInertia",Py::Vector(Base::convertTo
|
||||
<Base::Vector3d>(pprops.ThirdAxisOfInertia())));
|
||||
|
||||
Standard_Real Rxx,Ryy,Rzz;
|
||||
pprops.RadiusOfGyration(Rxx,Ryy,Rzz);
|
||||
Py::Tuple rog(3);
|
||||
rog.setItem(0, Py::Float(Rxx));
|
||||
rog.setItem(1, Py::Float(Ryy));
|
||||
rog.setItem(2, Py::Float(Rzz));
|
||||
dict.setItem("RadiusOfGyration",rog);
|
||||
return dict;
|
||||
}
|
||||
|
||||
PyObject *TopoShapeWirePy::getCustomAttributes(const char* /*attr*/) const
|
||||
{
|
||||
return 0;
|
||||
|
|
Loading…
Reference in New Issue
Block a user