Merge pull request #443 from dev-at-stellardeath-org/path_helix

Path helix update
This commit is contained in:
wwmayer 2017-01-15 16:07:08 +01:00 committed by GitHub
commit cd6c918f5a
3 changed files with 1105 additions and 115 deletions

View File

@ -55,6 +55,7 @@ SET(PathScripts_SRCS
PathScripts/PathStock.py
PathScripts/PathStop.py
PathScripts/PathHelix.py
PathScripts/kdtree.py
PathScripts/PathSurface.py
PathScripts/PathToolLenOffset.py
PathScripts/PathToolLibraryManager.py

View File

@ -1,50 +1,56 @@
# -*- coding: utf-8 -*-
#***************************************************************************
#* *
#* Copyright (c) 2016 Lorenz Hüdepohl <dev@stellardeath.org> *
#* *
#* This program is free software; you can redistribute it and/or modify *
#* it under the terms of the GNU Lesser General Public License (LGPL) *
#* as published by the Free Software Foundation; either version 2 of *
#* the License, or (at your option) any later version. *
#* for detail see the LICENCE text file. *
#* *
#* This program is distributed in the hope that it will be useful, *
#* but WITHOUT ANY WARRANTY; without even the implied warranty of *
#* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
#* GNU Library General Public License for more details. *
#* *
#* You should have received a copy of the GNU Library General Public *
#* License along with this program; if not, write to the Free Software *
#* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 *
#* USA *
#* *
#***************************************************************************
# ***************************************************************************
# * *
# * Copyright (c) 2016 Lorenz Hüdepohl <dev@stellardeath.org> *
# * *
# * This program is free software; you can redistribute it and/or modify *
# * it under the terms of the GNU Lesser General Public License (LGPL) *
# * as published by the Free Software Foundation; either version 2 of *
# * the License, or (at your option) any later version. *
# * for detail see the LICENCE text file. *
# * *
# * This program is distributed in the hope that it will be useful, *
# * but WITHOUT ANY WARRANTY; without even the implied warranty of *
# * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
# * GNU Library General Public License for more details. *
# * *
# * You should have received a copy of the GNU Library General Public *
# * License along with this program; if not, write to the Free Software *
# * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 *
# * USA *
# * *
# ***************************************************************************
import FreeCAD, Path
from . import PathUtils
from .PathUtils import fmt
import FreeCAD
import Path
if FreeCAD.GuiUp:
import FreeCADGui
from PySide import QtCore, QtGui
from DraftTools import translate
from . import PathUtils
from .PathUtils import fmt
"""Helix Drill object and FreeCAD command"""
if FreeCAD.GuiUp:
try:
_encoding = QtGui.QApplication.UnicodeUTF8
def translate(context, text, disambig=None):
return QtGui.QApplication.translate(context, text, disambig, _encoding)
return QtGui.QApplication.translate(context, text, disambig,
_encoding)
except AttributeError:
def translate(context, text, disambig=None):
return QtGui.QApplication.translate(context, text, disambig)
else:
def translate(context, text, disambig=None):
return text
def z_cylinder(cyl):
""" Test if cylinder is aligned to z-Axis"""
if cyl.Surface.Axis.x != 0.0:
@ -53,12 +59,14 @@ def z_cylinder(cyl):
return False
return True
def connected(edge, face):
for otheredge in face.Edges:
if edge.isSame(otheredge):
return True
return False
def cylinders_in_selection():
from Part import Cylinder
selections = FreeCADGui.Selection.getSelectionEx()
@ -70,7 +78,7 @@ def cylinders_in_selection():
cylinders.append((base, []))
for feature in selection.SubElementNames:
subobj = getattr(base.Shape, feature)
if subobj.ShapeType =='Face':
if subobj.ShapeType == 'Face':
if isinstance(subobj.Surface, Cylinder):
if z_cylinder(subobj):
cylinders[-1][1].append(feature)
@ -81,7 +89,7 @@ def cylinders_in_selection():
def helix_cut(center, r_out, r_in, dr, zmax, zmin, dz, safe_z, tool_diameter, vfeed, hfeed, direction, startside):
"""
center: 2-tuple
(x0,y0) coordinates of center
(x0, y0) coordinates of center
r_out, r_in: floats
radial range, cut from outer radius r_out in layers of dr to inner radius r_in
zmax, zmin: floats
@ -97,7 +105,8 @@ def helix_cut(center, r_out, r_in, dr, zmax, zmin, dz, safe_z, tool_diameter, vf
return
out = "(helix_cut <{0}, {1}>, {2})".format(center[0], center[1],
", ".join(map(str, (r_out, r_in, dr, zmax, zmin, dz, safe_z, tool_diameter, vfeed, hfeed, direction, startside))))
", ".join(map(str, (r_out, r_in, dr, zmax, zmin, dz, safe_z,
tool_diameter, vfeed, hfeed, direction, startside))))
x0, y0 = center
nz = max(int(ceil((zmax - zmin)/dz)), 2)
@ -118,15 +127,15 @@ def helix_cut(center, r_out, r_in, dr, zmax, zmin, dz, safe_z, tool_diameter, vf
return out
def rapid(x=None, y=None, z=None):
return "G0" + xyz(x,y,z) + "\n"
return "G0" + xyz(x, y, z) + "\n"
def F(f=None):
return (" F" + fmt(f) if f else "")
def feed(x=None, y=None, z=None, f=None):
return "G1" + xyz(x,y,z) + F(f) + "\n"
return "G1" + xyz(x, y, z) + F(f) + "\n"
def arc(x,y,i,j,z,f):
def arc(x, y, i, j, z, f):
if direction == "CW":
code = "G2"
elif direction == "CCW":
@ -135,30 +144,30 @@ def helix_cut(center, r_out, r_in, dr, zmax, zmin, dz, safe_z, tool_diameter, vf
def helix_cut_r(r):
out = ""
out += rapid(x=x0+r,y=y0)
out += rapid(x=x0+r, y=y0)
out += rapid(z=zmax + tool_diameter)
out += feed(z=zmax,f=vfeed)
z=zmin
for i in range(1,nz+1):
out += arc(x0-r, y0, i=-r, j=0.0, z = zi[2*i-1], f=hfeed)
out += arc(x0+r, y0, i= r, j=0.0, z = zi[2*i], f=hfeed)
out += arc(x0-r, y0, i=-r, j=0.0, z = zmin, f=hfeed)
out += arc(x0+r, y0, i=r, j=0.0, z = zmin, f=hfeed)
out += feed(z=zmax, f=vfeed)
z = zmin
for i in range(1, nz+1):
out += arc(x0-r, y0, i=-r, j=0.0, z=zi[2*i-1], f=hfeed)
out += arc(x0+r, y0, i= r, j=0.0, z=zi[2*i], f=hfeed)
out += arc(x0-r, y0, i=-r, j=0.0, z=zmin, f=hfeed)
out += arc(x0+r, y0, i=r, j=0.0, z=zmin, f=hfeed)
out += feed(z=zmax + tool_diameter, f=vfeed)
out += rapid(z=safe_z)
return out
assert(r_out > 0.0)
assert(r_in >= 0.0)
assert(r_in >= 0.0)
msg = None
if r_out < 0.0:
msg = "r_out < 0"
elif r_in > 0 and r_out - r_in < tool_diameter:
msg = "r_out - r_in = {0} is < tool diameter of {1}".format(r_out - r_in, tool_diamater)
msg = "r_out - r_in = {0} is < tool diameter of {1}".format(r_out - r_in, tool_diameter)
elif r_in == 0.0 and not r_out > tool_diameter/2.:
msg = "Cannot drill a hole of diameter {0} with a tool of diameter {1}".format(2 * r_out, tool_diameter)
elif not startside in ["inside", "outside"]:
elif startside not in ["inside", "outside"]:
msg = "Invalid value for parameter 'startside'"
if msg:
@ -169,7 +178,7 @@ def helix_cut(center, r_out, r_in, dr, zmax, zmin, dz, safe_z, tool_diameter, vf
if r_in > 0:
out += "(annulus mode)\n"
r_out = r_out - tool_diameter/2
r_in = r_in + tool_diameter/2
r_in = r_in + tool_diameter/2
if abs((r_out - r_in) / dr) < 1e-5:
radii = [(r_out + r_in)/2]
else:
@ -182,7 +191,7 @@ def helix_cut(center, r_out, r_in, dr, zmax, zmin, dz, safe_z, tool_diameter, vf
else:
out += "(full hole mode)\n"
r_out = r_out - tool_diameter/2
r_in = dr/2
r_in = dr/2
nr = max(1 + int(ceil((r_out - r_in)/dr)), 2)
radii = linspace(r_out, r_in, nr)
@ -197,16 +206,21 @@ def helix_cut(center, r_out, r_in, dr, zmax, zmin, dz, safe_z, tool_diameter, vf
return out
def features_by_centers(base, features):
import scipy.spatial
try:
from scipy.spatial import KDTree
except ImportError:
from PathScripts.kdtree import KDTree
features = sorted(features,
key = lambda feature : getattr(base.Shape, feature).Surface.Radius,
reverse = True)
key=lambda feature: getattr(base.Shape, feature).Surface.Radius,
reverse=True)
coordinates = [(cylinder.Surface.Center.x, cylinder.Surface.Center.y) for cylinder in
[getattr(base.Shape, feature) for feature in features]]
[getattr(base.Shape, feature) for feature in features]]
tree = scipy.spatial.KDTree(coordinates)
tree = KDTree(coordinates)
seen = {}
by_centers = {}
@ -217,74 +231,80 @@ def features_by_centers(base, features):
cylinder = getattr(base.Shape, feature)
xc, yc, _ = cylinder.Surface.Center
by_centers[xc, yc] = {cylinder.Surface.Radius : feature}
by_centers[xc, yc] = {cylinder.Surface.Radius: feature}
for coord in tree.query_ball_point((xc, yc), cylinder.Surface.Radius):
seen[coord] = True
cylinder = getattr(base.Shape, features[coord])
cylinder = getattr(base.Shape, features[coord])
by_centers[xc, yc][cylinder.Surface.Radius] = features[coord]
return by_centers
class ObjectPathHelix(object):
def __init__(self,obj):
def __init__(self, obj):
# Basic
obj.addProperty("App::PropertyLinkSubList","Features","Path",translate("Features","Selected features for the drill operation"))
obj.addProperty("App::PropertyBool","Active","Path",translate("Active","Set to False to disable code generation"))
obj.addProperty("App::PropertyString","Comment","Path",translate("Comment","An optional comment for this profile, will appear in G-Code"))
obj.addProperty("App::PropertyLinkSubList", "Features", "Path",
translate("Features", "Selected features for the drill operation"))
obj.addProperty("App::PropertyBool", "Active", "Path",
translate("Active", "Set to False to disable code generation"))
obj.addProperty("App::PropertyString", "Comment", "Path",
translate("Comment", "An optional comment for this profile, will appear in G-Code"))
# Helix specific
obj.addProperty("App::PropertyEnumeration", "Direction", "Helix Drill",
translate("Direction", "The direction of the circular cuts, clockwise (CW), or counter clockwise (CCW)"))
obj.Direction = ['CW','CCW']
translate("Direction", "The direction of the circular cuts, clockwise (CW), or counter clockwise (CCW)"))
obj.Direction = ['CW', 'CCW']
obj.addProperty("App::PropertyEnumeration", "StartSide", "Helix Drill",
translate("Direction", "Start cutting from the inside or outside"))
obj.StartSide = ['inside','outside']
translate("Direction", "Start cutting from the inside or outside"))
obj.StartSide = ['inside', 'outside']
obj.addProperty("App::PropertyLength", "DeltaR", "Helix Drill",
translate("DeltaR", "Radius increment (must be smaller than tool diameter)"))
translate("DeltaR", "Radius increment (must be smaller than tool diameter)"))
# Depth Properties
obj.addProperty("App::PropertyDistance", "Clearance", "Depths",
translate("Clearance","Safe distance above the top of the hole to which to retract the tool"))
translate("Clearance", "Safe distance above the top of the hole to which to retract the tool"))
obj.addProperty("App::PropertyLength", "StepDown", "Depths",
translate("StepDown","Incremental Step Down of Tool"))
obj.addProperty("App::PropertyBool","UseStartDepth","Depths",
translate("Use Start Depth","Set to True to manually specify a start depth"))
translate("StepDown", "Incremental Step Down of Tool"))
obj.addProperty("App::PropertyBool", "UseStartDepth", "Depths",
translate("Use Start Depth", "Set to True to manually specify a start depth"))
obj.addProperty("App::PropertyDistance", "StartDepth", "Depths",
translate("Start Depth","Starting Depth of Tool - first cut depth in Z"))
obj.addProperty("App::PropertyBool","UseFinalDepth","Depths",
translate("Use Final Depth","Set to True to manually specify a final depth"))
translate("Start Depth", "Starting Depth of Tool - first cut depth in Z"))
obj.addProperty("App::PropertyBool", "UseFinalDepth", "Depths",
translate("Use Final Depth", "Set to True to manually specify a final depth"))
obj.addProperty("App::PropertyDistance", "FinalDepth", "Depths",
translate("Final Depth","Final Depth of Tool - lowest value in Z"))
translate("Final Depth", "Final Depth of Tool - lowest value in Z"))
obj.addProperty("App::PropertyDistance", "ThroughDepth", "Depths",
translate("Through Depth","Add this amount of additional cutting depth to open-ended holes. Only used if UseFinalDepth is False"))
translate("Through Depth", "Add this amount of additional cutting depth "
"to open-ended holes. Only used if UseFinalDepth is False"))
# The current tool number, read-only
# this is apparently used internally, to keep track of tool chagnes
obj.addProperty("App::PropertyIntegerConstraint","ToolNumber","Tool",translate("PathProfile","The current tool in use"))
obj.ToolNumber = (0,0,1000,1)
obj.setEditorMode('ToolNumber',1) #make this read only
obj.addProperty("App::PropertyIntegerConstraint", "ToolNumber", "Tool",
translate("PathProfile", "The current tool in use"))
obj.ToolNumber = (0, 0, 1000, 1)
obj.setEditorMode('ToolNumber', 1) # make this read only
obj.Proxy = self
def __getstate__(self):
return None
def __setstate__(self,state):
def __setstate__(self, state):
return None
def execute(self,obj):
def execute(self, obj):
from Part import Circle, Cylinder, Plane
from math import sqrt
output = '(helix cut operation'
if obj.Comment:
output += ', '+ str(obj.Comment)+')\n'
output += ', ' + str(obj.Comment) + ')\n'
else:
output += ')\n'
output += ')\n'
if obj.Features:
if not obj.Active:
@ -328,8 +348,9 @@ class ObjectPathHelix(object):
r = cylinder.Surface.Radius
if dz < 0:
# This is a closed hole if the face connected to the current cylinder at next_z has
# the cylinder's edge as its OuterWire
# This is a closed hole if the face connected to
# the current cylinder at next_z has the cylinder's
# edge as its OuterWire
closed = None
for face in base.Shape.Faces:
if connected(other_edge, face) and not face.isSame(cylinder.Faces[0]):
@ -343,7 +364,9 @@ class ObjectPathHelix(object):
raise Exception("Cannot determine if this cylinder is closed on the z = {0} side".format(next_z))
xc, yc, _ = cylinder.Surface.Center
jobs.append(dict(xc=xc, yc=yc, zmin=next_z, zmax=cur_z, r_out=r, r_in=0.0, closed=closed, zsafe=zsafe))
jobs.append(dict(xc=xc, yc=yc,
zmin=next_z, zmax=cur_z, zsafe=zsafe,
r_out=r, r_in=0.0, closed=closed))
elif dz > 0:
new_jobs = []
@ -384,20 +407,20 @@ class ObjectPathHelix(object):
output += helix_cut((job["xc"], job["yc"]), job["r_out"], job["r_in"], obj.DeltaR.Value,
job["zmax"], job["zmin"], obj.StepDown.Value,
job["zsafe"], tool.Diameter,
toolload.VertFeed.Value, toolload.HorizFeed.Value, obj.Direction, obj.StartSide)
toolload.VertFeed.Value, toolload.HorizFeed.Value,
obj.Direction, obj.StartSide)
output += '\n'
obj.Path = Path.Path(output)
if obj.ViewObject:
obj.ViewObject.Visibility = True
taskpanels = {}
class ViewProviderPathHelix(object):
def __init__(self,vobj):
def __init__(self, vobj):
vobj.Proxy = self
def attach(self,vobj):
def attach(self, vobj):
self.Object = vobj.Object
return
@ -408,7 +431,6 @@ class ViewProviderPathHelix(object):
FreeCADGui.Control.closeDialog()
taskpanel = TaskPanel(vobj.Object)
FreeCADGui.Control.showDialog(taskpanel)
taskpanels[0] = taskpanel
return True
def __getstate__(self):
@ -417,11 +439,12 @@ class ViewProviderPathHelix(object):
def __setstate__(self, state):
return None
class CommandPathHelix(object):
def GetResources(self):
return {'Pixmap' : 'Path-Helix',
'MenuText': QtCore.QT_TRANSLATE_NOOP("PathHelix","PathHelix"),
'ToolTip': QtCore.QT_TRANSLATE_NOOP("PathHelix","Creates a helix cut from selected circles")}
return {'Pixmap': 'Path-Helix',
'MenuText': QtCore.QT_TRANSLATE_NOOP("PathHelix", "PathHelix"),
'ToolTip': QtCore.QT_TRANSLATE_NOOP("PathHelix", "Creates a helix cut from selected circles")}
def IsActive(self):
if FreeCAD.ActiveDocument is not None:
@ -435,10 +458,10 @@ class CommandPathHelix(object):
import Path
from PathScripts import PathUtils
FreeCAD.ActiveDocument.openTransaction(translate("PathHelix","Create a helix cut"))
FreeCAD.ActiveDocument.openTransaction(translate("PathHelix", "Create a helix cut"))
FreeCADGui.addModule("PathScripts.PathHelix")
obj = FreeCAD.ActiveDocument.addObject("Path::FeaturePython","PathHelix")
obj = FreeCAD.ActiveDocument.addObject("Path::FeaturePython", "PathHelix")
ObjectPathHelix(obj)
ViewProviderPathHelix(obj.ViewObject)
@ -473,10 +496,12 @@ class CommandPathHelix(object):
FreeCAD.ActiveDocument.recompute()
def print_exceptions(func):
from functools import wraps
import traceback
import sys
@wraps(func)
def wrapper(*args, **kwargs):
try:
@ -485,8 +510,10 @@ def print_exceptions(func):
ex_type, ex, tb = sys.exc_info()
FreeCAD.Console.PrintError("".join(traceback.format_exception(ex_type, ex, tb)) + "\n")
raise
return wrapper
def print_all_exceptions(cls):
for entry in dir(cls):
obj = getattr(cls, entry)
@ -494,20 +521,35 @@ def print_all_exceptions(cls):
setattr(cls, entry, print_exceptions(obj))
return cls
@print_all_exceptions
class TaskPanel(object):
def __init__(self, obj):
from Units import Quantity
self.obj = obj
self.previous_value = {}
self.form = QtGui.QToolBox()
ui = FreeCADGui.UiLoader()
layout = QtGui.QGridLayout()
headerStyle = "QLabel { font-weight: bold; font-size: large; }"
grayed_out = "background-color: #d0d0d0;"
self.previous_value = {}
def nextToolBoxItem(label, iconFile):
widget = QtGui.QWidget()
layout = QtGui.QGridLayout()
widget.setLayout(layout)
icon = QtGui.QIcon(iconFile)
self.form.addItem(widget, icon, label)
return layout
def addFiller():
row = layout.rowCount()
widget = QtGui.QWidget()
layout.addWidget(widget, row, 0, 1, 2)
layout.setRowStretch(row, 1)
layout = nextToolBoxItem("Geometry", ":/icons/PartDesign_InternalExternalGear.svg")
def addWidget(widget):
row = layout.rowCount()
@ -518,11 +560,6 @@ class TaskPanel(object):
layout.addWidget(widget1, row, 0)
layout.addWidget(widget2, row, 1)
def heading(label):
heading = QtGui.QLabel(label)
heading.setStyleSheet(headerStyle)
addWidget(heading)
def addQuantity(property, labelstring, activator=None, max=None):
self.previous_value[property] = getattr(self.obj, property)
widget = ui.createWidget("Gui::InputField")
@ -590,18 +627,20 @@ class TaskPanel(object):
widget.setToolTip(self.obj.getDocumentationOfProperty(property))
for option_label, option_value in options:
widget.addItem(option_label)
def change(index):
setattr(self.obj, property, options[index][1])
self.obj.Proxy.execute(self.obj)
FreeCAD.ActiveDocument.recompute()
widget.currentIndexChanged.connect(change)
addWidgets(label, widget)
self.featureTree = QtGui.QTreeWidget()
self.featureTree.setMinimumHeight(200)
self.featureTree.setSelectionMode(QtGui.QAbstractItemView.ExtendedSelection)
#self.featureTree.setDragDropMode(QtGui.QAbstractItemView.DragDrop)
#self.featureTree.setDefaultDropAction(QtCore.Qt.MoveAction)
# self.featureTree.setDragDropMode(QtGui.QAbstractItemView.DragDrop)
# self.featureTree.setDefaultDropAction(QtCore.Qt.MoveAction)
self.fillFeatureTree()
sm = self.featureTree.selectionModel()
sm.selectionChanged.connect(self.selectFeatures)
@ -616,25 +655,35 @@ class TaskPanel(object):
addWidgets(self.addButton, self.delButton)
heading("Drill parameters")
# End of "Features" section
layout = nextToolBoxItem("Drill parameters", ":/icons/Path-OperationB.svg")
addCheckBox("Active", "Operation is active")
tool = PathUtils.getTool(self.obj,self.obj.ToolNumber)
tool = PathUtils.getTool(self.obj, self.obj.ToolNumber)
if not tool:
drmax = None
else:
drmax = tool.Diameter
addQuantity("DeltaR", "Step in Radius", max=drmax)
addQuantity("StepDown", "Step in Z")
addEnumeration("Direction", "Cut direction", [("Clockwise", "CW"), ("Counter-Clockwise", "CCW")])
addEnumeration("StartSide", "Start Side", [("Start from inside", "inside"), ("Start from outside", "outside")])
addEnumeration("Direction", "Cut direction",
[("Clockwise", "CW"), ("Counter-Clockwise", "CCW")])
addEnumeration("StartSide", "Start Side",
[("Start from inside", "inside"), ("Start from outside", "outside")])
heading("Cutting Depths")
# End of "Drill parameters" section
addFiller()
layout = nextToolBoxItem("Cutting Depths", ":/icons/Path-Depths.svg")
addQuantity("Clearance", "Clearance Distance")
addQuantity("StartDepth", "Absolute start height", "UseStartDepth")
fdcheckbox, fdinput = addQuantity("FinalDepth", "Absolute final height", "UseFinalDepth")
tdlabel, tdinput = addQuantity("ThroughDepth", "Extra drill depth\nfor open holes")
# End of "Cutting Depths" section
addFiller()
# make ThroughDepth and FinalDepth mutually exclusive
def fd_change(state):
if fdcheckbox.isChecked():
@ -650,11 +699,6 @@ class TaskPanel(object):
if obj.UseFinalDepth:
tdinput.setStyleSheet(grayed_out)
# add
widget = QtGui.QWidget()
widget.setLayout(layout)
self.form = widget
def addCylinders(self):
features_per_base = {}
for base, features in self.obj.Features:
@ -663,7 +707,7 @@ class TaskPanel(object):
for base, features in cylinders_in_selection():
for feature in features:
if base in features_per_base:
if not feature in features_per_base[base]:
if feature not in features_per_base[base]:
features_per_base[base].append(feature)
else:
features_per_base[base] = [feature]
@ -717,7 +761,7 @@ class TaskPanel(object):
delete_hole(item)
if parent.childCount() == 0:
self.featureTree.takeTopLevelItem(self.featureTree.indexOfTopLevelItem(parent))
elif kind =="feature":
elif kind == "feature":
parent = item.parent()
delete_feature(item)
if parent.childCount() == 0:
@ -741,7 +785,7 @@ class TaskPanel(object):
def fillFeatureTree(self):
for base, features in self.obj.Features:
base_item = QtGui.QTreeWidgetItem()
base_item = QtGui.QTreeWidgetItem()
base_item.setText(0, base.Name)
base_item.setData(0, QtCore.Qt.UserRole, ("base", base))
self.featureTree.addTopLevelItem(base_item)
@ -754,12 +798,14 @@ class TaskPanel(object):
feature = by_radius[radius]
cylinder = getattr(base.Shape, feature)
cyl_item = QtGui.QTreeWidgetItem()
cyl_item.setText(0, "Diameter {0:.2f}, {1}".format(2 * cylinder.Surface.Radius, feature))
cyl_item.setText(0, "Diameter {0:.2f}, {1}".format(
2 * cylinder.Surface.Radius, feature))
cyl_item.setData(0, QtCore.Qt.UserRole, ("feature", feature))
hole_item.addChild(cyl_item)
def selectFeatures(self, selected, deselected):
FreeCADGui.Selection.clearSelection()
def select_feature(item, base=None):
kind, feature = item.data(0, QtCore.Qt.UserRole)
assert(kind == "feature")
@ -815,4 +861,4 @@ class TaskPanel(object):
if FreeCAD.GuiUp:
import FreeCADGui
FreeCADGui.addCommand('Path_Helix',CommandPathHelix())
FreeCADGui.addCommand('Path_Helix', CommandPathHelix())

View File

@ -0,0 +1,943 @@
# Copyright Anne M. Archibald 2008
# Released under the scipy license
#
# Copyright (c) 2001, 2002 Enthought, Inc.
# All rights reserved.
#
# Copyright (c) 2003-2016 SciPy Developers.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# a. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
# b. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# c. Neither the name of Enthought nor the names of the SciPy Developers
# may be used to endorse or promote products derived from this software
# without specific prior written permission.
#
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS
# BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
# OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
# THE POSSIBILITY OF SUCH DAMAGE.
from __future__ import division, print_function, absolute_import
import sys
import numpy as np
from heapq import heappush, heappop
__all__ = ['minkowski_distance_p', 'minkowski_distance',
'distance_matrix',
'Rectangle', 'KDTree']
def minkowski_distance_p(x, y, p=2):
"""
Compute the p-th power of the L**p distance between two arrays.
For efficiency, this function computes the L**p distance but does
not extract the pth root. If `p` is 1 or infinity, this is equal to
the actual L**p distance.
Parameters
----------
x : (M, K) array_like
Input array.
y : (N, K) array_like
Input array.
p : float, 1 <= p <= infinity
Which Minkowski p-norm to use.
Examples
--------
>>> minkowski_distance_p([[0,0],[0,0]], [[1,1],[0,1]])
array([2, 1])
"""
x = np.asarray(x)
y = np.asarray(y)
if p == np.inf:
return np.amax(np.abs(y-x), axis=-1)
elif p == 1:
return np.sum(np.abs(y-x), axis=-1)
else:
return np.sum(np.abs(y-x)**p, axis=-1)
def minkowski_distance(x, y, p=2):
"""
Compute the L**p distance between two arrays.
Parameters
----------
x : (M, K) array_like
Input array.
y : (N, K) array_like
Input array.
p : float, 1 <= p <= infinity
Which Minkowski p-norm to use.
Examples
--------
>>> minkowski_distance([[0,0],[0,0]], [[1,1],[0,1]])
array([ 1.41421356, 1. ])
"""
x = np.asarray(x)
y = np.asarray(y)
if p == np.inf or p == 1:
return minkowski_distance_p(x, y, p)
else:
return minkowski_distance_p(x, y, p)**(1./p)
class Rectangle(object):
"""Hyperrectangle class.
Represents a Cartesian product of intervals.
"""
def __init__(self, maxes, mins):
"""Construct a hyperrectangle."""
self.maxes = np.maximum(maxes,mins).astype(np.float)
self.mins = np.minimum(maxes,mins).astype(np.float)
self.m, = self.maxes.shape
def __repr__(self):
return "<Rectangle %s>" % list(zip(self.mins, self.maxes))
def volume(self):
"""Total volume."""
return np.prod(self.maxes-self.mins)
def split(self, d, split):
"""
Produce two hyperrectangles by splitting.
In general, if you need to compute maximum and minimum
distances to the children, it can be done more efficiently
by updating the maximum and minimum distances to the parent.
Parameters
----------
d : int
Axis to split hyperrectangle along.
split :
Input.
"""
mid = np.copy(self.maxes)
mid[d] = split
less = Rectangle(self.mins, mid)
mid = np.copy(self.mins)
mid[d] = split
greater = Rectangle(mid, self.maxes)
return less, greater
def min_distance_point(self, x, p=2.):
"""
Return the minimum distance between input and points in the hyperrectangle.
Parameters
----------
x : array_like
Input.
p : float, optional
Input.
"""
return minkowski_distance(0, np.maximum(0,np.maximum(self.mins-x,x-self.maxes)),p)
def max_distance_point(self, x, p=2.):
"""
Return the maximum distance between input and points in the hyperrectangle.
Parameters
----------
x : array_like
Input array.
p : float, optional
Input.
"""
return minkowski_distance(0, np.maximum(self.maxes-x,x-self.mins),p)
def min_distance_rectangle(self, other, p=2.):
"""
Compute the minimum distance between points in the two hyperrectangles.
Parameters
----------
other : hyperrectangle
Input.
p : float
Input.
"""
return minkowski_distance(0, np.maximum(0,np.maximum(self.mins-other.maxes,other.mins-self.maxes)),p)
def max_distance_rectangle(self, other, p=2.):
"""
Compute the maximum distance between points in the two hyperrectangles.
Parameters
----------
other : hyperrectangle
Input.
p : float, optional
Input.
"""
return minkowski_distance(0, np.maximum(self.maxes-other.mins,other.maxes-self.mins),p)
class KDTree(object):
"""
kd-tree for quick nearest-neighbor lookup
This class provides an index into a set of k-dimensional points which
can be used to rapidly look up the nearest neighbors of any point.
Parameters
----------
data : (N,K) array_like
The data points to be indexed. This array is not copied, and
so modifying this data will result in bogus results.
leafsize : int, optional
The number of points at which the algorithm switches over to
brute-force. Has to be positive.
Raises
------
RuntimeError
The maximum recursion limit can be exceeded for large data
sets. If this happens, either increase the value for the `leafsize`
parameter or increase the recursion limit by::
>>> import sys
>>> sys.setrecursionlimit(10000)
Notes
-----
The algorithm used is described in Maneewongvatana and Mount 1999.
The general idea is that the kd-tree is a binary tree, each of whose
nodes represents an axis-aligned hyperrectangle. Each node specifies
an axis and splits the set of points based on whether their coordinate
along that axis is greater than or less than a particular value.
During construction, the axis and splitting point are chosen by the
"sliding midpoint" rule, which ensures that the cells do not all
become long and thin.
The tree can be queried for the r closest neighbors of any given point
(optionally returning only those within some maximum distance of the
point). It can also be queried, with a substantial gain in efficiency,
for the r approximate closest neighbors.
For large dimensions (20 is already large) do not expect this to run
significantly faster than brute force. High-dimensional nearest-neighbor
queries are a substantial open problem in computer science.
The tree also supports all-neighbors queries, both with arrays of points
and with other kd-trees. These do use a reasonably efficient algorithm,
but the kd-tree is not necessarily the best data structure for this
sort of calculation.
"""
def __init__(self, data, leafsize=10):
self.data = np.asarray(data)
self.n, self.m = np.shape(self.data)
self.leafsize = int(leafsize)
if self.leafsize < 1:
raise ValueError("leafsize must be at least 1")
self.maxes = np.amax(self.data,axis=0)
self.mins = np.amin(self.data,axis=0)
self.tree = self.__build(np.arange(self.n), self.maxes, self.mins)
class node(object):
if sys.version_info[0] >= 3:
def __lt__(self, other):
return id(self) < id(other)
def __gt__(self, other):
return id(self) > id(other)
def __le__(self, other):
return id(self) <= id(other)
def __ge__(self, other):
return id(self) >= id(other)
def __eq__(self, other):
return id(self) == id(other)
class leafnode(node):
def __init__(self, idx):
self.idx = idx
self.children = len(idx)
class innernode(node):
def __init__(self, split_dim, split, less, greater):
self.split_dim = split_dim
self.split = split
self.less = less
self.greater = greater
self.children = less.children+greater.children
def __build(self, idx, maxes, mins):
if len(idx) <= self.leafsize:
return KDTree.leafnode(idx)
else:
data = self.data[idx]
# maxes = np.amax(data,axis=0)
# mins = np.amin(data,axis=0)
d = np.argmax(maxes-mins)
maxval = maxes[d]
minval = mins[d]
if maxval == minval:
# all points are identical; warn user?
return KDTree.leafnode(idx)
data = data[:,d]
# sliding midpoint rule; see Maneewongvatana and Mount 1999
# for arguments that this is a good idea.
split = (maxval+minval)/2
less_idx = np.nonzero(data <= split)[0]
greater_idx = np.nonzero(data > split)[0]
if len(less_idx) == 0:
split = np.amin(data)
less_idx = np.nonzero(data <= split)[0]
greater_idx = np.nonzero(data > split)[0]
if len(greater_idx) == 0:
split = np.amax(data)
less_idx = np.nonzero(data < split)[0]
greater_idx = np.nonzero(data >= split)[0]
if len(less_idx) == 0:
# _still_ zero? all must have the same value
if not np.all(data == data[0]):
raise ValueError("Troublesome data array: %s" % data)
split = data[0]
less_idx = np.arange(len(data)-1)
greater_idx = np.array([len(data)-1])
lessmaxes = np.copy(maxes)
lessmaxes[d] = split
greatermins = np.copy(mins)
greatermins[d] = split
return KDTree.innernode(d, split,
self.__build(idx[less_idx],lessmaxes,mins),
self.__build(idx[greater_idx],maxes,greatermins))
def __query(self, x, k=1, eps=0, p=2, distance_upper_bound=np.inf):
side_distances = np.maximum(0,np.maximum(x-self.maxes,self.mins-x))
if p != np.inf:
side_distances **= p
min_distance = np.sum(side_distances)
else:
min_distance = np.amax(side_distances)
# priority queue for chasing nodes
# entries are:
# minimum distance between the cell and the target
# distances between the nearest side of the cell and the target
# the head node of the cell
q = [(min_distance,
tuple(side_distances),
self.tree)]
# priority queue for the nearest neighbors
# furthest known neighbor first
# entries are (-distance**p, i)
neighbors = []
if eps == 0:
epsfac = 1
elif p == np.inf:
epsfac = 1/(1+eps)
else:
epsfac = 1/(1+eps)**p
if p != np.inf and distance_upper_bound != np.inf:
distance_upper_bound = distance_upper_bound**p
while q:
min_distance, side_distances, node = heappop(q)
if isinstance(node, KDTree.leafnode):
# brute-force
data = self.data[node.idx]
ds = minkowski_distance_p(data,x[np.newaxis,:],p)
for i in range(len(ds)):
if ds[i] < distance_upper_bound:
if len(neighbors) == k:
heappop(neighbors)
heappush(neighbors, (-ds[i], node.idx[i]))
if len(neighbors) == k:
distance_upper_bound = -neighbors[0][0]
else:
# we don't push cells that are too far onto the queue at all,
# but since the distance_upper_bound decreases, we might get
# here even if the cell's too far
if min_distance > distance_upper_bound*epsfac:
# since this is the nearest cell, we're done, bail out
break
# compute minimum distances to the children and push them on
if x[node.split_dim] < node.split:
near, far = node.less, node.greater
else:
near, far = node.greater, node.less
# near child is at the same distance as the current node
heappush(q,(min_distance, side_distances, near))
# far child is further by an amount depending only
# on the split value
sd = list(side_distances)
if p == np.inf:
min_distance = max(min_distance, abs(node.split-x[node.split_dim]))
elif p == 1:
sd[node.split_dim] = np.abs(node.split-x[node.split_dim])
min_distance = min_distance - side_distances[node.split_dim] + sd[node.split_dim]
else:
sd[node.split_dim] = np.abs(node.split-x[node.split_dim])**p
min_distance = min_distance - side_distances[node.split_dim] + sd[node.split_dim]
# far child might be too far, if so, don't bother pushing it
if min_distance <= distance_upper_bound*epsfac:
heappush(q,(min_distance, tuple(sd), far))
if p == np.inf:
return sorted([(-d,i) for (d,i) in neighbors])
else:
return sorted([((-d)**(1./p),i) for (d,i) in neighbors])
def query(self, x, k=1, eps=0, p=2, distance_upper_bound=np.inf):
"""
Query the kd-tree for nearest neighbors
Parameters
----------
x : array_like, last dimension self.m
An array of points to query.
k : integer
The number of nearest neighbors to return.
eps : nonnegative float
Return approximate nearest neighbors; the kth returned value
is guaranteed to be no further than (1+eps) times the
distance to the real kth nearest neighbor.
p : float, 1<=p<=infinity
Which Minkowski p-norm to use.
1 is the sum-of-absolute-values "Manhattan" distance
2 is the usual Euclidean distance
infinity is the maximum-coordinate-difference distance
distance_upper_bound : nonnegative float
Return only neighbors within this distance. This is used to prune
tree searches, so if you are doing a series of nearest-neighbor
queries, it may help to supply the distance to the nearest neighbor
of the most recent point.
Returns
-------
d : array of floats
The distances to the nearest neighbors.
If x has shape tuple+(self.m,), then d has shape tuple if
k is one, or tuple+(k,) if k is larger than one. Missing
neighbors are indicated with infinite distances. If k is None,
then d is an object array of shape tuple, containing lists
of distances. In either case the hits are sorted by distance
(nearest first).
i : array of integers
The locations of the neighbors in self.data. i is the same
shape as d.
Examples
--------
>>> from PathScripts import kdtree
>>> x, y = np.mgrid[0:5, 2:8]
>>> tree = kdtree.KDTree(zip(x.ravel(), y.ravel()))
>>> tree.data
array([[0, 2],
[0, 3],
[0, 4],
[0, 5],
[0, 6],
[0, 7],
[1, 2],
[1, 3],
[1, 4],
[1, 5],
[1, 6],
[1, 7],
[2, 2],
[2, 3],
[2, 4],
[2, 5],
[2, 6],
[2, 7],
[3, 2],
[3, 3],
[3, 4],
[3, 5],
[3, 6],
[3, 7],
[4, 2],
[4, 3],
[4, 4],
[4, 5],
[4, 6],
[4, 7]])
>>> pts = np.array([[0, 0], [2.1, 2.9]])
>>> tree.query(pts)
(array([ 2. , 0.14142136]), array([ 0, 13]))
"""
x = np.asarray(x)
if np.shape(x)[-1] != self.m:
raise ValueError("x must consist of vectors of length %d but has shape %s" % (self.m, np.shape(x)))
if p < 1:
raise ValueError("Only p-norms with 1<=p<=infinity permitted")
retshape = np.shape(x)[:-1]
if retshape != ():
if k is None:
dd = np.empty(retshape,dtype=np.object)
ii = np.empty(retshape,dtype=np.object)
elif k > 1:
dd = np.empty(retshape+(k,),dtype=np.float)
dd.fill(np.inf)
ii = np.empty(retshape+(k,),dtype=np.int)
ii.fill(self.n)
elif k == 1:
dd = np.empty(retshape,dtype=np.float)
dd.fill(np.inf)
ii = np.empty(retshape,dtype=np.int)
ii.fill(self.n)
else:
raise ValueError("Requested %s nearest neighbors; acceptable numbers are integers greater than or equal to one, or None")
for c in np.ndindex(retshape):
hits = self.__query(x[c], k=k, eps=eps, p=p, distance_upper_bound=distance_upper_bound)
if k is None:
dd[c] = [d for (d,i) in hits]
ii[c] = [i for (d,i) in hits]
elif k > 1:
for j in range(len(hits)):
dd[c+(j,)], ii[c+(j,)] = hits[j]
elif k == 1:
if len(hits) > 0:
dd[c], ii[c] = hits[0]
else:
dd[c] = np.inf
ii[c] = self.n
return dd, ii
else:
hits = self.__query(x, k=k, eps=eps, p=p, distance_upper_bound=distance_upper_bound)
if k is None:
return [d for (d,i) in hits], [i for (d,i) in hits]
elif k == 1:
if len(hits) > 0:
return hits[0]
else:
return np.inf, self.n
elif k > 1:
dd = np.empty(k,dtype=np.float)
dd.fill(np.inf)
ii = np.empty(k,dtype=np.int)
ii.fill(self.n)
for j in range(len(hits)):
dd[j], ii[j] = hits[j]
return dd, ii
else:
raise ValueError("Requested %s nearest neighbors; acceptable numbers are integers greater than or equal to one, or None")
def __query_ball_point(self, x, r, p=2., eps=0):
R = Rectangle(self.maxes, self.mins)
def traverse_checking(node, rect):
if rect.min_distance_point(x, p) > r / (1. + eps):
return []
elif rect.max_distance_point(x, p) < r * (1. + eps):
return traverse_no_checking(node)
elif isinstance(node, KDTree.leafnode):
d = self.data[node.idx]
return node.idx[minkowski_distance(d, x, p) <= r].tolist()
else:
less, greater = rect.split(node.split_dim, node.split)
return traverse_checking(node.less, less) + \
traverse_checking(node.greater, greater)
def traverse_no_checking(node):
if isinstance(node, KDTree.leafnode):
return node.idx.tolist()
else:
return traverse_no_checking(node.less) + \
traverse_no_checking(node.greater)
return traverse_checking(self.tree, R)
def query_ball_point(self, x, r, p=2., eps=0):
"""Find all points within distance r of point(s) x.
Parameters
----------
x : array_like, shape tuple + (self.m,)
The point or points to search for neighbors of.
r : positive float
The radius of points to return.
p : float, optional
Which Minkowski p-norm to use. Should be in the range [1, inf].
eps : nonnegative float, optional
Approximate search. Branches of the tree are not explored if their
nearest points are further than ``r / (1 + eps)``, and branches are
added in bulk if their furthest points are nearer than
``r * (1 + eps)``.
Returns
-------
results : list or array of lists
If `x` is a single point, returns a list of the indices of the
neighbors of `x`. If `x` is an array of points, returns an object
array of shape tuple containing lists of neighbors.
Notes
-----
If you have many points whose neighbors you want to find, you may save
substantial amounts of time by putting them in a KDTree and using
query_ball_tree.
Examples
--------
>>> from PathScripts import kdtree
>>> x, y = np.mgrid[0:4, 0:4]
>>> points = zip(x.ravel(), y.ravel())
>>> tree = kdtree.KDTree(points)
>>> tree.query_ball_point([2, 0], 1)
[4, 8, 9, 12]
"""
x = np.asarray(x)
if x.shape[-1] != self.m:
raise ValueError("Searching for a %d-dimensional point in a "
"%d-dimensional KDTree" % (x.shape[-1], self.m))
if len(x.shape) == 1:
return self.__query_ball_point(x, r, p, eps)
else:
retshape = x.shape[:-1]
result = np.empty(retshape, dtype=np.object)
for c in np.ndindex(retshape):
result[c] = self.__query_ball_point(x[c], r, p=p, eps=eps)
return result
def query_ball_tree(self, other, r, p=2., eps=0):
"""Find all pairs of points whose distance is at most r
Parameters
----------
other : KDTree instance
The tree containing points to search against.
r : float
The maximum distance, has to be positive.
p : float, optional
Which Minkowski norm to use. `p` has to meet the condition
``1 <= p <= infinity``.
eps : float, optional
Approximate search. Branches of the tree are not explored
if their nearest points are further than ``r/(1+eps)``, and
branches are added in bulk if their furthest points are nearer
than ``r * (1+eps)``. `eps` has to be non-negative.
Returns
-------
results : list of lists
For each element ``self.data[i]`` of this tree, ``results[i]`` is a
list of the indices of its neighbors in ``other.data``.
"""
results = [[] for i in range(self.n)]
def traverse_checking(node1, rect1, node2, rect2):
if rect1.min_distance_rectangle(rect2, p) > r/(1.+eps):
return
elif rect1.max_distance_rectangle(rect2, p) < r*(1.+eps):
traverse_no_checking(node1, node2)
elif isinstance(node1, KDTree.leafnode):
if isinstance(node2, KDTree.leafnode):
d = other.data[node2.idx]
for i in node1.idx:
results[i] += node2.idx[minkowski_distance(d,self.data[i],p) <= r].tolist()
else:
less, greater = rect2.split(node2.split_dim, node2.split)
traverse_checking(node1,rect1,node2.less,less)
traverse_checking(node1,rect1,node2.greater,greater)
elif isinstance(node2, KDTree.leafnode):
less, greater = rect1.split(node1.split_dim, node1.split)
traverse_checking(node1.less,less,node2,rect2)
traverse_checking(node1.greater,greater,node2,rect2)
else:
less1, greater1 = rect1.split(node1.split_dim, node1.split)
less2, greater2 = rect2.split(node2.split_dim, node2.split)
traverse_checking(node1.less,less1,node2.less,less2)
traverse_checking(node1.less,less1,node2.greater,greater2)
traverse_checking(node1.greater,greater1,node2.less,less2)
traverse_checking(node1.greater,greater1,node2.greater,greater2)
def traverse_no_checking(node1, node2):
if isinstance(node1, KDTree.leafnode):
if isinstance(node2, KDTree.leafnode):
for i in node1.idx:
results[i] += node2.idx.tolist()
else:
traverse_no_checking(node1, node2.less)
traverse_no_checking(node1, node2.greater)
else:
traverse_no_checking(node1.less, node2)
traverse_no_checking(node1.greater, node2)
traverse_checking(self.tree, Rectangle(self.maxes, self.mins),
other.tree, Rectangle(other.maxes, other.mins))
return results
def query_pairs(self, r, p=2., eps=0):
"""
Find all pairs of points within a distance.
Parameters
----------
r : positive float
The maximum distance.
p : float, optional
Which Minkowski norm to use. `p` has to meet the condition
``1 <= p <= infinity``.
eps : float, optional
Approximate search. Branches of the tree are not explored
if their nearest points are further than ``r/(1+eps)``, and
branches are added in bulk if their furthest points are nearer
than ``r * (1+eps)``. `eps` has to be non-negative.
Returns
-------
results : set
Set of pairs ``(i,j)``, with ``i < j``, for which the corresponding
positions are close.
"""
results = set()
def traverse_checking(node1, rect1, node2, rect2):
if rect1.min_distance_rectangle(rect2, p) > r/(1.+eps):
return
elif rect1.max_distance_rectangle(rect2, p) < r*(1.+eps):
traverse_no_checking(node1, node2)
elif isinstance(node1, KDTree.leafnode):
if isinstance(node2, KDTree.leafnode):
# Special care to avoid duplicate pairs
if id(node1) == id(node2):
d = self.data[node2.idx]
for i in node1.idx:
for j in node2.idx[minkowski_distance(d,self.data[i],p) <= r]:
if i < j:
results.add((i,j))
else:
d = self.data[node2.idx]
for i in node1.idx:
for j in node2.idx[minkowski_distance(d,self.data[i],p) <= r]:
if i < j:
results.add((i,j))
elif j < i:
results.add((j,i))
else:
less, greater = rect2.split(node2.split_dim, node2.split)
traverse_checking(node1,rect1,node2.less,less)
traverse_checking(node1,rect1,node2.greater,greater)
elif isinstance(node2, KDTree.leafnode):
less, greater = rect1.split(node1.split_dim, node1.split)
traverse_checking(node1.less,less,node2,rect2)
traverse_checking(node1.greater,greater,node2,rect2)
else:
less1, greater1 = rect1.split(node1.split_dim, node1.split)
less2, greater2 = rect2.split(node2.split_dim, node2.split)
traverse_checking(node1.less,less1,node2.less,less2)
traverse_checking(node1.less,less1,node2.greater,greater2)
# Avoid traversing (node1.less, node2.greater) and
# (node1.greater, node2.less) (it's the same node pair twice
# over, which is the source of the complication in the
# original KDTree.query_pairs)
if id(node1) != id(node2):
traverse_checking(node1.greater,greater1,node2.less,less2)
traverse_checking(node1.greater,greater1,node2.greater,greater2)
def traverse_no_checking(node1, node2):
if isinstance(node1, KDTree.leafnode):
if isinstance(node2, KDTree.leafnode):
# Special care to avoid duplicate pairs
if id(node1) == id(node2):
for i in node1.idx:
for j in node2.idx:
if i < j:
results.add((i,j))
else:
for i in node1.idx:
for j in node2.idx:
if i < j:
results.add((i,j))
elif j < i:
results.add((j,i))
else:
traverse_no_checking(node1, node2.less)
traverse_no_checking(node1, node2.greater)
else:
# Avoid traversing (node1.less, node2.greater) and
# (node1.greater, node2.less) (it's the same node pair twice
# over, which is the source of the complication in the
# original KDTree.query_pairs)
if id(node1) == id(node2):
traverse_no_checking(node1.less, node2.less)
traverse_no_checking(node1.less, node2.greater)
traverse_no_checking(node1.greater, node2.greater)
else:
traverse_no_checking(node1.less, node2)
traverse_no_checking(node1.greater, node2)
traverse_checking(self.tree, Rectangle(self.maxes, self.mins),
self.tree, Rectangle(self.maxes, self.mins))
return results
def count_neighbors(self, other, r, p=2.):
"""
Count how many nearby pairs can be formed.
Count the number of pairs (x1,x2) can be formed, with x1 drawn
from self and x2 drawn from `other`, and where
``distance(x1, x2, p) <= r``.
This is the "two-point correlation" described in Gray and Moore 2000,
"N-body problems in statistical learning", and the code here is based
on their algorithm.
Parameters
----------
other : KDTree instance
The other tree to draw points from.
r : float or one-dimensional array of floats
The radius to produce a count for. Multiple radii are searched with
a single tree traversal.
p : float, 1<=p<=infinity
Which Minkowski p-norm to use
Returns
-------
result : int or 1-D array of ints
The number of pairs. Note that this is internally stored in a numpy
int, and so may overflow if very large (2e9).
"""
def traverse(node1, rect1, node2, rect2, idx):
min_r = rect1.min_distance_rectangle(rect2,p)
max_r = rect1.max_distance_rectangle(rect2,p)
c_greater = r[idx] > max_r
result[idx[c_greater]] += node1.children*node2.children
idx = idx[(min_r <= r[idx]) & (r[idx] <= max_r)]
if len(idx) == 0:
return
if isinstance(node1,KDTree.leafnode):
if isinstance(node2,KDTree.leafnode):
ds = minkowski_distance(self.data[node1.idx][:,np.newaxis,:],
other.data[node2.idx][np.newaxis,:,:],
p).ravel()
ds.sort()
result[idx] += np.searchsorted(ds,r[idx],side='right')
else:
less, greater = rect2.split(node2.split_dim, node2.split)
traverse(node1, rect1, node2.less, less, idx)
traverse(node1, rect1, node2.greater, greater, idx)
else:
if isinstance(node2,KDTree.leafnode):
less, greater = rect1.split(node1.split_dim, node1.split)
traverse(node1.less, less, node2, rect2, idx)
traverse(node1.greater, greater, node2, rect2, idx)
else:
less1, greater1 = rect1.split(node1.split_dim, node1.split)
less2, greater2 = rect2.split(node2.split_dim, node2.split)
traverse(node1.less,less1,node2.less,less2,idx)
traverse(node1.less,less1,node2.greater,greater2,idx)
traverse(node1.greater,greater1,node2.less,less2,idx)
traverse(node1.greater,greater1,node2.greater,greater2,idx)
R1 = Rectangle(self.maxes, self.mins)
R2 = Rectangle(other.maxes, other.mins)
if np.shape(r) == ():
r = np.array([r])
result = np.zeros(1,dtype=int)
traverse(self.tree, R1, other.tree, R2, np.arange(1))
return result[0]
elif len(np.shape(r)) == 1:
r = np.asarray(r)
n, = r.shape
result = np.zeros(n,dtype=int)
traverse(self.tree, R1, other.tree, R2, np.arange(n))
return result
else:
raise ValueError("r must be either a single value or a one-dimensional array of values")
def distance_matrix(x,y,p=2,threshold=1000000):
"""
Compute the distance matrix.
Returns the matrix of all pair-wise distances.
Parameters
----------
x : (M, K) array_like
TODO: description needed
y : (N, K) array_like
TODO: description needed
p : float, 1 <= p <= infinity
Which Minkowski p-norm to use.
threshold : positive int
If ``M * N * K`` > `threshold`, algorithm uses a Python loop instead
of large temporary arrays.
Returns
-------
result : (M, N) ndarray
Distance matrix.
Examples
--------
>>> distance_matrix([[0,0],[0,1]], [[1,0],[1,1]])
array([[ 1. , 1.41421356],
[ 1.41421356, 1. ]])
"""
x = np.asarray(x)
m, k = x.shape
y = np.asarray(y)
n, kk = y.shape
if k != kk:
raise ValueError("x contains %d-dimensional vectors but y contains %d-dimensional vectors" % (k, kk))
if m*n*k <= threshold:
return minkowski_distance(x[:,np.newaxis,:],y[np.newaxis,:,:],p)
else:
result = np.empty((m,n),dtype=np.float) # FIXME: figure out the best dtype
if m < n:
for i in range(m):
result[i,:] = minkowski_distance(x[i],y,p)
else:
for j in range(n):
result[:,j] = minkowski_distance(x,y[j],p)
return result