# *************************************************************************** # * * # * Copyright (c) 2015 - Przemo Firszt * # * Copyright (c) 2015 - Bernd Hahnebach * # * * # * This program is free software; you can redistribute it and/or modify * # * it under the terms of the GNU Lesser General Public License (LGPL) * # * as published by the Free Software Foundation; either version 2 of * # * the License, or (at your option) any later version. * # * for detail see the LICENCE text file. * # * * # * This program is distributed in the hope that it will be useful, * # * but WITHOUT ANY WARRANTY; without even the implied warranty of * # * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * # * GNU Library General Public License for more details. * # * * # * You should have received a copy of the GNU Library General Public * # * License along with this program; if not, write to the Free Software * # * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * # * USA * # * * # *************************************************************************** __title__ = "FemInputWriterCcx" __author__ = "Przemo Firszt, Bernd Hahnebach" __url__ = "http://www.freecadweb.org" import FreeCAD import os import sys import time import FemMeshTools import FemInputWriter class FemInputWriterCcx(FemInputWriter.FemInputWriter): def __init__(self, analysis_obj, solver_obj, mesh_obj, mat_obj, fixed_obj, displacement_obj, selfweight_obj, force_obj, pressure_obj, beamsection_obj, shellthickness_obj, analysis_type=None, eigenmode_parameters=None, dir_name=None ): FemInputWriter.FemInputWriter.__init__(self, analysis_obj, solver_obj, mesh_obj, mat_obj, fixed_obj, displacement_obj, selfweight_obj, force_obj, pressure_obj, beamsection_obj, shellthickness_obj, analysis_type, eigenmode_parameters, dir_name ) self.file_name = self.dir_name + '/' + self.mesh_object.Name + '.inp' print('FemInputWriterCcx --> self.dir_name --> ' + self.dir_name) print('FemInputWriterCcx --> self.file_name --> ' + self.file_name) def write_calculix_input_file(self): self.femmesh.writeABAQUS(self.file_name) # reopen file with "append" and add the analysis definition inpfile = open(self.file_name, 'a') inpfile.write('\n\n') self.write_element_sets_material_and_femelement_type(inpfile) if self.fixed_objects: self.write_node_sets_constraints_fixed(inpfile) if self.displacement_objects: self.write_node_sets_constraints_displacement(inpfile) self.write_materials(inpfile) self.write_femelementsets(inpfile) self.write_step_begin(inpfile) if self.fixed_objects: self.write_constraints_fixed(inpfile) if self.displacement_objects: self.write_constraints_displacement(inpfile) if self.analysis_type is None or self.analysis_type == "static": if self.selfweight_objects: self.write_constraints_selfweight(inpfile) if self.force_objects: self.write_constraints_force(inpfile) if self.pressure_objects: self.write_constraints_pressure(inpfile) elif self.analysis_type == "frequency": self.write_analysis_frequency(inpfile) self.write_outputs_types(inpfile) self.write_step_end(inpfile) self.write_footer(inpfile) inpfile.close() return self.file_name def write_element_sets_material_and_femelement_type(self, f): f.write('\n***********************************************************\n') f.write('** Element sets for materials and FEM element type (solid, shell, beam)\n') f.write('** written by {} function\n'.format(sys._getframe().f_code.co_name)) if len(self.material_objects) == 1: if self.beamsection_objects and len(self.beamsection_objects) == 1: # single mat, single beam self.get_ccx_elsets_single_mat_single_beam() elif self.beamsection_objects and len(self.beamsection_objects) > 1: # single mat, multiple beams self.get_ccx_elsets_single_mat_multiple_beam() elif self.shellthickness_objects and len(self.shellthickness_objects) == 1: # single mat, single shell self.get_ccx_elsets_single_mat_single_shell() elif self.shellthickness_objects and len(self.shellthickness_objects) > 1: # single mat, multiple shells self.get_ccx_elsets_single_mat_multiple_shell() else: # single mat, solid self.get_ccx_elsets_single_mat_solid() else: if self.beamsection_objects and len(self.beamsection_objects) == 1: # multiple mats, single beam self.get_ccx_elsets_multiple_mat_single_beam() elif self.beamsection_objects and len(self.beamsection_objects) > 1: # multiple mats, multiple beams self.get_ccx_elsets_multiple_mat_multiple_beam() elif self.shellthickness_objects and len(self.shellthickness_objects) == 1: # multiple mats, single shell self.get_ccx_elsets_multiple_mat_single_shell() elif self.shellthickness_objects and len(self.shellthickness_objects) > 1: # multiple mats, multiple shells self.get_ccx_elsets_multiple_mat_multiple_shell() else: # multiple mats, solid self.get_ccx_elsets_multiple_mat_solid() for ccx_elset in self.ccx_elsets: f.write('*ELSET,ELSET=' + ccx_elset['ccx_elset_name'] + '\n') if ccx_elset['ccx_elset']: if ccx_elset['ccx_elset'] == self.ccx_eall: f.write(self.ccx_eall + '\n') else: for elid in ccx_elset['ccx_elset']: f.write(str(elid) + ',\n') else: f.write('**No elements found for these objects\n') def write_node_sets_constraints_fixed(self, f): # get nodes self.get_constraints_fixed_nodes() # write nodes to file f.write('\n***********************************************************\n') f.write('** Node set for fixed constraint\n') f.write('** written by {} function\n'.format(sys._getframe().f_code.co_name)) for femobj in self.fixed_objects: # femobj --> dict, FreeCAD document object is femobj['Object'] f.write('*NSET,NSET=' + femobj['Object'].Name + '\n') for n in femobj['Nodes']: f.write(str(n) + ',\n') def write_node_sets_constraints_displacement(self, f): # get nodes self.get_constraints_displacement_nodes() # write nodes to file f.write('\n***********************************************************\n') f.write('** Node sets for prescribed displacement constraint\n') f.write('** written by {} function\n'.format(sys._getframe().f_code.co_name)) for femobj in self.displacement_objects: # femobj --> dict, FreeCAD document object is femobj['Object'] f.write('*NSET,NSET=' + femobj['Object'].Name + '\n') for n in femobj['Nodes']: f.write(str(n) + ',\n') def write_materials(self, f): f.write('\n***********************************************************\n') f.write('** Materials\n') f.write('** written by {} function\n'.format(sys._getframe().f_code.co_name)) f.write('** Young\'s modulus unit is MPa = N/mm2\n') f.write('** Density\'s unit is t/mm^3\n') for femobj in self.material_objects: # femobj --> dict, FreeCAD document object is femobj['Object'] mat_obj = femobj['Object'] # get material properties - Currently in SI units: M/kg/s/Kelvin YM_in_MPa = 1 PR = 1 density_in_tonne_per_mm3 = 1 try: YM = FreeCAD.Units.Quantity(mat_obj.Material['YoungsModulus']) YM_in_MPa = YM.getValueAs('MPa') except: FreeCAD.Console.PrintError("No YoungsModulus defined for material: default used\n") try: PR = float(mat_obj.Material['PoissonRatio']) except: FreeCAD.Console.PrintError("No PoissonRatio defined for material: default used\n") mat_info_name = mat_obj.Material['Name'] mat_name = mat_obj.Name # write material properties f.write('**FreeCAD material name: ' + mat_info_name + '\n') f.write('*MATERIAL, NAME=' + mat_name + '\n') f.write('*ELASTIC \n') f.write('{0}, {1:.3f}\n'.format(YM_in_MPa, PR)) try: density = FreeCAD.Units.Quantity(mat_obj.Material['Density']) density_in_tonne_per_mm3 = float(density.getValueAs('t/mm^3')) except: FreeCAD.Console.PrintError("No Density defined for material: default used\n") f.write('*DENSITY \n') f.write('{0:.3e}, \n'.format(density_in_tonne_per_mm3)) def write_femelementsets(self, f): f.write('\n***********************************************************\n') f.write('** Sections\n') f.write('** written by {} function\n'.format(sys._getframe().f_code.co_name)) for ccx_elset in self.ccx_elsets: if ccx_elset['ccx_elset']: if 'beamsection_obj'in ccx_elset: # beam mesh beamsec_obj = ccx_elset['beamsection_obj'] elsetdef = 'ELSET=' + ccx_elset['ccx_elset_name'] + ', ' material = 'MATERIAL=' + ccx_elset['mat_obj_name'] height = beamsec_obj.Height.getValueAs('mm') width = beamsec_obj.Width.getValueAs('mm') if width == 0: section_type = ', SECTION=CIRC' setion_geo = str(height) + '\n' else: section_type = ', SECTION=RECT' setion_geo = str(height) + ', ' + str(width) + '\n' setion_def = '*BEAM SECTION, ' + elsetdef + material + section_type + '\n' f.write(setion_def) f.write(setion_geo) elif 'shellthickness_obj'in ccx_elset: # shell mesh shellth_obj = ccx_elset['shellthickness_obj'] elsetdef = 'ELSET=' + ccx_elset['ccx_elset_name'] + ', ' material = 'MATERIAL=' + ccx_elset['mat_obj_name'] setion_def = '*SHELL SECTION, ' + elsetdef + material + '\n' setion_geo = str(shellth_obj.Thickness.getValueAs('mm')) + '\n' f.write(setion_def) f.write(setion_geo) else: # solid mesh elsetdef = 'ELSET=' + ccx_elset['ccx_elset_name'] + ', ' material = 'MATERIAL=' + ccx_elset['mat_obj_name'] setion_def = '*SOLID SECTION, ' + elsetdef + material + '\n' f.write(setion_def) def write_step_begin(self, f): f.write('\n***********************************************************\n') f.write('** One step is needed to run the mechanical analysis of FreeCAD\n') f.write('** written by {} function\n'.format(sys._getframe().f_code.co_name)) static_frequency_step = '*STEP' if self.solver_obj.GeometricalNonlinearity == "nonlinear" and self.analysis_type == 'static': static_frequency_step += ', NLGEOM' # https://www.comsol.com/blogs/what-is-geometric-nonlinearity/ elif self.solver_obj.GeometricalNonlinearity == "nonlinear" and self.analysis_type == 'frequency': print('Analysis type frequency and geometrical nonlinear analyis are not allowed together, linear is used instead!') f.write(static_frequency_step + '\n') def write_constraints_fixed(self, f): f.write('\n***********************************************************\n') f.write('** Constraints\n') f.write('** written by {} function\n'.format(sys._getframe().f_code.co_name)) for femobj in self.fixed_objects: # femobj --> dict, FreeCAD document object is femobj['Object'] fix_obj_name = femobj['Object'].Name f.write('*BOUNDARY\n') f.write(fix_obj_name + ',1\n') f.write(fix_obj_name + ',2\n') f.write(fix_obj_name + ',3\n') if self.beamsection_objects or self.shellthickness_objects: f.write(fix_obj_name + ',4\n') f.write(fix_obj_name + ',5\n') f.write(fix_obj_name + ',6\n') f.write('\n') def write_constraints_displacement(self, f): f.write('\n***********************************************************\n') f.write('** Displacement constraint applied\n') f.write('** written by {} function\n'.format(sys._getframe().f_code.co_name)) for femobj in self.displacement_objects: # femobj --> dict, FreeCAD document object is femobj['Object'] disp_obj = femobj['Object'] disp_obj_name = disp_obj.Name f.write('*BOUNDARY\n') if disp_obj.xFix: f.write(disp_obj_name + ',1\n') elif not disp_obj.xFree: f.write(disp_obj_name + ',1,1,' + str(disp_obj.xDisplacement) + '\n') if disp_obj.yFix: f.write(disp_obj_name + ',2\n') elif not disp_obj.yFree: f.write(disp_obj_name + ',2,2,' + str(disp_obj.yDisplacement) + '\n') if disp_obj.zFix: f.write(disp_obj_name + ',3\n') elif not disp_obj.zFree: f.write(disp_obj_name + ',3,3,' + str(disp_obj.zDisplacement) + '\n') if self.beamsection_objects or self.shellthickness_objects: if disp_obj.rotxFix: f.write(disp_obj_name + ',4\n') elif not disp_obj.rotxFree: f.write(disp_obj_name + ',4,4,' + str(disp_obj.xRotation) + '\n') if disp_obj.rotyFix: f.write(disp_obj_name + ',5\n') elif not disp_obj.rotyFree: f.write(disp_obj_name + ',5,5,' + str(disp_obj.yRotation) + '\n') if disp_obj.rotzFix: f.write(disp_obj_name + ',6\n') elif not disp_obj.rotzFree: f.write(disp_obj_name + ',6,6,' + str(disp_obj.zRotation) + '\n') f.write('\n') def write_constraints_selfweight(self, f): f.write('\n***********************************************************\n') f.write('** Self weight\n') f.write('** written by {} function\n'.format(sys._getframe().f_code.co_name)) for femobj in self.selfweight_objects: # femobj --> dict, FreeCAD document object is femobj['Object'] selwei_obj_name = femobj['Object'].Name f.write('** ' + selwei_obj_name + '\n') f.write('*DLOAD\n') f.write('Eall,GRAV,9810,0,0,-1\n') f.write('\n') # die grav (erdbeschleunigung) ist fuer alle gleich # die verschidene density wurde in den material sets geschrieben ! def write_constraints_force(self, f): # check shape type of reference shape and get node loads self.get_constraints_force_nodeloads() # write node loads to file f.write('\n***********************************************************\n') f.write('** Node loads\n') f.write('** written by {} function\n'.format(sys._getframe().f_code.co_name)) f.write('*CLOAD\n') for femobj in self.force_objects: # femobj --> dict, FreeCAD document object is femobj['Object'] frc_obj_name = femobj['Object'].Name direction_vec = femobj['Object'].DirectionVector f.write('** ' + frc_obj_name + '\n') for ref_shape in femobj['NodeLoadTable']: f.write('** ' + ref_shape[0] + '\n') for n in sorted(ref_shape[1]): node_load = ref_shape[1][n] if (direction_vec.x != 0.0): v1 = "{:.13E}".format(direction_vec.x * node_load) f.write(str(n) + ',1,' + v1 + '\n') if (direction_vec.y != 0.0): v2 = "{:.13E}".format(direction_vec.y * node_load) f.write(str(n) + ',2,' + v2 + '\n') if (direction_vec.z != 0.0): v3 = "{:.13E}".format(direction_vec.z * node_load) f.write(str(n) + ',3,' + v3 + '\n') f.write('\n') f.write('\n') def write_constraints_pressure(self, f): f.write('\n***********************************************************\n') f.write('** Element + CalculiX face + load in [MPa]\n') f.write('** written by {} function\n'.format(sys._getframe().f_code.co_name)) for femobj in self.pressure_objects: # femobj --> dict, FreeCAD document object is femobj['Object'] prs_obj = femobj['Object'] f.write('*DLOAD\n') for o, elem_tup in prs_obj.References: rev = -1 if prs_obj.Reversed else 1 for elem in elem_tup: ref_shape = o.Shape.getElement(elem) if ref_shape.ShapeType == 'Face': v = self.femmesh.getccxVolumesByFace(ref_shape) f.write("** Load on face {}\n".format(elem)) for i in v: f.write("{},P{},{}\n".format(i[0], i[1], rev * prs_obj.Pressure)) def write_analysis_frequency(self, f): f.write('\n***********************************************************\n') f.write('** Frequency analysis\n') f.write('** written by {} function\n'.format(sys._getframe().f_code.co_name)) f.write('*FREQUENCY\n') f.write('{},{},{}\n'.format(self.no_of_eigenfrequencies, self.eigenfrequeny_range_low, self.eigenfrequeny_range_high)) def write_outputs_types(self, f): f.write('\n***********************************************************\n') f.write('** Outputs --> frd file\n') f.write('** written by {} function\n'.format(sys._getframe().f_code.co_name)) if self.beamsection_objects or self.shellthickness_objects: f.write('*NODE FILE, OUTPUT=2d\n') else: f.write('*NODE FILE\n') f.write('U\n') f.write('*EL FILE\n') f.write('S, E\n') f.write('** outputs --> dat file\n') f.write('*NODE PRINT , NSET=Nall \n') f.write('U \n') f.write('*EL PRINT , ELSET=Eall \n') f.write('S \n') def write_step_end(self, f): f.write('\n***********************************************************\n') f.write('** written by {} function\n'.format(sys._getframe().f_code.co_name)) f.write('*END STEP \n') def write_footer(self, f): f.write('\n***********************************************************\n') f.write('** CalculiX Input file\n') f.write('** written by {} function\n'.format(sys._getframe().f_code.co_name)) f.write('** written by --> FreeCAD ' + self.fc_ver[0] + '.' + self.fc_ver[1] + '.' + self.fc_ver[2] + '\n') f.write('** written on --> ' + time.ctime() + '\n') f.write('** file name --> ' + os.path.basename(FreeCAD.ActiveDocument.FileName) + '\n') f.write('** analysis name --> ' + self.analysis.Name + '\n') f.write('**\n') f.write('**\n') f.write('**\n') f.write('** Units\n') f.write('**\n') f.write('** Geometry (mesh data) --> mm\n') f.write("** Materials (Young's modulus) --> N/mm2 = MPa\n") f.write('** Loads (nodal loads) --> N\n') f.write('**\n') # self.ccx_elsets = [ { # 'beamsection_obj' : 'beamsection_obj' if exists # 'shellthickness_obj' : shellthickness_obj' if exists # 'ccx_elset' : [e1, e2, e3, ... , en] or string self.ccx_eall # 'ccx_elset_name' : 'ccx_identifier_elset' # 'mat_obj_name' : 'mat_obj.Name' # 'ccx_mat_name' : 'mat_obj.Material['Name']' !!! not unique !!! # }, # {}, ... , {} ] def get_ccx_elsets_single_mat_single_beam(self): mat_obj = self.material_objects[0]['Object'] beamsec_obj = self.beamsection_objects[0]['Object'] ccx_elset = {} ccx_elset['beamsection_obj'] = beamsec_obj ccx_elset['ccx_elset'] = self.ccx_eall ccx_elset['ccx_elset_name'] = get_ccx_elset_beam_name(mat_obj.Name, beamsec_obj.Name) ccx_elset['mat_obj_name'] = mat_obj.Name ccx_elset['ccx_mat_name'] = mat_obj.Material['Name'] self.ccx_elsets.append(ccx_elset) def get_ccx_elsets_single_mat_single_shell(self): mat_obj = self.material_objects[0]['Object'] shellth_obj = self.shellthickness_objects[0]['Object'] ccx_elset = {} ccx_elset['shellthickness_obj'] = shellth_obj ccx_elset['ccx_elset'] = self.ccx_eall ccx_elset['ccx_elset_name'] = get_ccx_elset_shell_name(mat_obj.Name, shellth_obj.Name) ccx_elset['mat_obj_name'] = mat_obj.Name ccx_elset['ccx_mat_name'] = mat_obj.Material['Name'] self.ccx_elsets.append(ccx_elset) def get_ccx_elsets_single_mat_solid(self): mat_obj = self.material_objects[0]['Object'] ccx_elset = {} ccx_elset['ccx_elset'] = self.ccx_eall ccx_elset['ccx_elset_name'] = get_ccx_elset_solid_name(mat_obj.Name) ccx_elset['mat_obj_name'] = mat_obj.Name ccx_elset['ccx_mat_name'] = mat_obj.Material['Name'] self.ccx_elsets.append(ccx_elset) def get_ccx_elsets_single_mat_multiple_beam(self): if not self.femelement_table: self.femelement_table = FemMeshTools.get_femelement_table(self.femmesh) mat_obj = self.material_objects[0]['Object'] FemMeshTools.get_femelement_sets(self.femmesh, self.femelement_table, self.beamsection_objects) for beamsec_data in self.beamsection_objects: beamsec_obj = beamsec_data['Object'] ccx_elset = {} ccx_elset['beamsection_obj'] = beamsec_obj ccx_elset['ccx_elset'] = beamsec_data['FEMElements'] ccx_elset['ccx_elset_name'] = get_ccx_elset_beam_name(mat_obj.Name, beamsec_obj.Name, None, beamsec_data['ShortName']) ccx_elset['mat_obj_name'] = mat_obj.Name ccx_elset['ccx_mat_name'] = mat_obj.Material['Name'] self.ccx_elsets.append(ccx_elset) def get_ccx_elsets_single_mat_multiple_shell(self): if not self.femelement_table: self.femelement_table = FemMeshTools.get_femelement_table(self.femmesh) mat_obj = self.material_objects[0]['Object'] FemMeshTools.get_femelement_sets(self.femmesh, self.femelement_table, self.shellthickness_objects) for shellth_data in self.shellthickness_objects: shellth_obj = shellth_data['Object'] ccx_elset = {} ccx_elset['shellthickness_obj'] = shellth_obj ccx_elset['ccx_elset'] = shellth_data['FEMElements'] ccx_elset['ccx_elset_name'] = get_ccx_elset_shell_name(mat_obj.Name, shellth_obj.Name, None, shellth_data['ShortName']) ccx_elset['mat_obj_name'] = mat_obj.Name ccx_elset['ccx_mat_name'] = mat_obj.Material['Name'] self.ccx_elsets.append(ccx_elset) def get_ccx_elsets_multiple_mat_single_beam(self): if not self.femelement_table: self.femelement_table = FemMeshTools.get_femelement_table(self.femmesh) beamsec_obj = self.beamsection_objects[0]['Object'] FemMeshTools.get_femelement_sets(self.femmesh, self.femelement_table, self.material_objects) for mat_data in self.material_objects: mat_obj = mat_data['Object'] ccx_elset = {} ccx_elset['beamsection_obj'] = beamsec_obj ccx_elset['ccx_elset'] = mat_data['FEMElements'] ccx_elset['ccx_elset_name'] = get_ccx_elset_beam_name(mat_obj.Name, beamsec_obj.Name, mat_data['ShortName']) ccx_elset['mat_obj_name'] = mat_obj.Name ccx_elset['ccx_mat_name'] = mat_obj.Material['Name'] self.ccx_elsets.append(ccx_elset) def get_ccx_elsets_multiple_mat_single_shell(self): if not self.femelement_table: self.femelement_table = FemMeshTools.get_femelement_table(self.femmesh) shellth_obj = self.shellthickness_objects[0]['Object'] FemMeshTools.get_femelement_sets(self.femmesh, self.femelement_table, self.material_objects) for mat_data in self.material_objects: mat_obj = mat_data['Object'] ccx_elset = {} ccx_elset['shellthickness_obj'] = shellth_obj ccx_elset['ccx_elset'] = mat_data['FEMElements'] ccx_elset['ccx_elset_name'] = get_ccx_elset_shell_name(mat_obj.Name, shellth_obj.Name, mat_data['ShortName']) ccx_elset['mat_obj_name'] = mat_obj.Name ccx_elset['ccx_mat_name'] = mat_obj.Material['Name'] self.ccx_elsets.append(ccx_elset) def get_ccx_elsets_multiple_mat_solid(self): if not self.femelement_table: self.femelement_table = FemMeshTools.get_femelement_table(self.femmesh) FemMeshTools.get_femelement_sets(self.femmesh, self.femelement_table, self.material_objects) for mat_data in self.material_objects: mat_obj = mat_data['Object'] ccx_elset = {} ccx_elset['ccx_elset'] = mat_data['FEMElements'] ccx_elset['ccx_elset_name'] = get_ccx_elset_solid_name(mat_obj.Name, None, mat_data['ShortName']) ccx_elset['mat_obj_name'] = mat_obj.Name ccx_elset['ccx_mat_name'] = mat_obj.Material['Name'] self.ccx_elsets.append(ccx_elset) def get_ccx_elsets_multiple_mat_multiple_beam(self): if not self.femelement_table: self.femelement_table = FemMeshTools.get_femelement_table(self.femmesh) FemMeshTools.get_femelement_sets(self.femmesh, self.femelement_table, self.beamsection_objects) FemMeshTools.get_femelement_sets(self.femmesh, self.femelement_table, self.material_objects) for beamsec_data in self.beamsection_objects: beamsec_obj = beamsec_data['Object'] for mat_data in self.material_objects: mat_obj = mat_data['Object'] ccx_elset = {} ccx_elset['beamsection_obj'] = beamsec_obj elemids = [] for elemid in beamsec_data['FEMElements']: if elemid in mat_data['FEMElements']: elemids.append(elemid) ccx_elset['ccx_elset'] = elemids ccx_elset['ccx_elset_name'] = get_ccx_elset_beam_name(mat_obj.Name, beamsec_obj.Name, mat_data['ShortName'], beamsec_data['ShortName']) ccx_elset['mat_obj_name'] = mat_obj.Name ccx_elset['ccx_mat_name'] = mat_obj.Material['Name'] self.ccx_elsets.append(ccx_elset) def get_ccx_elsets_multiple_mat_multiple_shell(self): if not self.femelement_table: self.femelement_table = FemMeshTools.get_femelement_table(self.femmesh) FemMeshTools.get_femelement_sets(self.femmesh, self.femelement_table, self.shellthickness_objects) FemMeshTools.get_femelement_sets(self.femmesh, self.femelement_table, self.material_objects) for shellth_data in self.shellthickness_objects: shellth_obj = shellth_data['Object'] for mat_data in self.material_objects: mat_obj = mat_data['Object'] ccx_elset = {} ccx_elset['shellthickness_obj'] = shellth_obj elemids = [] for elemid in shellth_data['FEMElements']: if elemid in mat_data['FEMElements']: elemids.append(elemid) ccx_elset['ccx_elset'] = elemids ccx_elset['ccx_elset_name'] = get_ccx_elset_shell_name(mat_obj.Name, shellth_obj.Name, mat_data['ShortName'], shellth_data['ShortName']) ccx_elset['mat_obj_name'] = mat_obj.Name ccx_elset['ccx_mat_name'] = mat_obj.Material['Name'] self.ccx_elsets.append(ccx_elset) # Helpers def get_ccx_elset_beam_name(mat_name, beamsec_name, mat_short_name=None, beamsec_short_name=None): if not mat_short_name: mat_short_name = 'Mat0' if not beamsec_short_name: beamsec_short_name = 'Beam0' if len(mat_name + beamsec_name) > 20: # max identifier lenght in CalculiX for beam elsets return mat_short_name + beamsec_short_name else: return mat_name + beamsec_name def get_ccx_elset_shell_name(mat_name, shellth_name, mat_short_name=None, shellth_short_name=None): if not mat_short_name: mat_short_name = 'Mat0' if not shellth_short_name: shellth_short_name = 'Shell0' if len(mat_name + shellth_name) > 80: # standard max identifier lenght in CalculiX return mat_short_name + shellth_short_name else: return mat_name + shellth_name def get_ccx_elset_solid_name(mat_name, solid_name=None, mat_short_name=None): if not solid_name: solid_name = 'Solid' if not mat_short_name: mat_short_name = 'Mat0' if len(mat_name + solid_name) > 80: # standard max identifier lenght in CalculiX return mat_short_name + solid_name else: return mat_name + solid_name