implement Circle2d

This commit is contained in:
wmayer 2016-11-24 23:45:05 +01:00
parent d50e3b2a53
commit a0fc75d619
10 changed files with 145 additions and 268 deletions

View File

@ -15,7 +15,7 @@
<UserDocu>Describes a circle in 3D space <UserDocu>Describes a circle in 3D space
To create a circle there are several ways: To create a circle there are several ways:
Part.Circle() Part.Circle()
Creates a default circle with center (0,0,0) and radius 1 Creates a default circle with center (0,0) and radius 1
Part.Circle(Circle) Part.Circle(Circle)
Creates a copy of the given circle Creates a copy of the given circle
@ -23,44 +23,18 @@ Part.Circle(Circle)
Part.Circle(Circle, Distance) Part.Circle(Circle, Distance)
Creates a circle parallel to given circle at a certain distance Creates a circle parallel to given circle at a certain distance
Part.Circle(Center,Normal,Radius) Part.Circle(Center,Radius)
Creates a circle defined by center, normal direction and radius Creates a circle defined by center and radius
Part.Circle(Point1,Point2,Point3) Part.Circle(Point1,Point2,Point3)
Creates a circle defined by three non-linear points Creates a circle defined by three non-linear points
</UserDocu> </UserDocu>
</Documentation> </Documentation>
<!--
<Attribute Name="Radius" ReadOnly="false"> <Attribute Name="Radius" ReadOnly="false">
<Documentation> <Documentation>
<UserDocu>The radius of the circle.</UserDocu> <UserDocu>The radius of the circle.</UserDocu>
</Documentation> </Documentation>
<Parameter Name="Radius" Type="Float"/> <Parameter Name="Radius" Type="Float"/>
</Attribute> </Attribute>
<Attribute Name="Center" ReadOnly="false">
<Documentation>
<UserDocu>Center of the circle.</UserDocu>
</Documentation>
<Parameter Name="Center" Type="Object"/>
</Attribute>
<Attribute Name="Axis" ReadOnly="false">
<Documentation>
<UserDocu>The axis direction of the circle</UserDocu>
</Documentation>
<Parameter Name="Axis" Type="Object"/>
</Attribute>
<Attribute Name="XAxis" ReadOnly="false">
<Documentation>
<UserDocu>The X axis direction of the circle</UserDocu>
</Documentation>
<Parameter Name="XAxis" Type="Object"/>
</Attribute>
<Attribute Name="YAxis" ReadOnly="false">
<Documentation>
<UserDocu>The Y axis direction of the circle</UserDocu>
</Documentation>
<Parameter Name="YAxis" Type="Object"/>
</Attribute>
-->
</PythonExport> </PythonExport>
</GenerateModel> </GenerateModel>

View File

@ -23,9 +23,9 @@
#include "PreCompiled.h" #include "PreCompiled.h"
#ifndef _PreComp_ #ifndef _PreComp_
# include <gp_Circ.hxx> # include <gp_Circ2d.hxx>
# include <Geom_Circle.hxx> # include <Geom2d_Circle.hxx>
# include <GC_MakeCircle.hxx> # include <GCE2d_MakeCircle.hxx>
#endif #endif
#include <Mod/Part/App/OCCError.h> #include <Mod/Part/App/OCCError.h>
@ -33,7 +33,6 @@
#include <Mod/Part/App/Geom2d/Circle2dPy.cpp> #include <Mod/Part/App/Geom2d/Circle2dPy.cpp>
#include <Base/GeometryPyCXX.h> #include <Base/GeometryPyCXX.h>
#include <Base/VectorPy.h>
using namespace Part; using namespace Part;
@ -42,81 +41,53 @@ extern const char* gce_ErrorStatusText(gce_ErrorType et);
// returns a string which represents the object e.g. when printed in python // returns a string which represents the object e.g. when printed in python
std::string Circle2dPy::representation(void) const std::string Circle2dPy::representation(void) const
{ {
#if 0 return "<Circle2d object>";
Handle_Geom_Circle circle = Handle_Geom_Circle::DownCast(getGeomCirclePtr()->handle());
gp_Ax1 axis = circle->Axis();
gp_Dir dir = axis.Direction();
gp_Pnt loc = axis.Location();
Standard_Real fRad = circle->Radius();
std::stringstream str;
str << "Circle (";
str << "Radius : " << fRad << ", ";
str << "Position : (" << loc.X() << ", "<< loc.Y() << ", "<< loc.Z() << "), ";
str << "Direction : (" << dir.X() << ", "<< dir.Y() << ", "<< dir.Z() << ")";
str << ")";
return str.str();
#else
return "";
#endif
} }
PyObject *Circle2dPy::PyMake(struct _typeobject *, PyObject *, PyObject *) // Python wrapper PyObject *Circle2dPy::PyMake(struct _typeobject *, PyObject *, PyObject *) // Python wrapper
{ {
#if 1
return 0;
#else
// create a new instance of Circle2dPy and the Twin object // create a new instance of Circle2dPy and the Twin object
Handle_Geom_Circle circle = new Geom_Circle(gp_Circ()); return new Circle2dPy(new Geom2dCircle());
return new Circle2dPy(new GeomCircle(circle));
#endif
} }
// constructor method // constructor method
int Circle2dPy::PyInit(PyObject* args, PyObject* kwds) int Circle2dPy::PyInit(PyObject* args, PyObject* kwds)
{ {
return 0;
#if 0
// circle and distance for offset // circle and distance for offset
PyObject *pCirc; PyObject *pCirc;
double dist; double dist;
static char* keywords_cd[] = {"Circle","Distance",NULL}; static char* keywords_cd[] = {"Circle","Distance",NULL};
if (PyArg_ParseTupleAndKeywords(args, kwds, "O!d", keywords_cd, &(Circle2dPy::Type), &pCirc, &dist)) { if (PyArg_ParseTupleAndKeywords(args, kwds, "O!d", keywords_cd, &(Circle2dPy::Type), &pCirc, &dist)) {
Circle2dPy* pcCircle = static_cast<Circle2dPy*>(pCirc); Circle2dPy* pcCircle = static_cast<Circle2dPy*>(pCirc);
Handle_Geom_Circle circle = Handle_Geom_Circle::DownCast Handle_Geom2d_Circle circle = Handle_Geom2d_Circle::DownCast
(pcCircle->getGeomCirclePtr()->handle()); (pcCircle->getGeom2dCirclePtr()->handle());
GC_MakeCircle mc(circle->Circ(), dist); GCE2d_MakeCircle mc(circle->Circ2d(), dist);
if (!mc.IsDone()) { if (!mc.IsDone()) {
PyErr_SetString(PartExceptionOCCError, gce_ErrorStatusText(mc.Status())); PyErr_SetString(PartExceptionOCCError, gce_ErrorStatusText(mc.Status()));
return -1; return -1;
} }
Handle_Geom_Circle circ = Handle_Geom_Circle::DownCast(getGeomCirclePtr()->handle()); Handle_Geom2d_Circle circ = Handle_Geom2d_Circle::DownCast(getGeom2dCirclePtr()->handle());
circ->SetCirc(mc.Value()->Circ()); circ->SetCirc2d(mc.Value()->Circ2d());
return 0; return 0;
} }
// center, normal and radius // center and radius
PyObject *pV1, *pV2, *pV3; PyObject *pV1, *pV2, *pV3;
static char* keywords_cnr[] = {"Center","Normal","Radius",NULL}; static char* keywords_cnr[] = {"Center","Radius",NULL};
PyErr_Clear(); PyErr_Clear();
if (PyArg_ParseTupleAndKeywords(args, kwds, "O!O!d", keywords_cnr, if (PyArg_ParseTupleAndKeywords(args, kwds, "O!d", keywords_cnr,
&(Base::VectorPy::Type), &pV1, Base::Vector2dPy::type_object(), &pV1,
&(Base::VectorPy::Type), &pV2,
&dist)) { &dist)) {
Base::Vector3d v1 = static_cast<Base::VectorPy*>(pV1)->value(); Base::Vector2d v1 = Py::Vector2d(pV1).getCxxObject()->value();
Base::Vector3d v2 = static_cast<Base::VectorPy*>(pV2)->value(); GCE2d_MakeCircle mc(gp_Pnt2d(v1.x,v1.y), dist);
GC_MakeCircle mc(gp_Pnt(v1.x,v1.y,v1.z),
gp_Dir(v2.x,v2.y,v2.z),
dist);
if (!mc.IsDone()) { if (!mc.IsDone()) {
PyErr_SetString(PartExceptionOCCError, gce_ErrorStatusText(mc.Status())); PyErr_SetString(PartExceptionOCCError, gce_ErrorStatusText(mc.Status()));
return -1; return -1;
} }
Handle_Geom_Circle circle = Handle_Geom_Circle::DownCast(getGeomCirclePtr()->handle()); Handle_Geom2d_Circle circle = Handle_Geom2d_Circle::DownCast(getGeom2dCirclePtr()->handle());
circle->SetCirc(mc.Value()->Circ()); circle->SetCirc2d(mc.Value()->Circ2d());
return 0; return 0;
} }
@ -124,33 +95,33 @@ int Circle2dPy::PyInit(PyObject* args, PyObject* kwds)
PyErr_Clear(); PyErr_Clear();
if (PyArg_ParseTupleAndKeywords(args, kwds, "O!", keywords_c, &(Circle2dPy::Type), &pCirc)) { if (PyArg_ParseTupleAndKeywords(args, kwds, "O!", keywords_c, &(Circle2dPy::Type), &pCirc)) {
Circle2dPy* pcCircle = static_cast<Circle2dPy*>(pCirc); Circle2dPy* pcCircle = static_cast<Circle2dPy*>(pCirc);
Handle_Geom_Circle circ1 = Handle_Geom_Circle::DownCast Handle_Geom2d_Circle circ1 = Handle_Geom2d_Circle::DownCast
(pcCircle->getGeomCirclePtr()->handle()); (pcCircle->getGeom2dCirclePtr()->handle());
Handle_Geom_Circle circ2 = Handle_Geom_Circle::DownCast Handle_Geom2d_Circle circ2 = Handle_Geom2d_Circle::DownCast
(this->getGeomCirclePtr()->handle()); (this->getGeom2dCirclePtr()->handle());
circ2->SetCirc(circ1->Circ()); circ2->SetCirc2d(circ1->Circ2d());
return 0; return 0;
} }
static char* keywords_ppp[] = {"Point1","Point2","Point3",NULL}; static char* keywords_ppp[] = {"Point1","Point2","Point3",NULL};
PyErr_Clear(); PyErr_Clear();
if (PyArg_ParseTupleAndKeywords(args, kwds, "O!O!O!", keywords_ppp, if (PyArg_ParseTupleAndKeywords(args, kwds, "O!O!O!", keywords_ppp,
&(Base::VectorPy::Type), &pV1, Base::Vector2dPy::type_object(), &pV1,
&(Base::VectorPy::Type), &pV2, Base::Vector2dPy::type_object(), &pV2,
&(Base::VectorPy::Type), &pV3)) { Base::Vector2dPy::type_object(), &pV3)) {
Base::Vector3d v1 = static_cast<Base::VectorPy*>(pV1)->value(); Base::Vector2d v1 = Py::Vector2d(pV1).getCxxObject()->value();
Base::Vector3d v2 = static_cast<Base::VectorPy*>(pV2)->value(); Base::Vector2d v2 = Py::Vector2d(pV2).getCxxObject()->value();
Base::Vector3d v3 = static_cast<Base::VectorPy*>(pV3)->value(); Base::Vector2d v3 = Py::Vector2d(pV3).getCxxObject()->value();
GC_MakeCircle mc(gp_Pnt(v1.x,v1.y,v1.z), GCE2d_MakeCircle mc(gp_Pnt2d(v1.x,v1.y),
gp_Pnt(v2.x,v2.y,v2.z), gp_Pnt2d(v2.x,v2.y),
gp_Pnt(v3.x,v3.y,v3.z)); gp_Pnt2d(v3.x,v3.y));
if (!mc.IsDone()) { if (!mc.IsDone()) {
PyErr_SetString(PartExceptionOCCError, gce_ErrorStatusText(mc.Status())); PyErr_SetString(PartExceptionOCCError, gce_ErrorStatusText(mc.Status()));
return -1; return -1;
} }
Handle_Geom_Circle circle = Handle_Geom_Circle::DownCast(getGeomCirclePtr()->handle()); Handle_Geom2d_Circle circle = Handle_Geom2d_Circle::DownCast(getGeom2dCirclePtr()->handle());
circle->SetCirc(mc.Value()->Circ()); circle->SetCirc2d(mc.Value()->Circ2d());
return 0; return 0;
} }
@ -158,7 +129,7 @@ int Circle2dPy::PyInit(PyObject* args, PyObject* kwds)
static char* keywords_n[] = {NULL}; static char* keywords_n[] = {NULL};
PyErr_Clear(); PyErr_Clear();
if (PyArg_ParseTupleAndKeywords(args, kwds, "", keywords_n)) { if (PyArg_ParseTupleAndKeywords(args, kwds, "", keywords_n)) {
Handle_Geom_Circle circle = Handle_Geom_Circle::DownCast(getGeomCirclePtr()->handle()); Handle_Geom2d_Circle circle = Handle_Geom2d_Circle::DownCast(getGeom2dCirclePtr()->handle());
circle->SetRadius(1.0); circle->SetRadius(1.0);
return 0; return 0;
} }
@ -167,156 +138,23 @@ int Circle2dPy::PyInit(PyObject* args, PyObject* kwds)
"-- empty parameter list\n" "-- empty parameter list\n"
"-- Circle\n" "-- Circle\n"
"-- Circle, Distance\n" "-- Circle, Distance\n"
"-- Center, Normal, Radius\n" "-- Center, Radius\n"
"-- Point1, Point2, Point3"); "-- Point1, Point2, Point3");
return -1; return -1;
#endif
} }
#if 0
Py::Float Circle2dPy::getRadius(void) const Py::Float Circle2dPy::getRadius(void) const
{ {
Handle_Geom_Circle circle = Handle_Geom_Circle::DownCast(getGeomCirclePtr()->handle()); Handle_Geom2d_Circle circle = Handle_Geom2d_Circle::DownCast(getGeom2dCirclePtr()->handle());
return Py::Float(circle->Radius()); return Py::Float(circle->Radius());
} }
void Circle2dPy::setRadius(Py::Float arg) void Circle2dPy::setRadius(Py::Float arg)
{ {
Handle_Geom_Circle circle = Handle_Geom_Circle::DownCast(getGeomCirclePtr()->handle()); Handle_Geom2d_Circle circle = Handle_Geom2d_Circle::DownCast(getGeom2dCirclePtr()->handle());
circle->SetRadius((double)arg); circle->SetRadius((double)arg);
} }
Py::Object Circle2dPy::getCenter(void) const
{
Handle_Geom_Circle circle = Handle_Geom_Circle::DownCast(getGeomCirclePtr()->handle());
gp_Pnt loc = circle->Location();
return Py::Vector(Base::Vector3d(loc.X(), loc.Y(), loc.Z()));
}
void Circle2dPy::setCenter(Py::Object arg)
{
PyObject* p = arg.ptr();
if (PyObject_TypeCheck(p, &(Base::VectorPy::Type))) {
Base::Vector3d loc = static_cast<Base::VectorPy*>(p)->value();
getGeomCirclePtr()->setCenter(loc);
}
else if (PyObject_TypeCheck(p, &PyTuple_Type)) {
Base::Vector3d loc = Base::getVectorFromTuple<double>(p);
getGeomCirclePtr()->setCenter(loc);
} else {
std::string error = std::string("type must be 'Vector', not ");
error += p->ob_type->tp_name;
throw Py::TypeError(error);
}
}
Py::Object Circle2dPy::getAxis(void) const
{
Handle_Geom_Circle circle = Handle_Geom_Circle::DownCast(getGeomCirclePtr()->handle());
gp_Ax1 axis = circle->Axis();
gp_Dir dir = axis.Direction();
return Py::Vector(Base::Vector3d(dir.X(), dir.Y(), dir.Z()));
}
void Circle2dPy::setAxis(Py::Object arg)
{
PyObject* p = arg.ptr();
Base::Vector3d val;
if (PyObject_TypeCheck(p, &(Base::VectorPy::Type))) {
val = static_cast<Base::VectorPy*>(p)->value();
}
else if (PyTuple_Check(p)) {
val = Base::getVectorFromTuple<double>(p);
}
else {
std::string error = std::string("type must be 'Vector', not ");
error += p->ob_type->tp_name;
throw Py::TypeError(error);
}
Handle_Geom_Circle circle = Handle_Geom_Circle::DownCast(getGeomCirclePtr()->handle());
try {
gp_Ax1 axis;
axis.SetLocation(circle->Location());
axis.SetDirection(gp_Dir(val.x, val.y, val.z));
circle->SetAxis(axis);
}
catch (Standard_Failure) {
throw Py::Exception("cannot set axis");
}
}
Py::Object Circle2dPy::getXAxis(void) const
{
Handle_Geom_Circle circle = Handle_Geom_Circle::DownCast(getGeomCirclePtr()->handle());
gp_Ax1 axis = circle->XAxis();
gp_Dir dir = axis.Direction();
return Py::Vector(Base::Vector3d(dir.X(), dir.Y(), dir.Z()));
}
void Circle2dPy::setXAxis(Py::Object arg)
{
PyObject* p = arg.ptr();
Base::Vector3d val;
if (PyObject_TypeCheck(p, &(Base::VectorPy::Type))) {
val = static_cast<Base::VectorPy*>(p)->value();
}
else if (PyTuple_Check(p)) {
val = Base::getVectorFromTuple<double>(p);
}
else {
std::string error = std::string("type must be 'Vector', not ");
error += p->ob_type->tp_name;
throw Py::TypeError(error);
}
Handle_Geom_Circle circle = Handle_Geom_Circle::DownCast(getGeomCirclePtr()->handle());
try {
gp_Ax2 pos;
pos = circle->Position();
pos.SetXDirection(gp_Dir(val.x, val.y, val.z));
circle->SetPosition(pos);
}
catch (Standard_Failure) {
throw Py::Exception("cannot set X axis");
}
}
Py::Object Circle2dPy::getYAxis(void) const
{
Handle_Geom_Circle circle = Handle_Geom_Circle::DownCast(getGeomCirclePtr()->handle());
gp_Ax1 axis = circle->YAxis();
gp_Dir dir = axis.Direction();
return Py::Vector(Base::Vector3d(dir.X(), dir.Y(), dir.Z()));
}
void Circle2dPy::setYAxis(Py::Object arg)
{
PyObject* p = arg.ptr();
Base::Vector3d val;
if (PyObject_TypeCheck(p, &(Base::VectorPy::Type))) {
val = static_cast<Base::VectorPy*>(p)->value();
}
else if (PyTuple_Check(p)) {
val = Base::getVectorFromTuple<double>(p);
}
else {
std::string error = std::string("type must be 'Vector', not ");
error += p->ob_type->tp_name;
throw Py::TypeError(error);
}
Handle_Geom_Circle circle = Handle_Geom_Circle::DownCast(getGeomCirclePtr()->handle());
try {
gp_Ax2 pos;
pos = circle->Position();
pos.SetYDirection(gp_Dir(val.x, val.y, val.z));
circle->SetPosition(pos);
}
catch (Standard_Failure) {
throw Py::Exception("cannot set Y axis");
}
}
#endif
PyObject *Circle2dPy::getCustomAttributes(const char* ) const PyObject *Circle2dPy::getCustomAttributes(const char* ) const
{ {
return 0; return 0;

View File

@ -15,11 +15,23 @@
<UserDocu>Describes an abstract conic in 2d space <UserDocu>Describes an abstract conic in 2d space
</UserDocu> </UserDocu>
</Documentation> </Documentation>
<Attribute Name="Center" ReadOnly="false"> <Attribute Name="Location" ReadOnly="false">
<Documentation> <Documentation>
<UserDocu>Center of the conic.</UserDocu> <UserDocu>Location of the conic.</UserDocu>
</Documentation> </Documentation>
<Parameter Name="Center" Type="Object"/> <Parameter Name="Location" Type="Object"/>
</Attribute>
<Attribute Name="Eccentricity" ReadOnly="true">
<Documentation>
<UserDocu>
returns the eccentricity value of the conic e.
e = 0 for a circle
0 &lt; e &lt; 1 for an ellipse (e = 0 if MajorRadius = MinorRadius)
e > 1 for a hyperbola
e = 1 for a parabola
</UserDocu>
</Documentation>
<Parameter Name="Eccentricity" Type="Float"/>
</Attribute> </Attribute>
<Attribute Name="XAxis" ReadOnly="false"> <Attribute Name="XAxis" ReadOnly="false">
<Documentation> <Documentation>

View File

@ -54,9 +54,9 @@ int Conic2dPy::PyInit(PyObject* args, PyObject* kwds)
return 0; return 0;
} }
Py::Object Conic2dPy::getCenter(void) const Py::Object Conic2dPy::getLocation(void) const
{ {
Base::Vector2d loc = getGeom2dConicPtr()->getCenter(); Base::Vector2d loc = getGeom2dConicPtr()->getLocation();
Py::Module module("__FreeCADBase__"); Py::Module module("__FreeCADBase__");
Py::Callable method(module.getAttr("Vector2d")); Py::Callable method(module.getAttr("Vector2d"));
@ -66,10 +66,16 @@ Py::Object Conic2dPy::getCenter(void) const
return method.apply(arg); return method.apply(arg);
} }
void Conic2dPy::setCenter(Py::Object arg) void Conic2dPy::setLocation(Py::Object arg)
{ {
Base::Vector2d loc = Py::Vector2d(arg.ptr()).getCxxObject()->value(); Base::Vector2d loc = Py::Vector2d(arg.ptr()).getCxxObject()->value();
getGeom2dConicPtr()->setCenter(loc); getGeom2dConicPtr()->setLocation(loc);
}
Py::Float Conic2dPy::getEccentricity(void) const
{
Handle_Geom2d_Conic conic = Handle_Geom2d_Conic::DownCast(getGeom2dConicPtr()->handle());
return Py::Float(conic->Eccentricity());
} }
Py::Object Conic2dPy::getXAxis(void) const Py::Object Conic2dPy::getXAxis(void) const

View File

@ -16,6 +16,11 @@
The abstract class GeometryCurve is the root class of all curve objects. The abstract class GeometryCurve is the root class of all curve objects.
</UserDocu> </UserDocu>
</Documentation> </Documentation>
<Methode Name="reverse">
<Documentation>
<UserDocu>Changes the direction of parametrization of the curve.</UserDocu>
</Documentation>
</Methode>
<!-- <!--
<Methode Name="toShape" Const="true"> <Methode Name="toShape" Const="true">
<Documentation> <Documentation>
@ -70,11 +75,13 @@ length([uMin,uMax,Tol]) -> Float</UserDocu>
parameterAtDistance([abscissa, startingParameter]) -> Float the</UserDocu> parameterAtDistance([abscissa, startingParameter]) -> Float the</UserDocu>
</Documentation> </Documentation>
</Methode> </Methode>
-->
<Methode Name="value"> <Methode Name="value">
<Documentation> <Documentation>
<UserDocu>Computes the point of parameter u on this curve</UserDocu> <UserDocu>Computes the point of parameter u on this curve</UserDocu>
</Documentation> </Documentation>
</Methode> </Methode>
<!--
<Methode Name="tangent"> <Methode Name="tangent">
<Documentation> <Documentation>
<UserDocu>Computes the tangent of parameter u on this curve</UserDocu> <UserDocu>Computes the tangent of parameter u on this curve</UserDocu>
@ -131,7 +138,8 @@ of the nearest orthogonal projection of the point.</UserDocu>
</UserDocu> </UserDocu>
</Documentation> </Documentation>
</Methode> </Methode>
<Attribute Name="Continuity" ReadOnly="true"> -->
<Attribute Name="Continuity" ReadOnly="true">
<Documentation> <Documentation>
<UserDocu> <UserDocu>
Returns the global continuity of the curve. Returns the global continuity of the curve.
@ -139,7 +147,23 @@ of the nearest orthogonal projection of the point.</UserDocu>
</Documentation> </Documentation>
<Parameter Name="Continuity" Type="String"/> <Parameter Name="Continuity" Type="String"/>
</Attribute> </Attribute>
<Attribute Name="FirstParameter" ReadOnly="true"> <Attribute Name="Closed" ReadOnly="true">
<Documentation>
<UserDocu>
Returns true if the curve is closed.
</UserDocu>
</Documentation>
<Parameter Name="Closed" Type="Boolean"/>
</Attribute>
<Attribute Name="Periodic" ReadOnly="true">
<Documentation>
<UserDocu>
Returns true if the curve is periodic.
</UserDocu>
</Documentation>
<Parameter Name="Periodic" Type="Boolean"/>
</Attribute>
<Attribute Name="FirstParameter" ReadOnly="true">
<Documentation> <Documentation>
<UserDocu> <UserDocu>
Returns the value of the first parameter. Returns the value of the first parameter.
@ -155,6 +179,5 @@ of the nearest orthogonal projection of the point.</UserDocu>
</Documentation> </Documentation>
<Parameter Name="LastParameter" Type="Float"/> <Parameter Name="LastParameter" Type="Float"/>
</Attribute> </Attribute>
-->
</PythonExport> </PythonExport>
</GenerateModel> </GenerateModel>

View File

@ -94,6 +94,24 @@ int Curve2dPy::PyInit(PyObject* /*args*/, PyObject* /*kwd*/)
{ {
return 0; return 0;
} }
PyObject* Curve2dPy::reverse(PyObject *args)
{
try {
Handle_Geom2d_Curve curve = Handle_Geom2d_Curve::DownCast(getGeom2dCurvePtr()->handle());
curve->Reverse();
Py_Return;
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PartExceptionOCCError, e->GetMessageString());
return 0;
}
PyErr_SetString(PartExceptionOCCError, "Geometry is not a curve");
return 0;
}
#if 0 #if 0
PyObject* Curve2dPy::toShape(PyObject *args) PyObject* Curve2dPy::toShape(PyObject *args)
{ {
@ -335,18 +353,24 @@ PyObject* Curve2dPy::parameterAtDistance(PyObject *args)
PyErr_SetString(PartExceptionOCCError, "Geometry is not a curve"); PyErr_SetString(PartExceptionOCCError, "Geometry is not a curve");
return 0; return 0;
} }
#endif
PyObject* Curve2dPy::value(PyObject *args) PyObject* Curve2dPy::value(PyObject *args)
{ {
Handle_Geom2d_Geometry g = getGeometry2dPtr()->handle(); Handle_Geom2d_Geometry g = getGeometry2dPtr()->handle();
Handle_Geom_Curve c = Handle_Geom_Curve::DownCast(g); Handle_Geom2d_Curve c = Handle_Geom2d_Curve::DownCast(g);
try { try {
if (!c.IsNull()) { if (!c.IsNull()) {
double u; double u;
if (!PyArg_ParseTuple(args, "d", &u)) if (!PyArg_ParseTuple(args, "d", &u))
return 0; return 0;
gp_Pnt p = c->Value(u); gp_Pnt2d p = c->Value(u);
return new Base::VectorPy(Base::Vector3d(p.X(),p.Y(),p.Z()));
Py::Module module("__FreeCADBase__");
Py::Callable method(module.getAttr("Vector2d"));
Py::Tuple arg(2);
arg.setItem(0, Py::Float(p.X()));
arg.setItem(1, Py::Float(p.Y()));
return Py::new_reference_to(method.apply(arg));
} }
} }
catch (Standard_Failure) { catch (Standard_Failure) {
@ -358,7 +382,7 @@ PyObject* Curve2dPy::value(PyObject *args)
PyErr_SetString(PartExceptionOCCError, "Geometry is not a curve"); PyErr_SetString(PartExceptionOCCError, "Geometry is not a curve");
return 0; return 0;
} }
#if 0
PyObject* Curve2dPy::tangent(PyObject *args) PyObject* Curve2dPy::tangent(PyObject *args)
{ {
Handle_Geom2d_Geometry g = getGeometry2dPtr()->handle(); Handle_Geom2d_Geometry g = getGeometry2dPtr()->handle();
@ -567,10 +591,10 @@ PyObject* Curve2dPy::approximateBSpline(PyObject *args)
return 0; return 0;
} }
} }
#endif
Py::String Curve2dPy::getContinuity(void) const Py::String Curve2dPy::getContinuity(void) const
{ {
GeomAbs_Shape c = Handle_Geom_Curve::DownCast GeomAbs_Shape c = Handle_Geom2d_Curve::DownCast
(getGeometry2dPtr()->handle())->Continuity(); (getGeometry2dPtr()->handle())->Continuity();
std::string str; std::string str;
switch (c) { switch (c) {
@ -602,18 +626,30 @@ Py::String Curve2dPy::getContinuity(void) const
return Py::String(str); return Py::String(str);
} }
Py::Boolean Curve2dPy::getClosed(void) const
{
return Py::Boolean(Handle_Geom2d_Curve::DownCast
(getGeometry2dPtr()->handle())->IsClosed() ? true : false);
}
Py::Boolean Curve2dPy::getPeriodic(void) const
{
return Py::Boolean(Handle_Geom2d_Curve::DownCast
(getGeometry2dPtr()->handle())->IsPeriodic() ? true : false);
}
Py::Float Curve2dPy::getFirstParameter(void) const Py::Float Curve2dPy::getFirstParameter(void) const
{ {
return Py::Float(Handle_Geom_Curve::DownCast return Py::Float(Handle_Geom2d_Curve::DownCast
(getGeometry2dPtr()->handle())->FirstParameter()); (getGeometry2dPtr()->handle())->FirstParameter());
} }
Py::Float Curve2dPy::getLastParameter(void) const Py::Float Curve2dPy::getLastParameter(void) const
{ {
return Py::Float(Handle_Geom_Curve::DownCast return Py::Float(Handle_Geom2d_Curve::DownCast
(getGeometry2dPtr()->handle())->LastParameter()); (getGeometry2dPtr()->handle())->LastParameter());
} }
#endif
PyObject *Curve2dPy::getCustomAttributes(const char* /*attr*/) const PyObject *Curve2dPy::getCustomAttributes(const char* /*attr*/) const
{ {
return 0; return 0;

View File

@ -14,12 +14,6 @@
<Author Licence="LGPL" Name="Werner Mayer" EMail="wmayer@users.sourceforge.net" /> <Author Licence="LGPL" Name="Werner Mayer" EMail="wmayer@users.sourceforge.net" />
<UserDocu>Describes a parabola in 2D space</UserDocu> <UserDocu>Describes a parabola in 2D space</UserDocu>
</Documentation> </Documentation>
<Attribute Name="Eccentricity" ReadOnly="true">
<Documentation>
<UserDocu>Returns 1. (which is the eccentricity of any parabola).</UserDocu>
</Documentation>
<Parameter Name="Eccentricity" Type="Float"/>
</Attribute>
<Attribute Name="Focal" ReadOnly="false"> <Attribute Name="Focal" ReadOnly="false">
<Documentation> <Documentation>
<UserDocu>The focal distance is the distance between <UserDocu>The focal distance is the distance between

View File

@ -61,12 +61,6 @@ int Parabola2dPy::PyInit(PyObject* args, PyObject* /*kwd*/)
return -1; return -1;
} }
Py::Float Parabola2dPy::getEccentricity(void) const
{
Handle_Geom2d_Parabola curve = Handle_Geom2d_Parabola::DownCast(getGeometry2dPtr()->handle());
return Py::Float(curve->Eccentricity());
}
Py::Float Parabola2dPy::getFocal(void) const Py::Float Parabola2dPy::getFocal(void) const
{ {
Handle_Geom2d_Parabola curve = Handle_Geom2d_Parabola::DownCast(getGeometry2dPtr()->handle()); Handle_Geom2d_Parabola curve = Handle_Geom2d_Parabola::DownCast(getGeometry2dPtr()->handle());

View File

@ -68,6 +68,7 @@
#include <Base/Tools.h> #include <Base/Tools.h>
#include "Geometry2d.h" #include "Geometry2d.h"
#include <Mod/Part/App/Geom2d/Parabola2dPy.h>
using namespace Part; using namespace Part;
@ -587,14 +588,14 @@ Geom2dConic::~Geom2dConic()
{ {
} }
Base::Vector2d Geom2dConic::getCenter(void) const Base::Vector2d Geom2dConic::getLocation(void) const
{ {
Handle_Geom2d_Conic conic = Handle_Geom2d_Conic::DownCast(handle()); Handle_Geom2d_Conic conic = Handle_Geom2d_Conic::DownCast(handle());
const gp_Pnt2d& loc = conic->Location(); const gp_Pnt2d& loc = conic->Location();
return Base::Vector2d(loc.X(),loc.Y()); return Base::Vector2d(loc.X(),loc.Y());
} }
void Geom2dConic::setCenter(const Base::Vector2d& Center) void Geom2dConic::setLocation(const Base::Vector2d& Center)
{ {
gp_Pnt2d p1(Center.x,Center.y); gp_Pnt2d p1(Center.x,Center.y);
Handle_Geom2d_Conic conic = Handle_Geom2d_Conic::DownCast(handle()); Handle_Geom2d_Conic conic = Handle_Geom2d_Conic::DownCast(handle());
@ -1742,8 +1743,7 @@ void Geom2dParabola::Restore(Base::XMLReader& reader)
PyObject *Geom2dParabola::getPyObject(void) PyObject *Geom2dParabola::getPyObject(void)
{ {
return 0; return new Parabola2dPy(static_cast<Geom2dParabola*>(this->clone()));
//return new ParabolaPy((GeomParabola*)this->clone());
} }
// ------------------------------------------------- // -------------------------------------------------

View File

@ -200,8 +200,8 @@ public:
virtual ~Geom2dConic(); virtual ~Geom2dConic();
virtual Geometry2d *clone(void) const = 0; virtual Geometry2d *clone(void) const = 0;
Base::Vector2d getCenter(void) const; Base::Vector2d getLocation(void) const;
void setCenter(const Base::Vector2d& Center); void setLocation(const Base::Vector2d& Center);
bool isReversed() const; bool isReversed() const;
virtual unsigned int getMemSize(void) const = 0; virtual unsigned int getMemSize(void) const = 0;