+ add algorithm to estimate normals of points
This commit is contained in:
parent
9af03d9b68
commit
6da5c23990
|
@ -53,6 +53,24 @@
|
|||
#include <pcl/point_types.h>
|
||||
#endif
|
||||
|
||||
/*
|
||||
Dependency of pcl components:
|
||||
common: none
|
||||
features: common, kdtree, octree, search, (range_image)
|
||||
filters: common, kdtree, octree, sample_consenus, search
|
||||
geomety: common
|
||||
io: common, octree
|
||||
kdtree: common
|
||||
keypoints: common, features, filters, kdtree, octree, search, (range_image)
|
||||
octree: common
|
||||
recognition: common, features, search
|
||||
registration: common, features, kdtree, sample_consensus
|
||||
sample_consensus: common
|
||||
search: common, kdtree, octree
|
||||
segmentation: common, kdtree, octree, sample_consensus, search
|
||||
surface: common, kdtree, octree, search
|
||||
*/
|
||||
|
||||
using namespace Reen;
|
||||
|
||||
namespace Reen {
|
||||
|
@ -95,6 +113,9 @@ public:
|
|||
add_keyword_method("filterVoxelGrid",&Module::filterVoxelGrid,
|
||||
"filterVoxelGrid(dim)."
|
||||
);
|
||||
add_keyword_method("normalEstimation",&Module::normalEstimation,
|
||||
"normalEstimation(Points)."
|
||||
);
|
||||
#endif
|
||||
#if defined(HAVE_PCL_SEGMENTATION)
|
||||
add_keyword_method("regionGrowingSegmentation",&Module::regionGrowingSegmentation,
|
||||
|
@ -589,6 +610,35 @@ Mesh.show(m)
|
|||
return Py::asObject(new Points::PointsPy(points_sample));
|
||||
}
|
||||
#endif
|
||||
#if defined(HAVE_PCL_FILTERS)
|
||||
Py::Object Module::normalEstimation(const Py::Tuple& args, const Py::Dict& kwds)
|
||||
{
|
||||
PyObject *pts;
|
||||
int ksearch=0;
|
||||
double searchRadius=0;
|
||||
|
||||
static char* kwds_normals[] = {"Points", "KSearch", "SearchRadius", NULL};
|
||||
if (!PyArg_ParseTupleAndKeywords(args.ptr(), kwds.ptr(), "O!|id", kwds_normals,
|
||||
&(Points::PointsPy::Type), &pts,
|
||||
&ksearch, &searchRadius))
|
||||
throw Py::Exception();
|
||||
|
||||
Points::PointKernel* points = static_cast<Points::PointsPy*>(pts)->getPointKernelPtr();
|
||||
|
||||
std::vector<Base::Vector3d> normals;
|
||||
NormalEstimation estimate(*points);
|
||||
estimate.setKSearch(ksearch);
|
||||
estimate.setSearchRadius(searchRadius);
|
||||
estimate.perform(normals);
|
||||
|
||||
Py::List list;
|
||||
for (std::vector<Base::Vector3d>::iterator it = normals.begin(); it != normals.end(); ++it) {
|
||||
list.append(Py::Vector(*it));
|
||||
}
|
||||
|
||||
return list;
|
||||
}
|
||||
#endif
|
||||
#if defined(HAVE_PCL_SEGMENTATION)
|
||||
Py::Object regionGrowingSegmentation(const Py::Tuple& args, const Py::Dict& kwds)
|
||||
{
|
||||
|
|
|
@ -27,16 +27,23 @@
|
|||
#include <Mod/Points/App/Points.h>
|
||||
#include <Base/Exception.h>
|
||||
|
||||
#if defined(HAVE_PCL_FILTERS)
|
||||
#include <pcl/filters/extract_indices.h>
|
||||
#include <pcl/filters/passthrough.h>
|
||||
#include <pcl/features/normal_3d.h>
|
||||
#endif
|
||||
|
||||
#if defined(HAVE_PCL_SAMPLE_CONSENSUS)
|
||||
#include <pcl/sample_consensus/method_types.h>
|
||||
#include <pcl/sample_consensus/model_types.h>
|
||||
#endif
|
||||
|
||||
#if defined(HAVE_PCL_SEGMENTATION)
|
||||
#include <pcl/ModelCoefficients.h>
|
||||
#include <pcl/io/pcd_io.h>
|
||||
#include <pcl/point_types.h>
|
||||
#include <pcl/filters/extract_indices.h>
|
||||
#include <pcl/filters/passthrough.h>
|
||||
#include <pcl/features/normal_3d.h>
|
||||
#include <pcl/sample_consensus/method_types.h>
|
||||
#include <pcl/sample_consensus/model_types.h>
|
||||
#include <pcl/segmentation/sac_segmentation.h>
|
||||
#endif
|
||||
|
||||
using namespace std;
|
||||
using namespace Reen;
|
||||
|
@ -44,6 +51,7 @@ using pcl::PointXYZ;
|
|||
using pcl::PointNormal;
|
||||
using pcl::PointCloud;
|
||||
|
||||
#if defined(HAVE_PCL_SEGMENTATION)
|
||||
Segmentation::Segmentation(const Points::PointKernel& pts, std::list<std::vector<int> >& clusters)
|
||||
: myPoints(pts)
|
||||
, myClusters(clusters)
|
||||
|
@ -87,7 +95,7 @@ void Segmentation::perform(int ksearch)
|
|||
// Estimate point normals
|
||||
ne.setSearchMethod (tree);
|
||||
ne.setInputCloud (cloud_filtered);
|
||||
ne.setKSearch (50);
|
||||
ne.setKSearch (ksearch);
|
||||
ne.compute (*cloud_normals);
|
||||
|
||||
// Create the segmentation object for the planar model and set all the parameters
|
||||
|
@ -146,3 +154,52 @@ void Segmentation::perform(int ksearch)
|
|||
|
||||
#endif // HAVE_PCL_SEGMENTATION
|
||||
|
||||
// ----------------------------------------------------------------------------
|
||||
|
||||
#if defined (HAVE_PCL_FILTERS)
|
||||
NormalEstimation::NormalEstimation(const Points::PointKernel& pts)
|
||||
: myPoints(pts)
|
||||
, kSearch(0)
|
||||
, searchRadius(0)
|
||||
{
|
||||
}
|
||||
|
||||
void NormalEstimation::perform(std::vector<Base::Vector3d>& normals)
|
||||
{
|
||||
// Copy the points
|
||||
pcl::PointCloud<PointXYZ>::Ptr cloud (new pcl::PointCloud<PointXYZ>);
|
||||
cloud->reserve(myPoints.size());
|
||||
for (Points::PointKernel::const_iterator it = myPoints.begin(); it != myPoints.end(); ++it) {
|
||||
cloud->push_back(pcl::PointXYZ(it->x, it->y, it->z));
|
||||
}
|
||||
|
||||
cloud->width = int (cloud->points.size ());
|
||||
cloud->height = 1;
|
||||
|
||||
// Build a passthrough filter to remove spurious NaNs
|
||||
pcl::PointCloud<PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<PointXYZ>);
|
||||
pcl::PassThrough<PointXYZ> pass;
|
||||
pass.setInputCloud (cloud);
|
||||
pass.setFilterFieldName ("z");
|
||||
pass.setFilterLimits (0, 1.5);
|
||||
pass.filter (*cloud_filtered);
|
||||
|
||||
// Estimate point normals
|
||||
pcl::PointCloud<pcl::Normal>::Ptr cloud_normals (new pcl::PointCloud<pcl::Normal>);
|
||||
pcl::search::KdTree<PointXYZ>::Ptr tree (new pcl::search::KdTree<PointXYZ> ());
|
||||
pcl::NormalEstimation<PointXYZ, pcl::Normal> ne;
|
||||
ne.setSearchMethod (tree);
|
||||
ne.setInputCloud (cloud_filtered);
|
||||
if (kSearch > 0)
|
||||
ne.setKSearch (kSearch);
|
||||
if (searchRadius > 0)
|
||||
ne.setRadiusSearch (searchRadius);
|
||||
ne.compute (*cloud_normals);
|
||||
|
||||
normals.reserve(cloud_normals->size());
|
||||
for (pcl::PointCloud<pcl::Normal>::const_iterator it = cloud_normals->begin(); it != cloud_normals->end(); ++it) {
|
||||
normals.push_back(Base::Vector3d(it->normal_x, it->normal_y, it->normal_z));
|
||||
}
|
||||
}
|
||||
|
||||
#endif // HAVE_PCL_FILTERS
|
||||
|
|
|
@ -46,6 +46,37 @@ private:
|
|||
std::list<std::vector<int> >& myClusters;
|
||||
};
|
||||
|
||||
class NormalEstimation
|
||||
{
|
||||
public:
|
||||
NormalEstimation(const Points::PointKernel&);
|
||||
/** \brief Set the number of k nearest neighbors to use for the feature estimation.
|
||||
* \param[in] k the number of k-nearest neighbors
|
||||
*/
|
||||
inline void
|
||||
setKSearch (int k) { kSearch = k; }
|
||||
|
||||
/** \brief Set the sphere radius that is to be used for determining the nearest neighbors used for the feature
|
||||
* estimation.
|
||||
* \param[in] radius the sphere radius used as the maximum distance to consider a point a neighbor
|
||||
*/
|
||||
inline void
|
||||
setSearchRadius (double radius)
|
||||
{
|
||||
searchRadius = radius;
|
||||
}
|
||||
|
||||
/** \brief Perform the normal estimation.
|
||||
* \param[out] the estimated normals
|
||||
*/
|
||||
void perform(std::vector<Base::Vector3d>& normals);
|
||||
|
||||
private:
|
||||
const Points::PointKernel& myPoints;
|
||||
int kSearch;
|
||||
double searchRadius;
|
||||
};
|
||||
|
||||
} // namespace Reen
|
||||
|
||||
#endif // REEN_SEGMENTATION_H
|
||||
|
|
Loading…
Reference in New Issue
Block a user