+ add several surface reconstruction methods from pcl to Reen module
This commit is contained in:
parent
fd191b802e
commit
93b53f1662
|
@ -59,12 +59,24 @@ public:
|
|||
"Iterations=5,Correction=True,PatchFactor=1.0"
|
||||
);
|
||||
#if defined(HAVE_PCL_SURFACE)
|
||||
add_varargs_method("triangulate",&Module::triangulate,
|
||||
add_keyword_method("triangulate",&Module::triangulate,
|
||||
"triangulate(PointKernel,searchRadius[,mu=2.5])."
|
||||
);
|
||||
add_keyword_method("poissonReconstruction",&Module::poissonReconstruction,
|
||||
"poissonReconstruction(PointKernel)."
|
||||
);
|
||||
add_keyword_method("viewTriangulation",&Module::viewTriangulation,
|
||||
"viewTriangulation(PointKernel, width, height)."
|
||||
);
|
||||
add_keyword_method("gridProjection",&Module::gridProjection,
|
||||
"gridProjection(PointKernel)."
|
||||
);
|
||||
add_keyword_method("marchingCubesRBF",&Module::marchingCubesRBF,
|
||||
"marchingCubesRBF(PointKernel)."
|
||||
);
|
||||
add_keyword_method("marchingCubesHoppe",&Module::marchingCubesHoppe,
|
||||
"marchingCubesHoppe(PointKernel)."
|
||||
);
|
||||
#endif
|
||||
#if defined(HAVE_PCL_OPENNURBS)
|
||||
add_keyword_method("fitBSpline",&Module::fitBSpline,
|
||||
|
@ -199,47 +211,270 @@ private:
|
|||
}
|
||||
}
|
||||
#if defined(HAVE_PCL_SURFACE)
|
||||
Py::Object triangulate(const Py::Tuple& args)
|
||||
/*
|
||||
import ReverseEngineering as Reen
|
||||
import Points
|
||||
import Mesh
|
||||
import random
|
||||
|
||||
r=random.Random()
|
||||
|
||||
p=Points.Points()
|
||||
pts=[]
|
||||
for i in range(21):
|
||||
for j in range(21):
|
||||
pts.append(App.Vector(i,j,r.gauss(5,0.05)))
|
||||
|
||||
p.addPoints(pts)
|
||||
m=Reen.triangulate(Points=p,SearchRadius=2.2)
|
||||
Mesh.show(m)
|
||||
*/
|
||||
Py::Object triangulate(const Py::Tuple& args, const Py::Dict& kwds)
|
||||
{
|
||||
PyObject *pcObj;
|
||||
PyObject *pts;
|
||||
double searchRadius;
|
||||
PyObject *vec = 0;
|
||||
int ksearch=5;
|
||||
double mu=2.5;
|
||||
if (!PyArg_ParseTuple(args.ptr(), "O!d|d", &(Points::PointsPy::Type), &pcObj, &searchRadius, &mu))
|
||||
|
||||
static char* kwds_greedy[] = {"Points", "SearchRadius", "Mu", "KSearch",
|
||||
"Normals", NULL};
|
||||
if (!PyArg_ParseTupleAndKeywords(args.ptr(), kwds.ptr(), "O!d|diO", kwds_greedy,
|
||||
&(Points::PointsPy::Type), &pts,
|
||||
&searchRadius, &mu, &ksearch, &vec))
|
||||
throw Py::Exception();
|
||||
|
||||
Points::PointsPy* pPoints = static_cast<Points::PointsPy*>(pcObj);
|
||||
Points::PointKernel* points = pPoints->getPointKernelPtr();
|
||||
Points::PointKernel* points = static_cast<Points::PointsPy*>(pts)->getPointKernelPtr();
|
||||
|
||||
Mesh::MeshObject* mesh = new Mesh::MeshObject();
|
||||
SurfaceTriangulation tria(*points, *mesh);
|
||||
tria.perform(searchRadius, mu);
|
||||
tria.setMu(mu);
|
||||
tria.setSearchRadius(searchRadius);
|
||||
if (vec) {
|
||||
Py::Sequence list(vec);
|
||||
std::vector<Base::Vector3f> normals;
|
||||
normals.reserve(list.size());
|
||||
for (Py::Sequence::iterator it = list.begin(); it != list.end(); ++it) {
|
||||
Base::Vector3d v = Py::Vector(*it).toVector();
|
||||
normals.push_back(Base::convertTo<Base::Vector3f>(v));
|
||||
}
|
||||
tria.perform(normals);
|
||||
}
|
||||
else {
|
||||
tria.perform(ksearch);
|
||||
}
|
||||
|
||||
return Py::asObject(new Mesh::MeshPy(mesh));
|
||||
}
|
||||
Py::Object poissonReconstruction(const Py::Tuple& args, const Py::Dict& kwds)
|
||||
{
|
||||
PyObject *pcObj;
|
||||
PyObject *pts;
|
||||
PyObject *vec = 0;
|
||||
int ksearch=5;
|
||||
int octreeDepth=-1;
|
||||
int solverDivide=-1;
|
||||
double samplesPerNode=-1.0;
|
||||
|
||||
static char* kwds_poisson[] = {"Points", "KSearch", "OctreeDepth", "SolverDivide",
|
||||
"SamplesPerNode", NULL};
|
||||
if (!PyArg_ParseTupleAndKeywords(args.ptr(), kwds.ptr(), "O!|iiid", kwds_poisson,
|
||||
&(Points::PointsPy::Type), &pcObj,
|
||||
&ksearch, &octreeDepth, &solverDivide, &samplesPerNode))
|
||||
"SamplesPerNode", "Normals", NULL};
|
||||
if (!PyArg_ParseTupleAndKeywords(args.ptr(), kwds.ptr(), "O!|iiidO", kwds_poisson,
|
||||
&(Points::PointsPy::Type), &pts,
|
||||
&ksearch, &octreeDepth, &solverDivide, &samplesPerNode, &vec))
|
||||
throw Py::Exception();
|
||||
|
||||
Points::PointsPy* pPoints = static_cast<Points::PointsPy*>(pcObj);
|
||||
Points::PointKernel* points = pPoints->getPointKernelPtr();
|
||||
Points::PointKernel* points = static_cast<Points::PointsPy*>(pts)->getPointKernelPtr();
|
||||
|
||||
Mesh::MeshObject* mesh = new Mesh::MeshObject();
|
||||
Reen::PoissonReconstruction poisson(*points, *mesh);
|
||||
poisson.setDepth(octreeDepth);
|
||||
poisson.setSolverDivide(solverDivide);
|
||||
poisson.setSamplesPerNode(samplesPerNode);
|
||||
if (vec) {
|
||||
Py::Sequence list(vec);
|
||||
std::vector<Base::Vector3f> normals;
|
||||
normals.reserve(list.size());
|
||||
for (Py::Sequence::iterator it = list.begin(); it != list.end(); ++it) {
|
||||
Base::Vector3d v = Py::Vector(*it).toVector();
|
||||
normals.push_back(Base::convertTo<Base::Vector3f>(v));
|
||||
}
|
||||
poisson.perform(normals);
|
||||
}
|
||||
else {
|
||||
poisson.perform(ksearch);
|
||||
}
|
||||
|
||||
return Py::asObject(new Mesh::MeshPy(mesh));
|
||||
}
|
||||
/*
|
||||
import ReverseEngineering as Reen
|
||||
import Points
|
||||
import Mesh
|
||||
import random
|
||||
import math
|
||||
|
||||
r=random.Random()
|
||||
|
||||
p=Points.Points()
|
||||
pts=[]
|
||||
for i in range(21):
|
||||
for j in range(21):
|
||||
pts.append(App.Vector(i,j,r.random()))
|
||||
|
||||
p.addPoints(pts)
|
||||
m=Reen.viewTriangulation(p,21,21)
|
||||
Mesh.show(m)
|
||||
|
||||
def boxmueller():
|
||||
r1,r2=random.random(),random.random()
|
||||
return math.sqrt(-2*math.log(r1))*math.cos(2*math.pi*r2)
|
||||
|
||||
p=Points.Points()
|
||||
pts=[]
|
||||
for i in range(21):
|
||||
for j in range(21):
|
||||
pts.append(App.Vector(i,j,r.gauss(5,0.05)))
|
||||
|
||||
p.addPoints(pts)
|
||||
m=Reen.viewTriangulation(p,21,21)
|
||||
Mesh.show(m)
|
||||
*/
|
||||
Py::Object viewTriangulation(const Py::Tuple& args, const Py::Dict& kwds)
|
||||
{
|
||||
PyObject *pts;
|
||||
PyObject *vec = 0;
|
||||
int width;
|
||||
int height;
|
||||
|
||||
static char* kwds_greedy[] = {"Points", "Width", "Height", NULL};
|
||||
if (!PyArg_ParseTupleAndKeywords(args.ptr(), kwds.ptr(), "O!|ii", kwds_greedy,
|
||||
&(Points::PointsPy::Type), &pts,
|
||||
&width, &height))
|
||||
throw Py::Exception();
|
||||
|
||||
Points::PointKernel* points = static_cast<Points::PointsPy*>(pts)->getPointKernelPtr();
|
||||
|
||||
try {
|
||||
Mesh::MeshObject* mesh = new Mesh::MeshObject();
|
||||
ImageTriangulation view(width, height, *points, *mesh);
|
||||
view.perform();
|
||||
|
||||
return Py::asObject(new Mesh::MeshPy(mesh));
|
||||
}
|
||||
catch (const Base::Exception& e) {
|
||||
throw Py::RuntimeError(e.what());
|
||||
}
|
||||
}
|
||||
Py::Object gridProjection(const Py::Tuple& args, const Py::Dict& kwds)
|
||||
{
|
||||
PyObject *pts;
|
||||
PyObject *vec = 0;
|
||||
int ksearch=5;
|
||||
|
||||
static char* kwds_greedy[] = {"Points", "KSearch", "Normals", NULL};
|
||||
if (!PyArg_ParseTupleAndKeywords(args.ptr(), kwds.ptr(), "O!|iO", kwds_greedy,
|
||||
&(Points::PointsPy::Type), &pts,
|
||||
&ksearch, &vec))
|
||||
throw Py::Exception();
|
||||
|
||||
Points::PointKernel* points = static_cast<Points::PointsPy*>(pts)->getPointKernelPtr();
|
||||
|
||||
Mesh::MeshObject* mesh = new Mesh::MeshObject();
|
||||
GridReconstruction tria(*points, *mesh);
|
||||
if (vec) {
|
||||
Py::Sequence list(vec);
|
||||
std::vector<Base::Vector3f> normals;
|
||||
normals.reserve(list.size());
|
||||
for (Py::Sequence::iterator it = list.begin(); it != list.end(); ++it) {
|
||||
Base::Vector3d v = Py::Vector(*it).toVector();
|
||||
normals.push_back(Base::convertTo<Base::Vector3f>(v));
|
||||
}
|
||||
tria.perform(normals);
|
||||
}
|
||||
else {
|
||||
tria.perform(ksearch);
|
||||
}
|
||||
|
||||
return Py::asObject(new Mesh::MeshPy(mesh));
|
||||
}
|
||||
Py::Object marchingCubesRBF(const Py::Tuple& args, const Py::Dict& kwds)
|
||||
{
|
||||
PyObject *pts;
|
||||
PyObject *vec = 0;
|
||||
int ksearch=5;
|
||||
|
||||
static char* kwds_greedy[] = {"Points", "KSearch", "Normals", NULL};
|
||||
if (!PyArg_ParseTupleAndKeywords(args.ptr(), kwds.ptr(), "O!|iO", kwds_greedy,
|
||||
&(Points::PointsPy::Type), &pts,
|
||||
&ksearch, &vec))
|
||||
throw Py::Exception();
|
||||
|
||||
Points::PointKernel* points = static_cast<Points::PointsPy*>(pts)->getPointKernelPtr();
|
||||
|
||||
Mesh::MeshObject* mesh = new Mesh::MeshObject();
|
||||
MarchingCubesRBF tria(*points, *mesh);
|
||||
if (vec) {
|
||||
Py::Sequence list(vec);
|
||||
std::vector<Base::Vector3f> normals;
|
||||
normals.reserve(list.size());
|
||||
for (Py::Sequence::iterator it = list.begin(); it != list.end(); ++it) {
|
||||
Base::Vector3d v = Py::Vector(*it).toVector();
|
||||
normals.push_back(Base::convertTo<Base::Vector3f>(v));
|
||||
}
|
||||
tria.perform(normals);
|
||||
}
|
||||
else {
|
||||
tria.perform(ksearch);
|
||||
}
|
||||
|
||||
return Py::asObject(new Mesh::MeshPy(mesh));
|
||||
}
|
||||
/*
|
||||
import ReverseEngineering as Reen
|
||||
import Points
|
||||
import Mesh
|
||||
import random
|
||||
|
||||
r=random.Random()
|
||||
|
||||
p=Points.Points()
|
||||
pts=[]
|
||||
for i in range(21):
|
||||
for j in range(21):
|
||||
pts.append(App.Vector(i,j,r.gauss(5,0.05)))
|
||||
|
||||
p.addPoints(pts)
|
||||
m=Reen.marchingCubesHoppe(Points=p)
|
||||
Mesh.show(m)
|
||||
*/
|
||||
Py::Object marchingCubesHoppe(const Py::Tuple& args, const Py::Dict& kwds)
|
||||
{
|
||||
PyObject *pts;
|
||||
PyObject *vec = 0;
|
||||
int ksearch=5;
|
||||
|
||||
static char* kwds_greedy[] = {"Points", "KSearch", "Normals", NULL};
|
||||
if (!PyArg_ParseTupleAndKeywords(args.ptr(), kwds.ptr(), "O!|iO", kwds_greedy,
|
||||
&(Points::PointsPy::Type), &pts,
|
||||
&ksearch, &vec))
|
||||
throw Py::Exception();
|
||||
|
||||
Points::PointKernel* points = static_cast<Points::PointsPy*>(pts)->getPointKernelPtr();
|
||||
|
||||
Mesh::MeshObject* mesh = new Mesh::MeshObject();
|
||||
MarchingCubesHoppe tria(*points, *mesh);
|
||||
if (vec) {
|
||||
Py::Sequence list(vec);
|
||||
std::vector<Base::Vector3f> normals;
|
||||
normals.reserve(list.size());
|
||||
for (Py::Sequence::iterator it = list.begin(); it != list.end(); ++it) {
|
||||
Base::Vector3d v = Py::Vector(*it).toVector();
|
||||
normals.push_back(Base::convertTo<Base::Vector3f>(v));
|
||||
}
|
||||
tria.perform(normals);
|
||||
}
|
||||
else {
|
||||
tria.perform(ksearch);
|
||||
}
|
||||
|
||||
return Py::asObject(new Mesh::MeshPy(mesh));
|
||||
}
|
||||
|
@ -247,7 +482,7 @@ private:
|
|||
#if defined(HAVE_PCL_OPENNURBS)
|
||||
Py::Object fitBSpline(const Py::Tuple& args, const Py::Dict& kwds)
|
||||
{
|
||||
PyObject *pcObj;
|
||||
PyObject *pts;
|
||||
int degree = 2;
|
||||
int refinement = 4;
|
||||
int iterations = 10;
|
||||
|
@ -259,14 +494,13 @@ private:
|
|||
static char* kwds_approx[] = {"Points", "Degree", "Refinement", "Iterations",
|
||||
"InteriorSmoothness", "InteriorWeight", "BoundarySmoothness", "BoundaryWeight", NULL};
|
||||
if (!PyArg_ParseTupleAndKeywords(args.ptr(), kwds.ptr(), "O!|iiidddd", kwds_approx,
|
||||
&(Points::PointsPy::Type), &pcObj,
|
||||
&(Points::PointsPy::Type), &pts,
|
||||
°ree, &refinement, &iterations,
|
||||
&interiorSmoothness, &interiorWeight,
|
||||
&boundarySmoothness, &boundaryWeight))
|
||||
throw Py::Exception();
|
||||
|
||||
Points::PointsPy* pPoints = static_cast<Points::PointsPy*>(pcObj);
|
||||
Points::PointKernel* points = pPoints->getPointKernelPtr();
|
||||
Points::PointKernel* points = static_cast<Points::PointsPy*>(pts)->getPointKernelPtr();
|
||||
|
||||
BSplineFitting fit(points->getBasicPoints());
|
||||
fit.setOrder(degree+1);
|
||||
|
|
|
@ -26,8 +26,10 @@
|
|||
#include "SurfaceTriangulation.h"
|
||||
#include <Mod/Points/App/Points.h>
|
||||
#include <Mod/Mesh/App/Mesh.h>
|
||||
#include <Mod/Mesh/App/Core/Algorithm.h>
|
||||
#include <Mod/Mesh/App/Core/Elements.h>
|
||||
#include <Mod/Mesh/App/Core/MeshKernel.h>
|
||||
#include <Base/Exception.h>
|
||||
|
||||
// http://svn.pointclouds.org/pcl/tags/pcl-1.5.1/test/
|
||||
#if defined(HAVE_PCL_SURFACE)
|
||||
|
@ -42,6 +44,8 @@
|
|||
//#include <pcl/surface/convex_hull.h>
|
||||
//#include <pcl/surface/concave_hull.h>
|
||||
#include <pcl/surface/organized_fast_mesh.h>
|
||||
#include <pcl/surface/marching_cubes_rbf.h>
|
||||
#include <pcl/surface/marching_cubes_hoppe.h>
|
||||
#include <pcl/surface/ear_clipping.h>
|
||||
#include <pcl/common/common.h>
|
||||
#include <boost/random.hpp>
|
||||
|
@ -55,18 +59,25 @@ using namespace pcl::io;
|
|||
using namespace std;
|
||||
using namespace Reen;
|
||||
|
||||
// See
|
||||
// http://www.ics.uci.edu/~gopi/PAPERS/Euro00.pdf
|
||||
// http://www.ics.uci.edu/~gopi/PAPERS/CGMV.pdf
|
||||
SurfaceTriangulation::SurfaceTriangulation(const Points::PointKernel& pts, Mesh::MeshObject& mesh)
|
||||
: myPoints(pts), myMesh(mesh)
|
||||
: myPoints(pts)
|
||||
, myMesh(mesh)
|
||||
, mu(0)
|
||||
, searchRadius(0)
|
||||
{
|
||||
}
|
||||
|
||||
void SurfaceTriangulation::perform(double searchRadius, double mu)
|
||||
void SurfaceTriangulation::perform(int ksearch)
|
||||
{
|
||||
PointCloud<PointXYZ>::Ptr cloud (new PointCloud<PointXYZ>);
|
||||
PointCloud<PointNormal>::Ptr cloud_with_normals (new PointCloud<PointNormal>);
|
||||
search::KdTree<PointXYZ>::Ptr tree;
|
||||
search::KdTree<PointNormal>::Ptr tree2;
|
||||
|
||||
cloud->reserve(myPoints.size());
|
||||
for (Points::PointKernel::const_iterator it = myPoints.begin(); it != myPoints.end(); ++it) {
|
||||
cloud->push_back(PointXYZ(it->x, it->y, it->z));
|
||||
}
|
||||
|
@ -81,7 +92,7 @@ void SurfaceTriangulation::perform(double searchRadius, double mu)
|
|||
n.setInputCloud (cloud);
|
||||
//n.setIndices (indices[B);
|
||||
n.setSearchMethod (tree);
|
||||
n.setKSearch (20);
|
||||
n.setKSearch (ksearch);
|
||||
n.compute (*normals);
|
||||
|
||||
// Concatenate XYZ and normal information
|
||||
|
@ -104,6 +115,61 @@ void SurfaceTriangulation::perform(double searchRadius, double mu)
|
|||
gp3.setMinimumAngle(M_PI/18); // 10 degrees
|
||||
gp3.setMaximumAngle(2*M_PI/3); // 120 degrees
|
||||
gp3.setNormalConsistency(false);
|
||||
gp3.setConsistentVertexOrdering(true);
|
||||
|
||||
// Reconstruct
|
||||
PolygonMesh mesh;
|
||||
gp3.reconstruct (mesh);
|
||||
|
||||
MeshConversion::convert(mesh, myMesh);
|
||||
|
||||
// Additional vertex information
|
||||
//std::vector<int> parts = gp3.getPartIDs();
|
||||
//std::vector<int> states = gp3.getPointStates();
|
||||
}
|
||||
|
||||
void SurfaceTriangulation::perform(const std::vector<Base::Vector3f>& normals)
|
||||
{
|
||||
if (myPoints.size() != normals.size())
|
||||
throw Base::RuntimeError("Number of points doesn't match with number of normals");
|
||||
|
||||
PointCloud<PointNormal>::Ptr cloud_with_normals (new PointCloud<PointNormal>);
|
||||
search::KdTree<PointNormal>::Ptr tree;
|
||||
|
||||
cloud_with_normals->reserve(myPoints.size());
|
||||
std::size_t num_points = myPoints.size();
|
||||
const std::vector<Base::Vector3f>& points = myPoints.getBasicPoints();
|
||||
for (std::size_t index=0; index<num_points; index++) {
|
||||
const Base::Vector3f& p = points[index];
|
||||
const Base::Vector3f& n = normals[index];
|
||||
PointNormal pn;
|
||||
pn.x = p.x;
|
||||
pn.y = p.y;
|
||||
pn.z = p.z;
|
||||
pn.normal_x = n.x;
|
||||
pn.normal_y = n.y;
|
||||
pn.normal_z = n.z;
|
||||
cloud_with_normals->push_back(pn);
|
||||
}
|
||||
|
||||
// Create search tree
|
||||
tree.reset (new search::KdTree<PointNormal>);
|
||||
tree->setInputCloud (cloud_with_normals);
|
||||
|
||||
// Init objects
|
||||
GreedyProjectionTriangulation<PointNormal> gp3;
|
||||
|
||||
// Set parameters
|
||||
gp3.setInputCloud (cloud_with_normals);
|
||||
gp3.setSearchMethod (tree);
|
||||
gp3.setSearchRadius (searchRadius);
|
||||
gp3.setMu (mu);
|
||||
gp3.setMaximumNearestNeighbors (100);
|
||||
gp3.setMaximumSurfaceAngle(M_PI/4); // 45 degrees
|
||||
gp3.setMinimumAngle(M_PI/18); // 10 degrees
|
||||
gp3.setMaximumAngle(2*M_PI/3); // 120 degrees
|
||||
gp3.setNormalConsistency(true);
|
||||
gp3.setConsistentVertexOrdering(true);
|
||||
|
||||
// Reconstruct
|
||||
PolygonMesh mesh;
|
||||
|
@ -136,6 +202,7 @@ void PoissonReconstruction::perform(int ksearch)
|
|||
search::KdTree<PointXYZ>::Ptr tree;
|
||||
search::KdTree<PointNormal>::Ptr tree2;
|
||||
|
||||
cloud->reserve(myPoints.size());
|
||||
for (Points::PointKernel::const_iterator it = myPoints.begin(); it != myPoints.end(); ++it) {
|
||||
cloud->push_back(PointXYZ(it->x, it->y, it->z));
|
||||
}
|
||||
|
@ -180,6 +247,449 @@ void PoissonReconstruction::perform(int ksearch)
|
|||
MeshConversion::convert(mesh, myMesh);
|
||||
}
|
||||
|
||||
void PoissonReconstruction::perform(const std::vector<Base::Vector3f>& normals)
|
||||
{
|
||||
if (myPoints.size() != normals.size())
|
||||
throw Base::RuntimeError("Number of points doesn't match with number of normals");
|
||||
|
||||
PointCloud<PointNormal>::Ptr cloud_with_normals (new PointCloud<PointNormal>);
|
||||
search::KdTree<PointNormal>::Ptr tree;
|
||||
|
||||
cloud_with_normals->reserve(myPoints.size());
|
||||
std::size_t num_points = myPoints.size();
|
||||
const std::vector<Base::Vector3f>& points = myPoints.getBasicPoints();
|
||||
for (std::size_t index=0; index<num_points; index++) {
|
||||
const Base::Vector3f& p = points[index];
|
||||
const Base::Vector3f& n = normals[index];
|
||||
PointNormal pn;
|
||||
pn.x = p.x;
|
||||
pn.y = p.y;
|
||||
pn.z = p.z;
|
||||
pn.normal_x = n.x;
|
||||
pn.normal_y = n.y;
|
||||
pn.normal_z = n.z;
|
||||
cloud_with_normals->push_back(pn);
|
||||
}
|
||||
|
||||
// Create search tree
|
||||
tree.reset (new search::KdTree<PointNormal>);
|
||||
tree->setInputCloud (cloud_with_normals);
|
||||
|
||||
// Init objects
|
||||
Poisson<PointNormal> poisson;
|
||||
|
||||
// Set parameters
|
||||
poisson.setInputCloud (cloud_with_normals);
|
||||
poisson.setSearchMethod (tree);
|
||||
if (depth >= 1)
|
||||
poisson.setDepth(depth);
|
||||
if (solverDivide >= 1)
|
||||
poisson.setSolverDivide(solverDivide);
|
||||
if (samplesPerNode >= 1.0f)
|
||||
poisson.setSamplesPerNode(samplesPerNode);
|
||||
|
||||
// Reconstruct
|
||||
PolygonMesh mesh;
|
||||
poisson.reconstruct (mesh);
|
||||
|
||||
MeshConversion::convert(mesh, myMesh);
|
||||
}
|
||||
|
||||
// ----------------------------------------------------------------------------
|
||||
|
||||
GridReconstruction::GridReconstruction(const Points::PointKernel& pts, Mesh::MeshObject& mesh)
|
||||
: myPoints(pts)
|
||||
, myMesh(mesh)
|
||||
{
|
||||
}
|
||||
|
||||
void GridReconstruction::perform(int ksearch)
|
||||
{
|
||||
PointCloud<PointXYZ>::Ptr cloud (new PointCloud<PointXYZ>);
|
||||
PointCloud<PointNormal>::Ptr cloud_with_normals (new PointCloud<PointNormal>);
|
||||
search::KdTree<PointXYZ>::Ptr tree;
|
||||
search::KdTree<PointNormal>::Ptr tree2;
|
||||
|
||||
cloud->reserve(myPoints.size());
|
||||
for (Points::PointKernel::const_iterator it = myPoints.begin(); it != myPoints.end(); ++it) {
|
||||
cloud->push_back(PointXYZ(it->x, it->y, it->z));
|
||||
}
|
||||
|
||||
// Create search tree
|
||||
tree.reset (new search::KdTree<PointXYZ> (false));
|
||||
tree->setInputCloud (cloud);
|
||||
|
||||
// Normal estimation
|
||||
NormalEstimation<PointXYZ, Normal> n;
|
||||
PointCloud<Normal>::Ptr normals (new PointCloud<Normal> ());
|
||||
n.setInputCloud (cloud);
|
||||
//n.setIndices (indices[B);
|
||||
n.setSearchMethod (tree);
|
||||
n.setKSearch (ksearch);
|
||||
n.compute (*normals);
|
||||
|
||||
// Concatenate XYZ and normal information
|
||||
pcl::concatenateFields (*cloud, *normals, *cloud_with_normals);
|
||||
|
||||
// Create search tree
|
||||
tree2.reset (new search::KdTree<PointNormal>);
|
||||
tree2->setInputCloud (cloud_with_normals);
|
||||
|
||||
// Init objects
|
||||
GridProjection<PointNormal> grid;
|
||||
|
||||
// Set parameters
|
||||
grid.setResolution(0.005);
|
||||
grid.setPaddingSize(3);
|
||||
grid.setNearestNeighborNum(100);
|
||||
grid.setMaxBinarySearchLevel(10);
|
||||
grid.setInputCloud (cloud_with_normals);
|
||||
grid.setSearchMethod (tree2);
|
||||
|
||||
// Reconstruct
|
||||
PolygonMesh mesh;
|
||||
grid.reconstruct (mesh);
|
||||
|
||||
MeshConversion::convert(mesh, myMesh);
|
||||
}
|
||||
|
||||
void GridReconstruction::perform(const std::vector<Base::Vector3f>& normals)
|
||||
{
|
||||
if (myPoints.size() != normals.size())
|
||||
throw Base::RuntimeError("Number of points doesn't match with number of normals");
|
||||
|
||||
PointCloud<PointNormal>::Ptr cloud_with_normals (new PointCloud<PointNormal>);
|
||||
search::KdTree<PointNormal>::Ptr tree;
|
||||
|
||||
cloud_with_normals->reserve(myPoints.size());
|
||||
std::size_t num_points = myPoints.size();
|
||||
const std::vector<Base::Vector3f>& points = myPoints.getBasicPoints();
|
||||
for (std::size_t index=0; index<num_points; index++) {
|
||||
const Base::Vector3f& p = points[index];
|
||||
const Base::Vector3f& n = normals[index];
|
||||
PointNormal pn;
|
||||
pn.x = p.x;
|
||||
pn.y = p.y;
|
||||
pn.z = p.z;
|
||||
pn.normal_x = n.x;
|
||||
pn.normal_y = n.y;
|
||||
pn.normal_z = n.z;
|
||||
cloud_with_normals->push_back(pn);
|
||||
}
|
||||
|
||||
// Create search tree
|
||||
tree.reset (new search::KdTree<PointNormal>);
|
||||
tree->setInputCloud (cloud_with_normals);
|
||||
|
||||
// Init objects
|
||||
GridProjection<PointNormal> grid;
|
||||
|
||||
// Set parameters
|
||||
grid.setResolution(0.005);
|
||||
grid.setPaddingSize(3);
|
||||
grid.setNearestNeighborNum(100);
|
||||
grid.setMaxBinarySearchLevel(10);
|
||||
grid.setInputCloud (cloud_with_normals);
|
||||
grid.setSearchMethod (tree);
|
||||
|
||||
// Reconstruct
|
||||
PolygonMesh mesh;
|
||||
grid.reconstruct (mesh);
|
||||
|
||||
MeshConversion::convert(mesh, myMesh);
|
||||
}
|
||||
|
||||
// ----------------------------------------------------------------------------
|
||||
|
||||
ImageTriangulation::ImageTriangulation(int width, int height, const Points::PointKernel& pts, Mesh::MeshObject& mesh)
|
||||
: width(width)
|
||||
, height(height)
|
||||
, myPoints(pts)
|
||||
, myMesh(mesh)
|
||||
{
|
||||
}
|
||||
|
||||
void ImageTriangulation::perform()
|
||||
{
|
||||
if (myPoints.size() != width * height)
|
||||
throw Base::RuntimeError("Number of points doesn't match with given width and height");
|
||||
|
||||
//construct dataset
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_organized (new pcl::PointCloud<pcl::PointXYZ> ());
|
||||
cloud_organized->width = width;
|
||||
cloud_organized->height = height;
|
||||
cloud_organized->points.resize (cloud_organized->width * cloud_organized->height);
|
||||
|
||||
const std::vector<Base::Vector3f>& points = myPoints.getBasicPoints();
|
||||
|
||||
int npoints = 0;
|
||||
for (size_t i = 0; i < cloud_organized->height; i++) {
|
||||
for (size_t j = 0; j < cloud_organized->width; j++) {
|
||||
const Base::Vector3f& p = points[npoints];
|
||||
cloud_organized->points[npoints].x = p.x;
|
||||
cloud_organized->points[npoints].y = p.y;
|
||||
cloud_organized->points[npoints].z = p.z;
|
||||
npoints++;
|
||||
}
|
||||
}
|
||||
|
||||
OrganizedFastMesh<PointXYZ> ofm;
|
||||
|
||||
// Set parameters
|
||||
ofm.setInputCloud (cloud_organized);
|
||||
// This parameter is not yet implmented (pcl 1.7)
|
||||
ofm.setMaxEdgeLength (1.5);
|
||||
ofm.setTrianglePixelSize (1);
|
||||
ofm.setTriangulationType (OrganizedFastMesh<PointXYZ>::TRIANGLE_ADAPTIVE_CUT);
|
||||
ofm.storeShadowedFaces(true);
|
||||
|
||||
// Reconstruct
|
||||
PolygonMesh mesh;
|
||||
ofm.reconstruct (mesh);
|
||||
|
||||
MeshConversion::convert(mesh, myMesh);
|
||||
|
||||
// remove invalid points
|
||||
//
|
||||
MeshCore::MeshKernel& kernel = myMesh.getKernel();
|
||||
const MeshCore::MeshFacetArray& face = kernel.GetFacets();
|
||||
MeshCore::MeshAlgorithm meshAlg(kernel);
|
||||
meshAlg.SetPointFlag(MeshCore::MeshPoint::INVALID);
|
||||
std::vector<unsigned long> validPoints;
|
||||
validPoints.reserve(face.size()*3);
|
||||
for (MeshCore::MeshFacetArray::_TConstIterator it = face.begin(); it != face.end(); ++it) {
|
||||
validPoints.push_back(it->_aulPoints[0]);
|
||||
validPoints.push_back(it->_aulPoints[1]);
|
||||
validPoints.push_back(it->_aulPoints[2]);
|
||||
}
|
||||
|
||||
// remove duplicates
|
||||
std::sort(validPoints.begin(), validPoints.end());
|
||||
validPoints.erase(std::unique(validPoints.begin(), validPoints.end()), validPoints.end());
|
||||
meshAlg.ResetPointsFlag(validPoints, MeshCore::MeshPoint::INVALID);
|
||||
|
||||
unsigned long countInvalid = meshAlg.CountPointFlag(MeshCore::MeshPoint::INVALID);
|
||||
if (countInvalid > 0) {
|
||||
std::vector<unsigned long> invalidPoints;
|
||||
invalidPoints.reserve(countInvalid);
|
||||
meshAlg.GetPointsFlag(invalidPoints, MeshCore::MeshPoint::INVALID);
|
||||
|
||||
kernel.DeletePoints(invalidPoints);
|
||||
}
|
||||
}
|
||||
|
||||
// ----------------------------------------------------------------------------
|
||||
|
||||
Reen::MarchingCubesRBF::MarchingCubesRBF(const Points::PointKernel& pts, Mesh::MeshObject& mesh)
|
||||
: myPoints(pts)
|
||||
, myMesh(mesh)
|
||||
{
|
||||
}
|
||||
|
||||
void Reen::MarchingCubesRBF::perform(int ksearch)
|
||||
{
|
||||
PointCloud<PointXYZ>::Ptr cloud (new PointCloud<PointXYZ>);
|
||||
PointCloud<PointNormal>::Ptr cloud_with_normals (new PointCloud<PointNormal>);
|
||||
search::KdTree<PointXYZ>::Ptr tree;
|
||||
search::KdTree<PointNormal>::Ptr tree2;
|
||||
|
||||
cloud->reserve(myPoints.size());
|
||||
for (Points::PointKernel::const_iterator it = myPoints.begin(); it != myPoints.end(); ++it) {
|
||||
cloud->push_back(PointXYZ(it->x, it->y, it->z));
|
||||
}
|
||||
|
||||
// Create search tree
|
||||
tree.reset (new search::KdTree<PointXYZ> (false));
|
||||
tree->setInputCloud (cloud);
|
||||
|
||||
// Normal estimation
|
||||
NormalEstimation<PointXYZ, Normal> n;
|
||||
PointCloud<Normal>::Ptr normals (new PointCloud<Normal> ());
|
||||
n.setInputCloud (cloud);
|
||||
//n.setIndices (indices[B);
|
||||
n.setSearchMethod (tree);
|
||||
n.setKSearch (ksearch);
|
||||
n.compute (*normals);
|
||||
|
||||
// Concatenate XYZ and normal information
|
||||
pcl::concatenateFields (*cloud, *normals, *cloud_with_normals);
|
||||
|
||||
// Create search tree
|
||||
tree2.reset (new search::KdTree<PointNormal>);
|
||||
tree2->setInputCloud (cloud_with_normals);
|
||||
|
||||
// Init objects
|
||||
pcl::MarchingCubesRBF<PointNormal> rbf;
|
||||
|
||||
// Set parameters
|
||||
rbf.setIsoLevel (0);
|
||||
rbf.setGridResolution (60, 60, 60);
|
||||
rbf.setPercentageExtendGrid (0.1f);
|
||||
rbf.setOffSurfaceDisplacement (0.02f);
|
||||
|
||||
rbf.setInputCloud (cloud_with_normals);
|
||||
rbf.setSearchMethod (tree2);
|
||||
|
||||
// Reconstruct
|
||||
PolygonMesh mesh;
|
||||
rbf.reconstruct (mesh);
|
||||
|
||||
MeshConversion::convert(mesh, myMesh);
|
||||
}
|
||||
|
||||
void Reen::MarchingCubesRBF::perform(const std::vector<Base::Vector3f>& normals)
|
||||
{
|
||||
if (myPoints.size() != normals.size())
|
||||
throw Base::RuntimeError("Number of points doesn't match with number of normals");
|
||||
|
||||
PointCloud<PointNormal>::Ptr cloud_with_normals (new PointCloud<PointNormal>);
|
||||
search::KdTree<PointNormal>::Ptr tree;
|
||||
|
||||
cloud_with_normals->reserve(myPoints.size());
|
||||
std::size_t num_points = myPoints.size();
|
||||
const std::vector<Base::Vector3f>& points = myPoints.getBasicPoints();
|
||||
for (std::size_t index=0; index<num_points; index++) {
|
||||
const Base::Vector3f& p = points[index];
|
||||
const Base::Vector3f& n = normals[index];
|
||||
PointNormal pn;
|
||||
pn.x = p.x;
|
||||
pn.y = p.y;
|
||||
pn.z = p.z;
|
||||
pn.normal_x = n.x;
|
||||
pn.normal_y = n.y;
|
||||
pn.normal_z = n.z;
|
||||
cloud_with_normals->push_back(pn);
|
||||
}
|
||||
|
||||
// Create search tree
|
||||
tree.reset (new search::KdTree<PointNormal>);
|
||||
tree->setInputCloud (cloud_with_normals);
|
||||
|
||||
|
||||
// Init objects
|
||||
pcl::MarchingCubesRBF<PointNormal> rbf;
|
||||
|
||||
// Set parameters
|
||||
rbf.setIsoLevel (0);
|
||||
rbf.setGridResolution (60, 60, 60);
|
||||
rbf.setPercentageExtendGrid (0.1f);
|
||||
rbf.setOffSurfaceDisplacement (0.02f);
|
||||
|
||||
rbf.setInputCloud (cloud_with_normals);
|
||||
rbf.setSearchMethod (tree);
|
||||
|
||||
// Reconstruct
|
||||
PolygonMesh mesh;
|
||||
rbf.reconstruct (mesh);
|
||||
|
||||
MeshConversion::convert(mesh, myMesh);
|
||||
}
|
||||
|
||||
// ----------------------------------------------------------------------------
|
||||
|
||||
Reen::MarchingCubesHoppe::MarchingCubesHoppe(const Points::PointKernel& pts, Mesh::MeshObject& mesh)
|
||||
: myPoints(pts)
|
||||
, myMesh(mesh)
|
||||
{
|
||||
}
|
||||
|
||||
void Reen::MarchingCubesHoppe::perform(int ksearch)
|
||||
{
|
||||
PointCloud<PointXYZ>::Ptr cloud (new PointCloud<PointXYZ>);
|
||||
PointCloud<PointNormal>::Ptr cloud_with_normals (new PointCloud<PointNormal>);
|
||||
search::KdTree<PointXYZ>::Ptr tree;
|
||||
search::KdTree<PointNormal>::Ptr tree2;
|
||||
|
||||
cloud->reserve(myPoints.size());
|
||||
for (Points::PointKernel::const_iterator it = myPoints.begin(); it != myPoints.end(); ++it) {
|
||||
cloud->push_back(PointXYZ(it->x, it->y, it->z));
|
||||
}
|
||||
|
||||
// Create search tree
|
||||
tree.reset (new search::KdTree<PointXYZ> (false));
|
||||
tree->setInputCloud (cloud);
|
||||
|
||||
// Normal estimation
|
||||
NormalEstimation<PointXYZ, Normal> n;
|
||||
PointCloud<Normal>::Ptr normals (new PointCloud<Normal> ());
|
||||
n.setInputCloud (cloud);
|
||||
//n.setIndices (indices[B);
|
||||
n.setSearchMethod (tree);
|
||||
n.setKSearch (ksearch);
|
||||
n.compute (*normals);
|
||||
|
||||
// Concatenate XYZ and normal information
|
||||
pcl::concatenateFields (*cloud, *normals, *cloud_with_normals);
|
||||
|
||||
// Create search tree
|
||||
tree2.reset (new search::KdTree<PointNormal>);
|
||||
tree2->setInputCloud (cloud_with_normals);
|
||||
|
||||
// Init objects
|
||||
pcl::MarchingCubesHoppe<PointNormal> hoppe;
|
||||
|
||||
// Set parameters
|
||||
hoppe.setIsoLevel (0);
|
||||
hoppe.setGridResolution (60, 60, 60);
|
||||
hoppe.setPercentageExtendGrid (0.1f);
|
||||
|
||||
hoppe.setInputCloud (cloud_with_normals);
|
||||
hoppe.setSearchMethod (tree2);
|
||||
|
||||
// Reconstruct
|
||||
PolygonMesh mesh;
|
||||
hoppe.reconstruct (mesh);
|
||||
|
||||
MeshConversion::convert(mesh, myMesh);
|
||||
}
|
||||
|
||||
void Reen::MarchingCubesHoppe::perform(const std::vector<Base::Vector3f>& normals)
|
||||
{
|
||||
if (myPoints.size() != normals.size())
|
||||
throw Base::RuntimeError("Number of points doesn't match with number of normals");
|
||||
|
||||
PointCloud<PointNormal>::Ptr cloud_with_normals (new PointCloud<PointNormal>);
|
||||
search::KdTree<PointNormal>::Ptr tree;
|
||||
|
||||
cloud_with_normals->reserve(myPoints.size());
|
||||
std::size_t num_points = myPoints.size();
|
||||
const std::vector<Base::Vector3f>& points = myPoints.getBasicPoints();
|
||||
for (std::size_t index=0; index<num_points; index++) {
|
||||
const Base::Vector3f& p = points[index];
|
||||
const Base::Vector3f& n = normals[index];
|
||||
PointNormal pn;
|
||||
pn.x = p.x;
|
||||
pn.y = p.y;
|
||||
pn.z = p.z;
|
||||
pn.normal_x = n.x;
|
||||
pn.normal_y = n.y;
|
||||
pn.normal_z = n.z;
|
||||
cloud_with_normals->push_back(pn);
|
||||
}
|
||||
|
||||
// Create search tree
|
||||
tree.reset (new search::KdTree<PointNormal>);
|
||||
tree->setInputCloud (cloud_with_normals);
|
||||
|
||||
|
||||
// Init objects
|
||||
pcl::MarchingCubesHoppe<PointNormal> hoppe;
|
||||
|
||||
// Set parameters
|
||||
hoppe.setIsoLevel (0);
|
||||
hoppe.setGridResolution (60, 60, 60);
|
||||
hoppe.setPercentageExtendGrid (0.1f);
|
||||
|
||||
hoppe.setInputCloud (cloud_with_normals);
|
||||
hoppe.setSearchMethod (tree);
|
||||
|
||||
// Reconstruct
|
||||
PolygonMesh mesh;
|
||||
hoppe.reconstruct (mesh);
|
||||
|
||||
MeshConversion::convert(mesh, myMesh);
|
||||
}
|
||||
|
||||
// ----------------------------------------------------------------------------
|
||||
|
||||
void MeshConversion::convert(const pcl::PolygonMesh& pclMesh, Mesh::MeshObject& meshObject)
|
||||
|
|
|
@ -24,6 +24,9 @@
|
|||
#ifndef REEN_SURFACETRIANGULATION_H
|
||||
#define REEN_SURFACETRIANGULATION_H
|
||||
|
||||
#include <Base/Vector3D.h>
|
||||
#include <vector>
|
||||
|
||||
namespace Points {class PointKernel;}
|
||||
namespace Mesh {class MeshObject;}
|
||||
namespace pcl {struct PolygonMesh;}
|
||||
|
@ -40,18 +43,48 @@ class SurfaceTriangulation
|
|||
{
|
||||
public:
|
||||
SurfaceTriangulation(const Points::PointKernel&, Mesh::MeshObject&);
|
||||
void perform(double searchRadius, double mu);
|
||||
/** \brief Set the number of k nearest neighbors to use for the normal estimation.
|
||||
* \param[in] k the number of k-nearest neighbors
|
||||
*/
|
||||
void perform(int ksearch);
|
||||
/** \brief Pass the normals to the points given in the constructor.
|
||||
* \param[in] normals the normals to the given points.
|
||||
*/
|
||||
void perform(const std::vector<Base::Vector3f>& normals);
|
||||
|
||||
/** \brief Set the multiplier of the nearest neighbor distance to obtain the final search radius for each point
|
||||
* (this will make the algorithm adapt to different point densities in the cloud).
|
||||
* \param[in] mu the multiplier
|
||||
*/
|
||||
inline void
|
||||
setMu (double mu) { this->mu = mu; }
|
||||
|
||||
/** \brief Set the sphere radius that is to be used for determining the k-nearest neighbors used for triangulating.
|
||||
* \param[in] radius the sphere radius that is to contain all k-nearest neighbors
|
||||
* \note This distance limits the maximum edge length!
|
||||
*/
|
||||
inline void
|
||||
setSearchRadius (double radius) { this->searchRadius = radius; }
|
||||
|
||||
private:
|
||||
const Points::PointKernel& myPoints;
|
||||
Mesh::MeshObject& myMesh;
|
||||
double mu;
|
||||
double searchRadius;
|
||||
};
|
||||
|
||||
class PoissonReconstruction
|
||||
{
|
||||
public:
|
||||
PoissonReconstruction(const Points::PointKernel&, Mesh::MeshObject&);
|
||||
/** \brief Set the number of k nearest neighbors to use for the normal estimation.
|
||||
* \param[in] k the number of k-nearest neighbors
|
||||
*/
|
||||
void perform(int ksearch=5);
|
||||
/** \brief Pass the normals to the points given in the constructor.
|
||||
* \param[in] normals the normals to the given points.
|
||||
*/
|
||||
void perform(const std::vector<Base::Vector3f>& normals);
|
||||
|
||||
/** \brief Set the maximum depth of the tree that will be used for surface reconstruction.
|
||||
* \note Running at depth d corresponds to solving on a voxel grid whose resolution is no larger than
|
||||
|
@ -88,6 +121,72 @@ private:
|
|||
float samplesPerNode;
|
||||
};
|
||||
|
||||
class GridReconstruction
|
||||
{
|
||||
public:
|
||||
GridReconstruction(const Points::PointKernel&, Mesh::MeshObject&);
|
||||
/** \brief Set the number of k nearest neighbors to use for the normal estimation.
|
||||
* \param[in] k the number of k-nearest neighbors
|
||||
*/
|
||||
void perform(int ksearch=5);
|
||||
/** \brief Pass the normals to the points given in the constructor.
|
||||
* \param[in] normals the normals to the given points.
|
||||
*/
|
||||
void perform(const std::vector<Base::Vector3f>& normals);
|
||||
|
||||
private:
|
||||
const Points::PointKernel& myPoints;
|
||||
Mesh::MeshObject& myMesh;
|
||||
};
|
||||
|
||||
class ImageTriangulation
|
||||
{
|
||||
public:
|
||||
ImageTriangulation(int width, int height, const Points::PointKernel&, Mesh::MeshObject&);
|
||||
void perform();
|
||||
|
||||
private:
|
||||
int width, height;
|
||||
const Points::PointKernel& myPoints;
|
||||
Mesh::MeshObject& myMesh;
|
||||
};
|
||||
|
||||
class MarchingCubesRBF
|
||||
{
|
||||
public:
|
||||
MarchingCubesRBF(const Points::PointKernel&, Mesh::MeshObject&);
|
||||
/** \brief Set the number of k nearest neighbors to use for the normal estimation.
|
||||
* \param[in] k the number of k-nearest neighbors
|
||||
*/
|
||||
void perform(int ksearch=5);
|
||||
/** \brief Pass the normals to the points given in the constructor.
|
||||
* \param[in] normals the normals to the given points.
|
||||
*/
|
||||
void perform(const std::vector<Base::Vector3f>& normals);
|
||||
|
||||
private:
|
||||
const Points::PointKernel& myPoints;
|
||||
Mesh::MeshObject& myMesh;
|
||||
};
|
||||
|
||||
class MarchingCubesHoppe
|
||||
{
|
||||
public:
|
||||
MarchingCubesHoppe(const Points::PointKernel&, Mesh::MeshObject&);
|
||||
/** \brief Set the number of k nearest neighbors to use for the normal estimation.
|
||||
* \param[in] k the number of k-nearest neighbors
|
||||
*/
|
||||
void perform(int ksearch=5);
|
||||
/** \brief Pass the normals to the points given in the constructor.
|
||||
* \param[in] normals the normals to the given points.
|
||||
*/
|
||||
void perform(const std::vector<Base::Vector3f>& normals);
|
||||
|
||||
private:
|
||||
const Points::PointKernel& myPoints;
|
||||
Mesh::MeshObject& myMesh;
|
||||
};
|
||||
|
||||
} // namespace Reen
|
||||
|
||||
#endif // REEN_SURFACETRIANGULATION_H
|
||||
|
|
Loading…
Reference in New Issue
Block a user