+ add several surface reconstruction methods from pcl to Reen module
This commit is contained in:
parent
fd191b802e
commit
93b53f1662
|
@ -59,12 +59,24 @@ public:
|
||||||
"Iterations=5,Correction=True,PatchFactor=1.0"
|
"Iterations=5,Correction=True,PatchFactor=1.0"
|
||||||
);
|
);
|
||||||
#if defined(HAVE_PCL_SURFACE)
|
#if defined(HAVE_PCL_SURFACE)
|
||||||
add_varargs_method("triangulate",&Module::triangulate,
|
add_keyword_method("triangulate",&Module::triangulate,
|
||||||
"triangulate(PointKernel,searchRadius[,mu=2.5])."
|
"triangulate(PointKernel,searchRadius[,mu=2.5])."
|
||||||
);
|
);
|
||||||
add_keyword_method("poissonReconstruction",&Module::poissonReconstruction,
|
add_keyword_method("poissonReconstruction",&Module::poissonReconstruction,
|
||||||
"poissonReconstruction(PointKernel)."
|
"poissonReconstruction(PointKernel)."
|
||||||
);
|
);
|
||||||
|
add_keyword_method("viewTriangulation",&Module::viewTriangulation,
|
||||||
|
"viewTriangulation(PointKernel, width, height)."
|
||||||
|
);
|
||||||
|
add_keyword_method("gridProjection",&Module::gridProjection,
|
||||||
|
"gridProjection(PointKernel)."
|
||||||
|
);
|
||||||
|
add_keyword_method("marchingCubesRBF",&Module::marchingCubesRBF,
|
||||||
|
"marchingCubesRBF(PointKernel)."
|
||||||
|
);
|
||||||
|
add_keyword_method("marchingCubesHoppe",&Module::marchingCubesHoppe,
|
||||||
|
"marchingCubesHoppe(PointKernel)."
|
||||||
|
);
|
||||||
#endif
|
#endif
|
||||||
#if defined(HAVE_PCL_OPENNURBS)
|
#if defined(HAVE_PCL_OPENNURBS)
|
||||||
add_keyword_method("fitBSpline",&Module::fitBSpline,
|
add_keyword_method("fitBSpline",&Module::fitBSpline,
|
||||||
|
@ -199,47 +211,270 @@ private:
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
#if defined(HAVE_PCL_SURFACE)
|
#if defined(HAVE_PCL_SURFACE)
|
||||||
Py::Object triangulate(const Py::Tuple& args)
|
/*
|
||||||
|
import ReverseEngineering as Reen
|
||||||
|
import Points
|
||||||
|
import Mesh
|
||||||
|
import random
|
||||||
|
|
||||||
|
r=random.Random()
|
||||||
|
|
||||||
|
p=Points.Points()
|
||||||
|
pts=[]
|
||||||
|
for i in range(21):
|
||||||
|
for j in range(21):
|
||||||
|
pts.append(App.Vector(i,j,r.gauss(5,0.05)))
|
||||||
|
|
||||||
|
p.addPoints(pts)
|
||||||
|
m=Reen.triangulate(Points=p,SearchRadius=2.2)
|
||||||
|
Mesh.show(m)
|
||||||
|
*/
|
||||||
|
Py::Object triangulate(const Py::Tuple& args, const Py::Dict& kwds)
|
||||||
{
|
{
|
||||||
PyObject *pcObj;
|
PyObject *pts;
|
||||||
double searchRadius;
|
double searchRadius;
|
||||||
|
PyObject *vec = 0;
|
||||||
|
int ksearch=5;
|
||||||
double mu=2.5;
|
double mu=2.5;
|
||||||
if (!PyArg_ParseTuple(args.ptr(), "O!d|d", &(Points::PointsPy::Type), &pcObj, &searchRadius, &mu))
|
|
||||||
|
static char* kwds_greedy[] = {"Points", "SearchRadius", "Mu", "KSearch",
|
||||||
|
"Normals", NULL};
|
||||||
|
if (!PyArg_ParseTupleAndKeywords(args.ptr(), kwds.ptr(), "O!d|diO", kwds_greedy,
|
||||||
|
&(Points::PointsPy::Type), &pts,
|
||||||
|
&searchRadius, &mu, &ksearch, &vec))
|
||||||
throw Py::Exception();
|
throw Py::Exception();
|
||||||
|
|
||||||
Points::PointsPy* pPoints = static_cast<Points::PointsPy*>(pcObj);
|
Points::PointKernel* points = static_cast<Points::PointsPy*>(pts)->getPointKernelPtr();
|
||||||
Points::PointKernel* points = pPoints->getPointKernelPtr();
|
|
||||||
|
|
||||||
Mesh::MeshObject* mesh = new Mesh::MeshObject();
|
Mesh::MeshObject* mesh = new Mesh::MeshObject();
|
||||||
SurfaceTriangulation tria(*points, *mesh);
|
SurfaceTriangulation tria(*points, *mesh);
|
||||||
tria.perform(searchRadius, mu);
|
tria.setMu(mu);
|
||||||
|
tria.setSearchRadius(searchRadius);
|
||||||
|
if (vec) {
|
||||||
|
Py::Sequence list(vec);
|
||||||
|
std::vector<Base::Vector3f> normals;
|
||||||
|
normals.reserve(list.size());
|
||||||
|
for (Py::Sequence::iterator it = list.begin(); it != list.end(); ++it) {
|
||||||
|
Base::Vector3d v = Py::Vector(*it).toVector();
|
||||||
|
normals.push_back(Base::convertTo<Base::Vector3f>(v));
|
||||||
|
}
|
||||||
|
tria.perform(normals);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
tria.perform(ksearch);
|
||||||
|
}
|
||||||
|
|
||||||
return Py::asObject(new Mesh::MeshPy(mesh));
|
return Py::asObject(new Mesh::MeshPy(mesh));
|
||||||
}
|
}
|
||||||
Py::Object poissonReconstruction(const Py::Tuple& args, const Py::Dict& kwds)
|
Py::Object poissonReconstruction(const Py::Tuple& args, const Py::Dict& kwds)
|
||||||
{
|
{
|
||||||
PyObject *pcObj;
|
PyObject *pts;
|
||||||
|
PyObject *vec = 0;
|
||||||
int ksearch=5;
|
int ksearch=5;
|
||||||
int octreeDepth=-1;
|
int octreeDepth=-1;
|
||||||
int solverDivide=-1;
|
int solverDivide=-1;
|
||||||
double samplesPerNode=-1.0;
|
double samplesPerNode=-1.0;
|
||||||
|
|
||||||
static char* kwds_poisson[] = {"Points", "KSearch", "OctreeDepth", "SolverDivide",
|
static char* kwds_poisson[] = {"Points", "KSearch", "OctreeDepth", "SolverDivide",
|
||||||
"SamplesPerNode", NULL};
|
"SamplesPerNode", "Normals", NULL};
|
||||||
if (!PyArg_ParseTupleAndKeywords(args.ptr(), kwds.ptr(), "O!|iiid", kwds_poisson,
|
if (!PyArg_ParseTupleAndKeywords(args.ptr(), kwds.ptr(), "O!|iiidO", kwds_poisson,
|
||||||
&(Points::PointsPy::Type), &pcObj,
|
&(Points::PointsPy::Type), &pts,
|
||||||
&ksearch, &octreeDepth, &solverDivide, &samplesPerNode))
|
&ksearch, &octreeDepth, &solverDivide, &samplesPerNode, &vec))
|
||||||
throw Py::Exception();
|
throw Py::Exception();
|
||||||
|
|
||||||
Points::PointsPy* pPoints = static_cast<Points::PointsPy*>(pcObj);
|
Points::PointKernel* points = static_cast<Points::PointsPy*>(pts)->getPointKernelPtr();
|
||||||
Points::PointKernel* points = pPoints->getPointKernelPtr();
|
|
||||||
|
|
||||||
Mesh::MeshObject* mesh = new Mesh::MeshObject();
|
Mesh::MeshObject* mesh = new Mesh::MeshObject();
|
||||||
Reen::PoissonReconstruction poisson(*points, *mesh);
|
Reen::PoissonReconstruction poisson(*points, *mesh);
|
||||||
poisson.setDepth(octreeDepth);
|
poisson.setDepth(octreeDepth);
|
||||||
poisson.setSolverDivide(solverDivide);
|
poisson.setSolverDivide(solverDivide);
|
||||||
poisson.setSamplesPerNode(samplesPerNode);
|
poisson.setSamplesPerNode(samplesPerNode);
|
||||||
poisson.perform(ksearch);
|
if (vec) {
|
||||||
|
Py::Sequence list(vec);
|
||||||
|
std::vector<Base::Vector3f> normals;
|
||||||
|
normals.reserve(list.size());
|
||||||
|
for (Py::Sequence::iterator it = list.begin(); it != list.end(); ++it) {
|
||||||
|
Base::Vector3d v = Py::Vector(*it).toVector();
|
||||||
|
normals.push_back(Base::convertTo<Base::Vector3f>(v));
|
||||||
|
}
|
||||||
|
poisson.perform(normals);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
poisson.perform(ksearch);
|
||||||
|
}
|
||||||
|
|
||||||
|
return Py::asObject(new Mesh::MeshPy(mesh));
|
||||||
|
}
|
||||||
|
/*
|
||||||
|
import ReverseEngineering as Reen
|
||||||
|
import Points
|
||||||
|
import Mesh
|
||||||
|
import random
|
||||||
|
import math
|
||||||
|
|
||||||
|
r=random.Random()
|
||||||
|
|
||||||
|
p=Points.Points()
|
||||||
|
pts=[]
|
||||||
|
for i in range(21):
|
||||||
|
for j in range(21):
|
||||||
|
pts.append(App.Vector(i,j,r.random()))
|
||||||
|
|
||||||
|
p.addPoints(pts)
|
||||||
|
m=Reen.viewTriangulation(p,21,21)
|
||||||
|
Mesh.show(m)
|
||||||
|
|
||||||
|
def boxmueller():
|
||||||
|
r1,r2=random.random(),random.random()
|
||||||
|
return math.sqrt(-2*math.log(r1))*math.cos(2*math.pi*r2)
|
||||||
|
|
||||||
|
p=Points.Points()
|
||||||
|
pts=[]
|
||||||
|
for i in range(21):
|
||||||
|
for j in range(21):
|
||||||
|
pts.append(App.Vector(i,j,r.gauss(5,0.05)))
|
||||||
|
|
||||||
|
p.addPoints(pts)
|
||||||
|
m=Reen.viewTriangulation(p,21,21)
|
||||||
|
Mesh.show(m)
|
||||||
|
*/
|
||||||
|
Py::Object viewTriangulation(const Py::Tuple& args, const Py::Dict& kwds)
|
||||||
|
{
|
||||||
|
PyObject *pts;
|
||||||
|
PyObject *vec = 0;
|
||||||
|
int width;
|
||||||
|
int height;
|
||||||
|
|
||||||
|
static char* kwds_greedy[] = {"Points", "Width", "Height", NULL};
|
||||||
|
if (!PyArg_ParseTupleAndKeywords(args.ptr(), kwds.ptr(), "O!|ii", kwds_greedy,
|
||||||
|
&(Points::PointsPy::Type), &pts,
|
||||||
|
&width, &height))
|
||||||
|
throw Py::Exception();
|
||||||
|
|
||||||
|
Points::PointKernel* points = static_cast<Points::PointsPy*>(pts)->getPointKernelPtr();
|
||||||
|
|
||||||
|
try {
|
||||||
|
Mesh::MeshObject* mesh = new Mesh::MeshObject();
|
||||||
|
ImageTriangulation view(width, height, *points, *mesh);
|
||||||
|
view.perform();
|
||||||
|
|
||||||
|
return Py::asObject(new Mesh::MeshPy(mesh));
|
||||||
|
}
|
||||||
|
catch (const Base::Exception& e) {
|
||||||
|
throw Py::RuntimeError(e.what());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Py::Object gridProjection(const Py::Tuple& args, const Py::Dict& kwds)
|
||||||
|
{
|
||||||
|
PyObject *pts;
|
||||||
|
PyObject *vec = 0;
|
||||||
|
int ksearch=5;
|
||||||
|
|
||||||
|
static char* kwds_greedy[] = {"Points", "KSearch", "Normals", NULL};
|
||||||
|
if (!PyArg_ParseTupleAndKeywords(args.ptr(), kwds.ptr(), "O!|iO", kwds_greedy,
|
||||||
|
&(Points::PointsPy::Type), &pts,
|
||||||
|
&ksearch, &vec))
|
||||||
|
throw Py::Exception();
|
||||||
|
|
||||||
|
Points::PointKernel* points = static_cast<Points::PointsPy*>(pts)->getPointKernelPtr();
|
||||||
|
|
||||||
|
Mesh::MeshObject* mesh = new Mesh::MeshObject();
|
||||||
|
GridReconstruction tria(*points, *mesh);
|
||||||
|
if (vec) {
|
||||||
|
Py::Sequence list(vec);
|
||||||
|
std::vector<Base::Vector3f> normals;
|
||||||
|
normals.reserve(list.size());
|
||||||
|
for (Py::Sequence::iterator it = list.begin(); it != list.end(); ++it) {
|
||||||
|
Base::Vector3d v = Py::Vector(*it).toVector();
|
||||||
|
normals.push_back(Base::convertTo<Base::Vector3f>(v));
|
||||||
|
}
|
||||||
|
tria.perform(normals);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
tria.perform(ksearch);
|
||||||
|
}
|
||||||
|
|
||||||
|
return Py::asObject(new Mesh::MeshPy(mesh));
|
||||||
|
}
|
||||||
|
Py::Object marchingCubesRBF(const Py::Tuple& args, const Py::Dict& kwds)
|
||||||
|
{
|
||||||
|
PyObject *pts;
|
||||||
|
PyObject *vec = 0;
|
||||||
|
int ksearch=5;
|
||||||
|
|
||||||
|
static char* kwds_greedy[] = {"Points", "KSearch", "Normals", NULL};
|
||||||
|
if (!PyArg_ParseTupleAndKeywords(args.ptr(), kwds.ptr(), "O!|iO", kwds_greedy,
|
||||||
|
&(Points::PointsPy::Type), &pts,
|
||||||
|
&ksearch, &vec))
|
||||||
|
throw Py::Exception();
|
||||||
|
|
||||||
|
Points::PointKernel* points = static_cast<Points::PointsPy*>(pts)->getPointKernelPtr();
|
||||||
|
|
||||||
|
Mesh::MeshObject* mesh = new Mesh::MeshObject();
|
||||||
|
MarchingCubesRBF tria(*points, *mesh);
|
||||||
|
if (vec) {
|
||||||
|
Py::Sequence list(vec);
|
||||||
|
std::vector<Base::Vector3f> normals;
|
||||||
|
normals.reserve(list.size());
|
||||||
|
for (Py::Sequence::iterator it = list.begin(); it != list.end(); ++it) {
|
||||||
|
Base::Vector3d v = Py::Vector(*it).toVector();
|
||||||
|
normals.push_back(Base::convertTo<Base::Vector3f>(v));
|
||||||
|
}
|
||||||
|
tria.perform(normals);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
tria.perform(ksearch);
|
||||||
|
}
|
||||||
|
|
||||||
|
return Py::asObject(new Mesh::MeshPy(mesh));
|
||||||
|
}
|
||||||
|
/*
|
||||||
|
import ReverseEngineering as Reen
|
||||||
|
import Points
|
||||||
|
import Mesh
|
||||||
|
import random
|
||||||
|
|
||||||
|
r=random.Random()
|
||||||
|
|
||||||
|
p=Points.Points()
|
||||||
|
pts=[]
|
||||||
|
for i in range(21):
|
||||||
|
for j in range(21):
|
||||||
|
pts.append(App.Vector(i,j,r.gauss(5,0.05)))
|
||||||
|
|
||||||
|
p.addPoints(pts)
|
||||||
|
m=Reen.marchingCubesHoppe(Points=p)
|
||||||
|
Mesh.show(m)
|
||||||
|
*/
|
||||||
|
Py::Object marchingCubesHoppe(const Py::Tuple& args, const Py::Dict& kwds)
|
||||||
|
{
|
||||||
|
PyObject *pts;
|
||||||
|
PyObject *vec = 0;
|
||||||
|
int ksearch=5;
|
||||||
|
|
||||||
|
static char* kwds_greedy[] = {"Points", "KSearch", "Normals", NULL};
|
||||||
|
if (!PyArg_ParseTupleAndKeywords(args.ptr(), kwds.ptr(), "O!|iO", kwds_greedy,
|
||||||
|
&(Points::PointsPy::Type), &pts,
|
||||||
|
&ksearch, &vec))
|
||||||
|
throw Py::Exception();
|
||||||
|
|
||||||
|
Points::PointKernel* points = static_cast<Points::PointsPy*>(pts)->getPointKernelPtr();
|
||||||
|
|
||||||
|
Mesh::MeshObject* mesh = new Mesh::MeshObject();
|
||||||
|
MarchingCubesHoppe tria(*points, *mesh);
|
||||||
|
if (vec) {
|
||||||
|
Py::Sequence list(vec);
|
||||||
|
std::vector<Base::Vector3f> normals;
|
||||||
|
normals.reserve(list.size());
|
||||||
|
for (Py::Sequence::iterator it = list.begin(); it != list.end(); ++it) {
|
||||||
|
Base::Vector3d v = Py::Vector(*it).toVector();
|
||||||
|
normals.push_back(Base::convertTo<Base::Vector3f>(v));
|
||||||
|
}
|
||||||
|
tria.perform(normals);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
tria.perform(ksearch);
|
||||||
|
}
|
||||||
|
|
||||||
return Py::asObject(new Mesh::MeshPy(mesh));
|
return Py::asObject(new Mesh::MeshPy(mesh));
|
||||||
}
|
}
|
||||||
|
@ -247,7 +482,7 @@ private:
|
||||||
#if defined(HAVE_PCL_OPENNURBS)
|
#if defined(HAVE_PCL_OPENNURBS)
|
||||||
Py::Object fitBSpline(const Py::Tuple& args, const Py::Dict& kwds)
|
Py::Object fitBSpline(const Py::Tuple& args, const Py::Dict& kwds)
|
||||||
{
|
{
|
||||||
PyObject *pcObj;
|
PyObject *pts;
|
||||||
int degree = 2;
|
int degree = 2;
|
||||||
int refinement = 4;
|
int refinement = 4;
|
||||||
int iterations = 10;
|
int iterations = 10;
|
||||||
|
@ -259,14 +494,13 @@ private:
|
||||||
static char* kwds_approx[] = {"Points", "Degree", "Refinement", "Iterations",
|
static char* kwds_approx[] = {"Points", "Degree", "Refinement", "Iterations",
|
||||||
"InteriorSmoothness", "InteriorWeight", "BoundarySmoothness", "BoundaryWeight", NULL};
|
"InteriorSmoothness", "InteriorWeight", "BoundarySmoothness", "BoundaryWeight", NULL};
|
||||||
if (!PyArg_ParseTupleAndKeywords(args.ptr(), kwds.ptr(), "O!|iiidddd", kwds_approx,
|
if (!PyArg_ParseTupleAndKeywords(args.ptr(), kwds.ptr(), "O!|iiidddd", kwds_approx,
|
||||||
&(Points::PointsPy::Type), &pcObj,
|
&(Points::PointsPy::Type), &pts,
|
||||||
°ree, &refinement, &iterations,
|
°ree, &refinement, &iterations,
|
||||||
&interiorSmoothness, &interiorWeight,
|
&interiorSmoothness, &interiorWeight,
|
||||||
&boundarySmoothness, &boundaryWeight))
|
&boundarySmoothness, &boundaryWeight))
|
||||||
throw Py::Exception();
|
throw Py::Exception();
|
||||||
|
|
||||||
Points::PointsPy* pPoints = static_cast<Points::PointsPy*>(pcObj);
|
Points::PointKernel* points = static_cast<Points::PointsPy*>(pts)->getPointKernelPtr();
|
||||||
Points::PointKernel* points = pPoints->getPointKernelPtr();
|
|
||||||
|
|
||||||
BSplineFitting fit(points->getBasicPoints());
|
BSplineFitting fit(points->getBasicPoints());
|
||||||
fit.setOrder(degree+1);
|
fit.setOrder(degree+1);
|
||||||
|
|
|
@ -26,8 +26,10 @@
|
||||||
#include "SurfaceTriangulation.h"
|
#include "SurfaceTriangulation.h"
|
||||||
#include <Mod/Points/App/Points.h>
|
#include <Mod/Points/App/Points.h>
|
||||||
#include <Mod/Mesh/App/Mesh.h>
|
#include <Mod/Mesh/App/Mesh.h>
|
||||||
|
#include <Mod/Mesh/App/Core/Algorithm.h>
|
||||||
#include <Mod/Mesh/App/Core/Elements.h>
|
#include <Mod/Mesh/App/Core/Elements.h>
|
||||||
#include <Mod/Mesh/App/Core/MeshKernel.h>
|
#include <Mod/Mesh/App/Core/MeshKernel.h>
|
||||||
|
#include <Base/Exception.h>
|
||||||
|
|
||||||
// http://svn.pointclouds.org/pcl/tags/pcl-1.5.1/test/
|
// http://svn.pointclouds.org/pcl/tags/pcl-1.5.1/test/
|
||||||
#if defined(HAVE_PCL_SURFACE)
|
#if defined(HAVE_PCL_SURFACE)
|
||||||
|
@ -42,6 +44,8 @@
|
||||||
//#include <pcl/surface/convex_hull.h>
|
//#include <pcl/surface/convex_hull.h>
|
||||||
//#include <pcl/surface/concave_hull.h>
|
//#include <pcl/surface/concave_hull.h>
|
||||||
#include <pcl/surface/organized_fast_mesh.h>
|
#include <pcl/surface/organized_fast_mesh.h>
|
||||||
|
#include <pcl/surface/marching_cubes_rbf.h>
|
||||||
|
#include <pcl/surface/marching_cubes_hoppe.h>
|
||||||
#include <pcl/surface/ear_clipping.h>
|
#include <pcl/surface/ear_clipping.h>
|
||||||
#include <pcl/common/common.h>
|
#include <pcl/common/common.h>
|
||||||
#include <boost/random.hpp>
|
#include <boost/random.hpp>
|
||||||
|
@ -55,18 +59,25 @@ using namespace pcl::io;
|
||||||
using namespace std;
|
using namespace std;
|
||||||
using namespace Reen;
|
using namespace Reen;
|
||||||
|
|
||||||
|
// See
|
||||||
|
// http://www.ics.uci.edu/~gopi/PAPERS/Euro00.pdf
|
||||||
|
// http://www.ics.uci.edu/~gopi/PAPERS/CGMV.pdf
|
||||||
SurfaceTriangulation::SurfaceTriangulation(const Points::PointKernel& pts, Mesh::MeshObject& mesh)
|
SurfaceTriangulation::SurfaceTriangulation(const Points::PointKernel& pts, Mesh::MeshObject& mesh)
|
||||||
: myPoints(pts), myMesh(mesh)
|
: myPoints(pts)
|
||||||
|
, myMesh(mesh)
|
||||||
|
, mu(0)
|
||||||
|
, searchRadius(0)
|
||||||
{
|
{
|
||||||
}
|
}
|
||||||
|
|
||||||
void SurfaceTriangulation::perform(double searchRadius, double mu)
|
void SurfaceTriangulation::perform(int ksearch)
|
||||||
{
|
{
|
||||||
PointCloud<PointXYZ>::Ptr cloud (new PointCloud<PointXYZ>);
|
PointCloud<PointXYZ>::Ptr cloud (new PointCloud<PointXYZ>);
|
||||||
PointCloud<PointNormal>::Ptr cloud_with_normals (new PointCloud<PointNormal>);
|
PointCloud<PointNormal>::Ptr cloud_with_normals (new PointCloud<PointNormal>);
|
||||||
search::KdTree<PointXYZ>::Ptr tree;
|
search::KdTree<PointXYZ>::Ptr tree;
|
||||||
search::KdTree<PointNormal>::Ptr tree2;
|
search::KdTree<PointNormal>::Ptr tree2;
|
||||||
|
|
||||||
|
cloud->reserve(myPoints.size());
|
||||||
for (Points::PointKernel::const_iterator it = myPoints.begin(); it != myPoints.end(); ++it) {
|
for (Points::PointKernel::const_iterator it = myPoints.begin(); it != myPoints.end(); ++it) {
|
||||||
cloud->push_back(PointXYZ(it->x, it->y, it->z));
|
cloud->push_back(PointXYZ(it->x, it->y, it->z));
|
||||||
}
|
}
|
||||||
|
@ -81,7 +92,7 @@ void SurfaceTriangulation::perform(double searchRadius, double mu)
|
||||||
n.setInputCloud (cloud);
|
n.setInputCloud (cloud);
|
||||||
//n.setIndices (indices[B);
|
//n.setIndices (indices[B);
|
||||||
n.setSearchMethod (tree);
|
n.setSearchMethod (tree);
|
||||||
n.setKSearch (20);
|
n.setKSearch (ksearch);
|
||||||
n.compute (*normals);
|
n.compute (*normals);
|
||||||
|
|
||||||
// Concatenate XYZ and normal information
|
// Concatenate XYZ and normal information
|
||||||
|
@ -104,6 +115,61 @@ void SurfaceTriangulation::perform(double searchRadius, double mu)
|
||||||
gp3.setMinimumAngle(M_PI/18); // 10 degrees
|
gp3.setMinimumAngle(M_PI/18); // 10 degrees
|
||||||
gp3.setMaximumAngle(2*M_PI/3); // 120 degrees
|
gp3.setMaximumAngle(2*M_PI/3); // 120 degrees
|
||||||
gp3.setNormalConsistency(false);
|
gp3.setNormalConsistency(false);
|
||||||
|
gp3.setConsistentVertexOrdering(true);
|
||||||
|
|
||||||
|
// Reconstruct
|
||||||
|
PolygonMesh mesh;
|
||||||
|
gp3.reconstruct (mesh);
|
||||||
|
|
||||||
|
MeshConversion::convert(mesh, myMesh);
|
||||||
|
|
||||||
|
// Additional vertex information
|
||||||
|
//std::vector<int> parts = gp3.getPartIDs();
|
||||||
|
//std::vector<int> states = gp3.getPointStates();
|
||||||
|
}
|
||||||
|
|
||||||
|
void SurfaceTriangulation::perform(const std::vector<Base::Vector3f>& normals)
|
||||||
|
{
|
||||||
|
if (myPoints.size() != normals.size())
|
||||||
|
throw Base::RuntimeError("Number of points doesn't match with number of normals");
|
||||||
|
|
||||||
|
PointCloud<PointNormal>::Ptr cloud_with_normals (new PointCloud<PointNormal>);
|
||||||
|
search::KdTree<PointNormal>::Ptr tree;
|
||||||
|
|
||||||
|
cloud_with_normals->reserve(myPoints.size());
|
||||||
|
std::size_t num_points = myPoints.size();
|
||||||
|
const std::vector<Base::Vector3f>& points = myPoints.getBasicPoints();
|
||||||
|
for (std::size_t index=0; index<num_points; index++) {
|
||||||
|
const Base::Vector3f& p = points[index];
|
||||||
|
const Base::Vector3f& n = normals[index];
|
||||||
|
PointNormal pn;
|
||||||
|
pn.x = p.x;
|
||||||
|
pn.y = p.y;
|
||||||
|
pn.z = p.z;
|
||||||
|
pn.normal_x = n.x;
|
||||||
|
pn.normal_y = n.y;
|
||||||
|
pn.normal_z = n.z;
|
||||||
|
cloud_with_normals->push_back(pn);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Create search tree
|
||||||
|
tree.reset (new search::KdTree<PointNormal>);
|
||||||
|
tree->setInputCloud (cloud_with_normals);
|
||||||
|
|
||||||
|
// Init objects
|
||||||
|
GreedyProjectionTriangulation<PointNormal> gp3;
|
||||||
|
|
||||||
|
// Set parameters
|
||||||
|
gp3.setInputCloud (cloud_with_normals);
|
||||||
|
gp3.setSearchMethod (tree);
|
||||||
|
gp3.setSearchRadius (searchRadius);
|
||||||
|
gp3.setMu (mu);
|
||||||
|
gp3.setMaximumNearestNeighbors (100);
|
||||||
|
gp3.setMaximumSurfaceAngle(M_PI/4); // 45 degrees
|
||||||
|
gp3.setMinimumAngle(M_PI/18); // 10 degrees
|
||||||
|
gp3.setMaximumAngle(2*M_PI/3); // 120 degrees
|
||||||
|
gp3.setNormalConsistency(true);
|
||||||
|
gp3.setConsistentVertexOrdering(true);
|
||||||
|
|
||||||
// Reconstruct
|
// Reconstruct
|
||||||
PolygonMesh mesh;
|
PolygonMesh mesh;
|
||||||
|
@ -136,6 +202,7 @@ void PoissonReconstruction::perform(int ksearch)
|
||||||
search::KdTree<PointXYZ>::Ptr tree;
|
search::KdTree<PointXYZ>::Ptr tree;
|
||||||
search::KdTree<PointNormal>::Ptr tree2;
|
search::KdTree<PointNormal>::Ptr tree2;
|
||||||
|
|
||||||
|
cloud->reserve(myPoints.size());
|
||||||
for (Points::PointKernel::const_iterator it = myPoints.begin(); it != myPoints.end(); ++it) {
|
for (Points::PointKernel::const_iterator it = myPoints.begin(); it != myPoints.end(); ++it) {
|
||||||
cloud->push_back(PointXYZ(it->x, it->y, it->z));
|
cloud->push_back(PointXYZ(it->x, it->y, it->z));
|
||||||
}
|
}
|
||||||
|
@ -180,6 +247,449 @@ void PoissonReconstruction::perform(int ksearch)
|
||||||
MeshConversion::convert(mesh, myMesh);
|
MeshConversion::convert(mesh, myMesh);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void PoissonReconstruction::perform(const std::vector<Base::Vector3f>& normals)
|
||||||
|
{
|
||||||
|
if (myPoints.size() != normals.size())
|
||||||
|
throw Base::RuntimeError("Number of points doesn't match with number of normals");
|
||||||
|
|
||||||
|
PointCloud<PointNormal>::Ptr cloud_with_normals (new PointCloud<PointNormal>);
|
||||||
|
search::KdTree<PointNormal>::Ptr tree;
|
||||||
|
|
||||||
|
cloud_with_normals->reserve(myPoints.size());
|
||||||
|
std::size_t num_points = myPoints.size();
|
||||||
|
const std::vector<Base::Vector3f>& points = myPoints.getBasicPoints();
|
||||||
|
for (std::size_t index=0; index<num_points; index++) {
|
||||||
|
const Base::Vector3f& p = points[index];
|
||||||
|
const Base::Vector3f& n = normals[index];
|
||||||
|
PointNormal pn;
|
||||||
|
pn.x = p.x;
|
||||||
|
pn.y = p.y;
|
||||||
|
pn.z = p.z;
|
||||||
|
pn.normal_x = n.x;
|
||||||
|
pn.normal_y = n.y;
|
||||||
|
pn.normal_z = n.z;
|
||||||
|
cloud_with_normals->push_back(pn);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Create search tree
|
||||||
|
tree.reset (new search::KdTree<PointNormal>);
|
||||||
|
tree->setInputCloud (cloud_with_normals);
|
||||||
|
|
||||||
|
// Init objects
|
||||||
|
Poisson<PointNormal> poisson;
|
||||||
|
|
||||||
|
// Set parameters
|
||||||
|
poisson.setInputCloud (cloud_with_normals);
|
||||||
|
poisson.setSearchMethod (tree);
|
||||||
|
if (depth >= 1)
|
||||||
|
poisson.setDepth(depth);
|
||||||
|
if (solverDivide >= 1)
|
||||||
|
poisson.setSolverDivide(solverDivide);
|
||||||
|
if (samplesPerNode >= 1.0f)
|
||||||
|
poisson.setSamplesPerNode(samplesPerNode);
|
||||||
|
|
||||||
|
// Reconstruct
|
||||||
|
PolygonMesh mesh;
|
||||||
|
poisson.reconstruct (mesh);
|
||||||
|
|
||||||
|
MeshConversion::convert(mesh, myMesh);
|
||||||
|
}
|
||||||
|
|
||||||
|
// ----------------------------------------------------------------------------
|
||||||
|
|
||||||
|
GridReconstruction::GridReconstruction(const Points::PointKernel& pts, Mesh::MeshObject& mesh)
|
||||||
|
: myPoints(pts)
|
||||||
|
, myMesh(mesh)
|
||||||
|
{
|
||||||
|
}
|
||||||
|
|
||||||
|
void GridReconstruction::perform(int ksearch)
|
||||||
|
{
|
||||||
|
PointCloud<PointXYZ>::Ptr cloud (new PointCloud<PointXYZ>);
|
||||||
|
PointCloud<PointNormal>::Ptr cloud_with_normals (new PointCloud<PointNormal>);
|
||||||
|
search::KdTree<PointXYZ>::Ptr tree;
|
||||||
|
search::KdTree<PointNormal>::Ptr tree2;
|
||||||
|
|
||||||
|
cloud->reserve(myPoints.size());
|
||||||
|
for (Points::PointKernel::const_iterator it = myPoints.begin(); it != myPoints.end(); ++it) {
|
||||||
|
cloud->push_back(PointXYZ(it->x, it->y, it->z));
|
||||||
|
}
|
||||||
|
|
||||||
|
// Create search tree
|
||||||
|
tree.reset (new search::KdTree<PointXYZ> (false));
|
||||||
|
tree->setInputCloud (cloud);
|
||||||
|
|
||||||
|
// Normal estimation
|
||||||
|
NormalEstimation<PointXYZ, Normal> n;
|
||||||
|
PointCloud<Normal>::Ptr normals (new PointCloud<Normal> ());
|
||||||
|
n.setInputCloud (cloud);
|
||||||
|
//n.setIndices (indices[B);
|
||||||
|
n.setSearchMethod (tree);
|
||||||
|
n.setKSearch (ksearch);
|
||||||
|
n.compute (*normals);
|
||||||
|
|
||||||
|
// Concatenate XYZ and normal information
|
||||||
|
pcl::concatenateFields (*cloud, *normals, *cloud_with_normals);
|
||||||
|
|
||||||
|
// Create search tree
|
||||||
|
tree2.reset (new search::KdTree<PointNormal>);
|
||||||
|
tree2->setInputCloud (cloud_with_normals);
|
||||||
|
|
||||||
|
// Init objects
|
||||||
|
GridProjection<PointNormal> grid;
|
||||||
|
|
||||||
|
// Set parameters
|
||||||
|
grid.setResolution(0.005);
|
||||||
|
grid.setPaddingSize(3);
|
||||||
|
grid.setNearestNeighborNum(100);
|
||||||
|
grid.setMaxBinarySearchLevel(10);
|
||||||
|
grid.setInputCloud (cloud_with_normals);
|
||||||
|
grid.setSearchMethod (tree2);
|
||||||
|
|
||||||
|
// Reconstruct
|
||||||
|
PolygonMesh mesh;
|
||||||
|
grid.reconstruct (mesh);
|
||||||
|
|
||||||
|
MeshConversion::convert(mesh, myMesh);
|
||||||
|
}
|
||||||
|
|
||||||
|
void GridReconstruction::perform(const std::vector<Base::Vector3f>& normals)
|
||||||
|
{
|
||||||
|
if (myPoints.size() != normals.size())
|
||||||
|
throw Base::RuntimeError("Number of points doesn't match with number of normals");
|
||||||
|
|
||||||
|
PointCloud<PointNormal>::Ptr cloud_with_normals (new PointCloud<PointNormal>);
|
||||||
|
search::KdTree<PointNormal>::Ptr tree;
|
||||||
|
|
||||||
|
cloud_with_normals->reserve(myPoints.size());
|
||||||
|
std::size_t num_points = myPoints.size();
|
||||||
|
const std::vector<Base::Vector3f>& points = myPoints.getBasicPoints();
|
||||||
|
for (std::size_t index=0; index<num_points; index++) {
|
||||||
|
const Base::Vector3f& p = points[index];
|
||||||
|
const Base::Vector3f& n = normals[index];
|
||||||
|
PointNormal pn;
|
||||||
|
pn.x = p.x;
|
||||||
|
pn.y = p.y;
|
||||||
|
pn.z = p.z;
|
||||||
|
pn.normal_x = n.x;
|
||||||
|
pn.normal_y = n.y;
|
||||||
|
pn.normal_z = n.z;
|
||||||
|
cloud_with_normals->push_back(pn);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Create search tree
|
||||||
|
tree.reset (new search::KdTree<PointNormal>);
|
||||||
|
tree->setInputCloud (cloud_with_normals);
|
||||||
|
|
||||||
|
// Init objects
|
||||||
|
GridProjection<PointNormal> grid;
|
||||||
|
|
||||||
|
// Set parameters
|
||||||
|
grid.setResolution(0.005);
|
||||||
|
grid.setPaddingSize(3);
|
||||||
|
grid.setNearestNeighborNum(100);
|
||||||
|
grid.setMaxBinarySearchLevel(10);
|
||||||
|
grid.setInputCloud (cloud_with_normals);
|
||||||
|
grid.setSearchMethod (tree);
|
||||||
|
|
||||||
|
// Reconstruct
|
||||||
|
PolygonMesh mesh;
|
||||||
|
grid.reconstruct (mesh);
|
||||||
|
|
||||||
|
MeshConversion::convert(mesh, myMesh);
|
||||||
|
}
|
||||||
|
|
||||||
|
// ----------------------------------------------------------------------------
|
||||||
|
|
||||||
|
ImageTriangulation::ImageTriangulation(int width, int height, const Points::PointKernel& pts, Mesh::MeshObject& mesh)
|
||||||
|
: width(width)
|
||||||
|
, height(height)
|
||||||
|
, myPoints(pts)
|
||||||
|
, myMesh(mesh)
|
||||||
|
{
|
||||||
|
}
|
||||||
|
|
||||||
|
void ImageTriangulation::perform()
|
||||||
|
{
|
||||||
|
if (myPoints.size() != width * height)
|
||||||
|
throw Base::RuntimeError("Number of points doesn't match with given width and height");
|
||||||
|
|
||||||
|
//construct dataset
|
||||||
|
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_organized (new pcl::PointCloud<pcl::PointXYZ> ());
|
||||||
|
cloud_organized->width = width;
|
||||||
|
cloud_organized->height = height;
|
||||||
|
cloud_organized->points.resize (cloud_organized->width * cloud_organized->height);
|
||||||
|
|
||||||
|
const std::vector<Base::Vector3f>& points = myPoints.getBasicPoints();
|
||||||
|
|
||||||
|
int npoints = 0;
|
||||||
|
for (size_t i = 0; i < cloud_organized->height; i++) {
|
||||||
|
for (size_t j = 0; j < cloud_organized->width; j++) {
|
||||||
|
const Base::Vector3f& p = points[npoints];
|
||||||
|
cloud_organized->points[npoints].x = p.x;
|
||||||
|
cloud_organized->points[npoints].y = p.y;
|
||||||
|
cloud_organized->points[npoints].z = p.z;
|
||||||
|
npoints++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
OrganizedFastMesh<PointXYZ> ofm;
|
||||||
|
|
||||||
|
// Set parameters
|
||||||
|
ofm.setInputCloud (cloud_organized);
|
||||||
|
// This parameter is not yet implmented (pcl 1.7)
|
||||||
|
ofm.setMaxEdgeLength (1.5);
|
||||||
|
ofm.setTrianglePixelSize (1);
|
||||||
|
ofm.setTriangulationType (OrganizedFastMesh<PointXYZ>::TRIANGLE_ADAPTIVE_CUT);
|
||||||
|
ofm.storeShadowedFaces(true);
|
||||||
|
|
||||||
|
// Reconstruct
|
||||||
|
PolygonMesh mesh;
|
||||||
|
ofm.reconstruct (mesh);
|
||||||
|
|
||||||
|
MeshConversion::convert(mesh, myMesh);
|
||||||
|
|
||||||
|
// remove invalid points
|
||||||
|
//
|
||||||
|
MeshCore::MeshKernel& kernel = myMesh.getKernel();
|
||||||
|
const MeshCore::MeshFacetArray& face = kernel.GetFacets();
|
||||||
|
MeshCore::MeshAlgorithm meshAlg(kernel);
|
||||||
|
meshAlg.SetPointFlag(MeshCore::MeshPoint::INVALID);
|
||||||
|
std::vector<unsigned long> validPoints;
|
||||||
|
validPoints.reserve(face.size()*3);
|
||||||
|
for (MeshCore::MeshFacetArray::_TConstIterator it = face.begin(); it != face.end(); ++it) {
|
||||||
|
validPoints.push_back(it->_aulPoints[0]);
|
||||||
|
validPoints.push_back(it->_aulPoints[1]);
|
||||||
|
validPoints.push_back(it->_aulPoints[2]);
|
||||||
|
}
|
||||||
|
|
||||||
|
// remove duplicates
|
||||||
|
std::sort(validPoints.begin(), validPoints.end());
|
||||||
|
validPoints.erase(std::unique(validPoints.begin(), validPoints.end()), validPoints.end());
|
||||||
|
meshAlg.ResetPointsFlag(validPoints, MeshCore::MeshPoint::INVALID);
|
||||||
|
|
||||||
|
unsigned long countInvalid = meshAlg.CountPointFlag(MeshCore::MeshPoint::INVALID);
|
||||||
|
if (countInvalid > 0) {
|
||||||
|
std::vector<unsigned long> invalidPoints;
|
||||||
|
invalidPoints.reserve(countInvalid);
|
||||||
|
meshAlg.GetPointsFlag(invalidPoints, MeshCore::MeshPoint::INVALID);
|
||||||
|
|
||||||
|
kernel.DeletePoints(invalidPoints);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// ----------------------------------------------------------------------------
|
||||||
|
|
||||||
|
Reen::MarchingCubesRBF::MarchingCubesRBF(const Points::PointKernel& pts, Mesh::MeshObject& mesh)
|
||||||
|
: myPoints(pts)
|
||||||
|
, myMesh(mesh)
|
||||||
|
{
|
||||||
|
}
|
||||||
|
|
||||||
|
void Reen::MarchingCubesRBF::perform(int ksearch)
|
||||||
|
{
|
||||||
|
PointCloud<PointXYZ>::Ptr cloud (new PointCloud<PointXYZ>);
|
||||||
|
PointCloud<PointNormal>::Ptr cloud_with_normals (new PointCloud<PointNormal>);
|
||||||
|
search::KdTree<PointXYZ>::Ptr tree;
|
||||||
|
search::KdTree<PointNormal>::Ptr tree2;
|
||||||
|
|
||||||
|
cloud->reserve(myPoints.size());
|
||||||
|
for (Points::PointKernel::const_iterator it = myPoints.begin(); it != myPoints.end(); ++it) {
|
||||||
|
cloud->push_back(PointXYZ(it->x, it->y, it->z));
|
||||||
|
}
|
||||||
|
|
||||||
|
// Create search tree
|
||||||
|
tree.reset (new search::KdTree<PointXYZ> (false));
|
||||||
|
tree->setInputCloud (cloud);
|
||||||
|
|
||||||
|
// Normal estimation
|
||||||
|
NormalEstimation<PointXYZ, Normal> n;
|
||||||
|
PointCloud<Normal>::Ptr normals (new PointCloud<Normal> ());
|
||||||
|
n.setInputCloud (cloud);
|
||||||
|
//n.setIndices (indices[B);
|
||||||
|
n.setSearchMethod (tree);
|
||||||
|
n.setKSearch (ksearch);
|
||||||
|
n.compute (*normals);
|
||||||
|
|
||||||
|
// Concatenate XYZ and normal information
|
||||||
|
pcl::concatenateFields (*cloud, *normals, *cloud_with_normals);
|
||||||
|
|
||||||
|
// Create search tree
|
||||||
|
tree2.reset (new search::KdTree<PointNormal>);
|
||||||
|
tree2->setInputCloud (cloud_with_normals);
|
||||||
|
|
||||||
|
// Init objects
|
||||||
|
pcl::MarchingCubesRBF<PointNormal> rbf;
|
||||||
|
|
||||||
|
// Set parameters
|
||||||
|
rbf.setIsoLevel (0);
|
||||||
|
rbf.setGridResolution (60, 60, 60);
|
||||||
|
rbf.setPercentageExtendGrid (0.1f);
|
||||||
|
rbf.setOffSurfaceDisplacement (0.02f);
|
||||||
|
|
||||||
|
rbf.setInputCloud (cloud_with_normals);
|
||||||
|
rbf.setSearchMethod (tree2);
|
||||||
|
|
||||||
|
// Reconstruct
|
||||||
|
PolygonMesh mesh;
|
||||||
|
rbf.reconstruct (mesh);
|
||||||
|
|
||||||
|
MeshConversion::convert(mesh, myMesh);
|
||||||
|
}
|
||||||
|
|
||||||
|
void Reen::MarchingCubesRBF::perform(const std::vector<Base::Vector3f>& normals)
|
||||||
|
{
|
||||||
|
if (myPoints.size() != normals.size())
|
||||||
|
throw Base::RuntimeError("Number of points doesn't match with number of normals");
|
||||||
|
|
||||||
|
PointCloud<PointNormal>::Ptr cloud_with_normals (new PointCloud<PointNormal>);
|
||||||
|
search::KdTree<PointNormal>::Ptr tree;
|
||||||
|
|
||||||
|
cloud_with_normals->reserve(myPoints.size());
|
||||||
|
std::size_t num_points = myPoints.size();
|
||||||
|
const std::vector<Base::Vector3f>& points = myPoints.getBasicPoints();
|
||||||
|
for (std::size_t index=0; index<num_points; index++) {
|
||||||
|
const Base::Vector3f& p = points[index];
|
||||||
|
const Base::Vector3f& n = normals[index];
|
||||||
|
PointNormal pn;
|
||||||
|
pn.x = p.x;
|
||||||
|
pn.y = p.y;
|
||||||
|
pn.z = p.z;
|
||||||
|
pn.normal_x = n.x;
|
||||||
|
pn.normal_y = n.y;
|
||||||
|
pn.normal_z = n.z;
|
||||||
|
cloud_with_normals->push_back(pn);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Create search tree
|
||||||
|
tree.reset (new search::KdTree<PointNormal>);
|
||||||
|
tree->setInputCloud (cloud_with_normals);
|
||||||
|
|
||||||
|
|
||||||
|
// Init objects
|
||||||
|
pcl::MarchingCubesRBF<PointNormal> rbf;
|
||||||
|
|
||||||
|
// Set parameters
|
||||||
|
rbf.setIsoLevel (0);
|
||||||
|
rbf.setGridResolution (60, 60, 60);
|
||||||
|
rbf.setPercentageExtendGrid (0.1f);
|
||||||
|
rbf.setOffSurfaceDisplacement (0.02f);
|
||||||
|
|
||||||
|
rbf.setInputCloud (cloud_with_normals);
|
||||||
|
rbf.setSearchMethod (tree);
|
||||||
|
|
||||||
|
// Reconstruct
|
||||||
|
PolygonMesh mesh;
|
||||||
|
rbf.reconstruct (mesh);
|
||||||
|
|
||||||
|
MeshConversion::convert(mesh, myMesh);
|
||||||
|
}
|
||||||
|
|
||||||
|
// ----------------------------------------------------------------------------
|
||||||
|
|
||||||
|
Reen::MarchingCubesHoppe::MarchingCubesHoppe(const Points::PointKernel& pts, Mesh::MeshObject& mesh)
|
||||||
|
: myPoints(pts)
|
||||||
|
, myMesh(mesh)
|
||||||
|
{
|
||||||
|
}
|
||||||
|
|
||||||
|
void Reen::MarchingCubesHoppe::perform(int ksearch)
|
||||||
|
{
|
||||||
|
PointCloud<PointXYZ>::Ptr cloud (new PointCloud<PointXYZ>);
|
||||||
|
PointCloud<PointNormal>::Ptr cloud_with_normals (new PointCloud<PointNormal>);
|
||||||
|
search::KdTree<PointXYZ>::Ptr tree;
|
||||||
|
search::KdTree<PointNormal>::Ptr tree2;
|
||||||
|
|
||||||
|
cloud->reserve(myPoints.size());
|
||||||
|
for (Points::PointKernel::const_iterator it = myPoints.begin(); it != myPoints.end(); ++it) {
|
||||||
|
cloud->push_back(PointXYZ(it->x, it->y, it->z));
|
||||||
|
}
|
||||||
|
|
||||||
|
// Create search tree
|
||||||
|
tree.reset (new search::KdTree<PointXYZ> (false));
|
||||||
|
tree->setInputCloud (cloud);
|
||||||
|
|
||||||
|
// Normal estimation
|
||||||
|
NormalEstimation<PointXYZ, Normal> n;
|
||||||
|
PointCloud<Normal>::Ptr normals (new PointCloud<Normal> ());
|
||||||
|
n.setInputCloud (cloud);
|
||||||
|
//n.setIndices (indices[B);
|
||||||
|
n.setSearchMethod (tree);
|
||||||
|
n.setKSearch (ksearch);
|
||||||
|
n.compute (*normals);
|
||||||
|
|
||||||
|
// Concatenate XYZ and normal information
|
||||||
|
pcl::concatenateFields (*cloud, *normals, *cloud_with_normals);
|
||||||
|
|
||||||
|
// Create search tree
|
||||||
|
tree2.reset (new search::KdTree<PointNormal>);
|
||||||
|
tree2->setInputCloud (cloud_with_normals);
|
||||||
|
|
||||||
|
// Init objects
|
||||||
|
pcl::MarchingCubesHoppe<PointNormal> hoppe;
|
||||||
|
|
||||||
|
// Set parameters
|
||||||
|
hoppe.setIsoLevel (0);
|
||||||
|
hoppe.setGridResolution (60, 60, 60);
|
||||||
|
hoppe.setPercentageExtendGrid (0.1f);
|
||||||
|
|
||||||
|
hoppe.setInputCloud (cloud_with_normals);
|
||||||
|
hoppe.setSearchMethod (tree2);
|
||||||
|
|
||||||
|
// Reconstruct
|
||||||
|
PolygonMesh mesh;
|
||||||
|
hoppe.reconstruct (mesh);
|
||||||
|
|
||||||
|
MeshConversion::convert(mesh, myMesh);
|
||||||
|
}
|
||||||
|
|
||||||
|
void Reen::MarchingCubesHoppe::perform(const std::vector<Base::Vector3f>& normals)
|
||||||
|
{
|
||||||
|
if (myPoints.size() != normals.size())
|
||||||
|
throw Base::RuntimeError("Number of points doesn't match with number of normals");
|
||||||
|
|
||||||
|
PointCloud<PointNormal>::Ptr cloud_with_normals (new PointCloud<PointNormal>);
|
||||||
|
search::KdTree<PointNormal>::Ptr tree;
|
||||||
|
|
||||||
|
cloud_with_normals->reserve(myPoints.size());
|
||||||
|
std::size_t num_points = myPoints.size();
|
||||||
|
const std::vector<Base::Vector3f>& points = myPoints.getBasicPoints();
|
||||||
|
for (std::size_t index=0; index<num_points; index++) {
|
||||||
|
const Base::Vector3f& p = points[index];
|
||||||
|
const Base::Vector3f& n = normals[index];
|
||||||
|
PointNormal pn;
|
||||||
|
pn.x = p.x;
|
||||||
|
pn.y = p.y;
|
||||||
|
pn.z = p.z;
|
||||||
|
pn.normal_x = n.x;
|
||||||
|
pn.normal_y = n.y;
|
||||||
|
pn.normal_z = n.z;
|
||||||
|
cloud_with_normals->push_back(pn);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Create search tree
|
||||||
|
tree.reset (new search::KdTree<PointNormal>);
|
||||||
|
tree->setInputCloud (cloud_with_normals);
|
||||||
|
|
||||||
|
|
||||||
|
// Init objects
|
||||||
|
pcl::MarchingCubesHoppe<PointNormal> hoppe;
|
||||||
|
|
||||||
|
// Set parameters
|
||||||
|
hoppe.setIsoLevel (0);
|
||||||
|
hoppe.setGridResolution (60, 60, 60);
|
||||||
|
hoppe.setPercentageExtendGrid (0.1f);
|
||||||
|
|
||||||
|
hoppe.setInputCloud (cloud_with_normals);
|
||||||
|
hoppe.setSearchMethod (tree);
|
||||||
|
|
||||||
|
// Reconstruct
|
||||||
|
PolygonMesh mesh;
|
||||||
|
hoppe.reconstruct (mesh);
|
||||||
|
|
||||||
|
MeshConversion::convert(mesh, myMesh);
|
||||||
|
}
|
||||||
|
|
||||||
// ----------------------------------------------------------------------------
|
// ----------------------------------------------------------------------------
|
||||||
|
|
||||||
void MeshConversion::convert(const pcl::PolygonMesh& pclMesh, Mesh::MeshObject& meshObject)
|
void MeshConversion::convert(const pcl::PolygonMesh& pclMesh, Mesh::MeshObject& meshObject)
|
||||||
|
|
|
@ -24,6 +24,9 @@
|
||||||
#ifndef REEN_SURFACETRIANGULATION_H
|
#ifndef REEN_SURFACETRIANGULATION_H
|
||||||
#define REEN_SURFACETRIANGULATION_H
|
#define REEN_SURFACETRIANGULATION_H
|
||||||
|
|
||||||
|
#include <Base/Vector3D.h>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
namespace Points {class PointKernel;}
|
namespace Points {class PointKernel;}
|
||||||
namespace Mesh {class MeshObject;}
|
namespace Mesh {class MeshObject;}
|
||||||
namespace pcl {struct PolygonMesh;}
|
namespace pcl {struct PolygonMesh;}
|
||||||
|
@ -40,18 +43,48 @@ class SurfaceTriangulation
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
SurfaceTriangulation(const Points::PointKernel&, Mesh::MeshObject&);
|
SurfaceTriangulation(const Points::PointKernel&, Mesh::MeshObject&);
|
||||||
void perform(double searchRadius, double mu);
|
/** \brief Set the number of k nearest neighbors to use for the normal estimation.
|
||||||
|
* \param[in] k the number of k-nearest neighbors
|
||||||
|
*/
|
||||||
|
void perform(int ksearch);
|
||||||
|
/** \brief Pass the normals to the points given in the constructor.
|
||||||
|
* \param[in] normals the normals to the given points.
|
||||||
|
*/
|
||||||
|
void perform(const std::vector<Base::Vector3f>& normals);
|
||||||
|
|
||||||
|
/** \brief Set the multiplier of the nearest neighbor distance to obtain the final search radius for each point
|
||||||
|
* (this will make the algorithm adapt to different point densities in the cloud).
|
||||||
|
* \param[in] mu the multiplier
|
||||||
|
*/
|
||||||
|
inline void
|
||||||
|
setMu (double mu) { this->mu = mu; }
|
||||||
|
|
||||||
|
/** \brief Set the sphere radius that is to be used for determining the k-nearest neighbors used for triangulating.
|
||||||
|
* \param[in] radius the sphere radius that is to contain all k-nearest neighbors
|
||||||
|
* \note This distance limits the maximum edge length!
|
||||||
|
*/
|
||||||
|
inline void
|
||||||
|
setSearchRadius (double radius) { this->searchRadius = radius; }
|
||||||
|
|
||||||
private:
|
private:
|
||||||
const Points::PointKernel& myPoints;
|
const Points::PointKernel& myPoints;
|
||||||
Mesh::MeshObject& myMesh;
|
Mesh::MeshObject& myMesh;
|
||||||
|
double mu;
|
||||||
|
double searchRadius;
|
||||||
};
|
};
|
||||||
|
|
||||||
class PoissonReconstruction
|
class PoissonReconstruction
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
PoissonReconstruction(const Points::PointKernel&, Mesh::MeshObject&);
|
PoissonReconstruction(const Points::PointKernel&, Mesh::MeshObject&);
|
||||||
|
/** \brief Set the number of k nearest neighbors to use for the normal estimation.
|
||||||
|
* \param[in] k the number of k-nearest neighbors
|
||||||
|
*/
|
||||||
void perform(int ksearch=5);
|
void perform(int ksearch=5);
|
||||||
|
/** \brief Pass the normals to the points given in the constructor.
|
||||||
|
* \param[in] normals the normals to the given points.
|
||||||
|
*/
|
||||||
|
void perform(const std::vector<Base::Vector3f>& normals);
|
||||||
|
|
||||||
/** \brief Set the maximum depth of the tree that will be used for surface reconstruction.
|
/** \brief Set the maximum depth of the tree that will be used for surface reconstruction.
|
||||||
* \note Running at depth d corresponds to solving on a voxel grid whose resolution is no larger than
|
* \note Running at depth d corresponds to solving on a voxel grid whose resolution is no larger than
|
||||||
|
@ -88,6 +121,72 @@ private:
|
||||||
float samplesPerNode;
|
float samplesPerNode;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
class GridReconstruction
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
GridReconstruction(const Points::PointKernel&, Mesh::MeshObject&);
|
||||||
|
/** \brief Set the number of k nearest neighbors to use for the normal estimation.
|
||||||
|
* \param[in] k the number of k-nearest neighbors
|
||||||
|
*/
|
||||||
|
void perform(int ksearch=5);
|
||||||
|
/** \brief Pass the normals to the points given in the constructor.
|
||||||
|
* \param[in] normals the normals to the given points.
|
||||||
|
*/
|
||||||
|
void perform(const std::vector<Base::Vector3f>& normals);
|
||||||
|
|
||||||
|
private:
|
||||||
|
const Points::PointKernel& myPoints;
|
||||||
|
Mesh::MeshObject& myMesh;
|
||||||
|
};
|
||||||
|
|
||||||
|
class ImageTriangulation
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
ImageTriangulation(int width, int height, const Points::PointKernel&, Mesh::MeshObject&);
|
||||||
|
void perform();
|
||||||
|
|
||||||
|
private:
|
||||||
|
int width, height;
|
||||||
|
const Points::PointKernel& myPoints;
|
||||||
|
Mesh::MeshObject& myMesh;
|
||||||
|
};
|
||||||
|
|
||||||
|
class MarchingCubesRBF
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
MarchingCubesRBF(const Points::PointKernel&, Mesh::MeshObject&);
|
||||||
|
/** \brief Set the number of k nearest neighbors to use for the normal estimation.
|
||||||
|
* \param[in] k the number of k-nearest neighbors
|
||||||
|
*/
|
||||||
|
void perform(int ksearch=5);
|
||||||
|
/** \brief Pass the normals to the points given in the constructor.
|
||||||
|
* \param[in] normals the normals to the given points.
|
||||||
|
*/
|
||||||
|
void perform(const std::vector<Base::Vector3f>& normals);
|
||||||
|
|
||||||
|
private:
|
||||||
|
const Points::PointKernel& myPoints;
|
||||||
|
Mesh::MeshObject& myMesh;
|
||||||
|
};
|
||||||
|
|
||||||
|
class MarchingCubesHoppe
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
MarchingCubesHoppe(const Points::PointKernel&, Mesh::MeshObject&);
|
||||||
|
/** \brief Set the number of k nearest neighbors to use for the normal estimation.
|
||||||
|
* \param[in] k the number of k-nearest neighbors
|
||||||
|
*/
|
||||||
|
void perform(int ksearch=5);
|
||||||
|
/** \brief Pass the normals to the points given in the constructor.
|
||||||
|
* \param[in] normals the normals to the given points.
|
||||||
|
*/
|
||||||
|
void perform(const std::vector<Base::Vector3f>& normals);
|
||||||
|
|
||||||
|
private:
|
||||||
|
const Points::PointKernel& myPoints;
|
||||||
|
Mesh::MeshObject& myMesh;
|
||||||
|
};
|
||||||
|
|
||||||
} // namespace Reen
|
} // namespace Reen
|
||||||
|
|
||||||
#endif // REEN_SURFACETRIANGULATION_H
|
#endif // REEN_SURFACETRIANGULATION_H
|
||||||
|
|
Loading…
Reference in New Issue
Block a user