# *************************************************************************** # * * # * Copyright (c) 2015 - Bernd Hahnebach * # * * # * This program is free software; you can redistribute it and/or modify * # * it under the terms of the GNU Lesser General Public License (LGPL) * # * as published by the Free Software Foundation; either version 2 of * # * the License, or (at your option) any later version. * # * for detail see the LICENCE text file. * # * * # * This program is distributed in the hope that it will be useful, * # * but WITHOUT ANY WARRANTY; without even the implied warranty of * # * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * # * GNU Library General Public License for more details. * # * * # * You should have received a copy of the GNU Library General Public * # * License along with this program; if not, write to the Free Software * # * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * # * USA * # * * # *************************************************************************** __title__ = "_FemSolverCalculix" __author__ = "Bernd Hahnebach" __url__ = "http://www.freecadweb.org" import FreeCAD import FemToolsCcx class _FemSolverCalculix(): """The Fem::FemSolver's Proxy python type, add solver specific properties """ def __init__(self, obj): self.Type = "FemSolverCalculix" self.Object = obj # keep a ref to the DocObj for nonGui usage obj.Proxy = self # link between App::DocumentObject to this object obj.addProperty("App::PropertyString", "SolverType", "Base", "Type of the solver", 1) # the 1 set the property to ReadOnly obj.SolverType = str(self.Type) fem_prefs = FreeCAD.ParamGet("User parameter:BaseApp/Preferences/Mod/Fem/General") ccx_prefs = FreeCAD.ParamGet("User parameter:BaseApp/Preferences/Mod/Fem/Ccx") obj.addProperty("App::PropertyPath", "WorkingDir", "Fem", "Working directory for calculations") obj.WorkingDir = fem_prefs.GetString("WorkingDir", "") obj.addProperty("App::PropertyEnumeration", "AnalysisType", "Fem", "Type of the analysis") obj.AnalysisType = FemToolsCcx.FemToolsCcx.known_analysis_types analysis_type = ccx_prefs.GetInt("AnalysisType", 0) obj.AnalysisType = FemToolsCcx.FemToolsCcx.known_analysis_types[analysis_type] choices_geom_nonlinear = ["linear", "nonlinear"] obj.addProperty("App::PropertyEnumeration", "GeometricalNonlinearity", "Fem", "Set geometrical nonlinearity") obj.GeometricalNonlinearity = choices_geom_nonlinear nonlinear_geom = ccx_prefs.GetBool("NonlinearGeometry", False) if nonlinear_geom is True: obj.GeometricalNonlinearity = choices_geom_nonlinear[1] # nonlinear else: obj.GeometricalNonlinearity = choices_geom_nonlinear[0] # linear choices_material_nonlinear = ["linear", "nonlinear"] obj.addProperty("App::PropertyEnumeration", "MaterialNonlinearity", "Fem", "Set material nonlinearity (needs geometrical nonlinearity)") obj.MaterialNonlinearity = choices_material_nonlinear obj.MaterialNonlinearity = choices_material_nonlinear[0] obj.addProperty("App::PropertyIntegerConstraint", "EigenmodesCount", "Fem", "Number of modes for frequency calculations") noe = ccx_prefs.GetInt("EigenmodesCount", 10) obj.EigenmodesCount = (noe, 1, 100, 1) obj.addProperty("App::PropertyFloatConstraint", "EigenmodeLowLimit", "Fem", "Low frequency limit for eigenmode calculations") ell = ccx_prefs.GetFloat("EigenmodeLowLimit", 0.0) obj.EigenmodeLowLimit = (ell, 0.0, 1000000.0, 10000.0) obj.addProperty("App::PropertyFloatConstraint", "EigenmodeHighLimit", "Fem", "High frequency limit for eigenmode calculations") ehl = ccx_prefs.GetFloat("EigenmodeHighLimit", 1000000.0) obj.EigenmodeHighLimit = (ehl, 0.0, 1000000.0, 10000.0) obj.addProperty("App::PropertyIntegerConstraint", "IterationsThermoMechMaximum", "Fem", "Maximum Number of thermo mechanical iterations in each time step before stopping jobs") niter = ccx_prefs.GetInt("AnalysisMaxIterations", 200) obj.IterationsThermoMechMaximum = niter obj.addProperty("App::PropertyFloatConstraint", "TimeInitialStep", "Fem", "Initial time steps") ini = ccx_prefs.GetFloat("AnalysisTimeInitialStep", 1.0) obj.TimeInitialStep = ini obj.addProperty("App::PropertyFloatConstraint", "TimeEnd", "Fem", "End time analysis") eni = ccx_prefs.GetFloat("AnalysisTime", 1.0) obj.TimeEnd = eni obj.addProperty("App::PropertyBool", "ThermoMechSteadyState", "Fem", "Choose between steady state thermo mech or transient thermo mech analysis") sted = ccx_prefs.GetBool("StaticAnalysis", True) obj.ThermoMechSteadyState = sted obj.addProperty("App::PropertyBool", "IterationsControlParameterTimeUse", "Fem", "Use the user defined time incrementation control parameter") use_non_ccx_iterations_param = ccx_prefs.GetInt("UseNonCcxIterationParam", False) obj.IterationsControlParameterTimeUse = use_non_ccx_iterations_param ccx_default_time_incrementation_control_parameter = { # iteration parameter 'I_0': 4, 'I_R': 8, 'I_P': 9, 'I_C': 200, # ccx default = 16 'I_L': 10, 'I_G': 400, # ccx default = 4 'I_S': None, 'I_A': 200, # ccx default = 5 'I_J': None, 'I_T': None, # cutback parameter 'D_f': 0.25, 'D_C': 0.5, 'D_B': 0.75, 'D_A': 0.85, 'D_S': None, 'D_H': None, 'D_D': 1.5, 'W_G': None} p = ccx_default_time_incrementation_control_parameter p_iter = '{0},{1},{2},{3},{4},{5},{6},{7},{8},{9}'.format(p['I_0'], p['I_R'], p['I_P'], p['I_C'], p['I_L'], p['I_G'], '', p['I_A'], '', '') p_cutb = '{0},{1},{2},{3},{4},{5},{6},{7}'.format(p['D_f'], p['D_C'], p['D_B'], p['D_A'], '', '', p['D_D'], '') obj.addProperty("App::PropertyString", "IterationsControlParameterIter", "Fem", "User defined time incrementation iterations control parameter") obj.IterationsControlParameterIter = p_iter obj.addProperty("App::PropertyString", "IterationsControlParameterCutb", "Fem", "User defined time incrementation cutbacks control parameter") obj.IterationsControlParameterCutb = p_cutb obj.addProperty("App::PropertyBool", "IterationsUserDefinedIncrementations", "Fem", "Set to True to switch of the ccx automatic incrementation (ccx parameter DIRECT)") obj.IterationsUserDefinedIncrementations = False obj.addProperty("App::PropertyString", "IterationsUserDefinedTimeStepLength", "Fem", "Set the time step length for the current step, only used if IterationsUserDefinedIncrementations is set to True") obj.IterationsUserDefinedTimeStepLength = "0.1, 1.0" known_ccx_solver_types = ["default", "spooles", "iterativescaling", "iterativecholesky"] obj.addProperty("App::PropertyEnumeration", "MatrixSolverType", "Fem", "Type of solver to use") obj.MatrixSolverType = known_ccx_solver_types solver_type = ccx_prefs.GetInt("Solver", 0) obj.MatrixSolverType = known_ccx_solver_types[solver_type] def execute(self, obj): return def __getstate__(self): return self.Type def __setstate__(self, state): if state: self.Type = state