// AreaClipper.cpp // implements CArea methods using Angus Johnson's "Clipper" /*============================== Copyright (c) 2011-2015 Dan Heeks Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. The name of the author may not be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ==============================*/ #include "Area.h" #include "clipper.hpp" using namespace ClipperLib; #define TPolygon Path #define TPolyPolygon Paths bool CArea::HolesLinked(){ return false; } //static const double PI = 3.1415926535897932; static double Clipper4Factor = 10000.0; class DoubleAreaPoint { public: double X, Y; DoubleAreaPoint(double x, double y){X = x; Y = y;} DoubleAreaPoint(const IntPoint& p){X = (double)(p.X) / Clipper4Factor; Y = (double)(p.Y) / Clipper4Factor;} IntPoint int_point(){return IntPoint((long64)(X * Clipper4Factor), (long64)(Y * Clipper4Factor));} }; static std::list pts_for_AddVertex; static void AddPoint(const DoubleAreaPoint& p) { pts_for_AddVertex.push_back(p); } static void AddVertex(const CVertex& vertex, const CVertex* prev_vertex) { if(vertex.m_type == 0 || prev_vertex == NULL) { AddPoint(DoubleAreaPoint(vertex.m_p.x * CArea::m_units, vertex.m_p.y * CArea::m_units)); } else { if(vertex.m_p != prev_vertex->m_p) { double phi,dphi,dx,dy; int Segments; int i; double ang1,ang2,phit; dx = (prev_vertex->m_p.x - vertex.m_c.x) * CArea::m_units; dy = (prev_vertex->m_p.y - vertex.m_c.y) * CArea::m_units; ang1=atan2(dy,dx); if (ang1<0) ang1+=2.0*PI; dx = (vertex.m_p.x - vertex.m_c.x) * CArea::m_units; dy = (vertex.m_p.y - vertex.m_c.y) * CArea::m_units; ang2=atan2(dy,dx); if (ang2<0) ang2+=2.0*PI; if (vertex.m_type == -1) { //clockwise if (ang2 > ang1) phit=2.0*PI-ang2+ ang1; else phit=ang1-ang2; } else { //counter_clockwise if (ang1 > ang2) phit=-(2.0*PI-ang1+ ang2); else phit=-(ang2-ang1); } //what is the delta phi to get an accurancy of aber double radius = sqrt(dx*dx + dy*dy); dphi=2*acos((radius-CArea::m_accuracy)/radius); //set the number of segments if (phit > 0) Segments=(int)ceil(phit/dphi); else Segments=(int)ceil(-phit/dphi); if (Segments < 1) Segments=1; if (Segments > 100) Segments=100; dphi=phit/(Segments); double px = prev_vertex->m_p.x * CArea::m_units; double py = prev_vertex->m_p.y * CArea::m_units; for (i=1; i<=Segments; i++) { dx = px - vertex.m_c.x * CArea::m_units; dy = py - vertex.m_c.y * CArea::m_units; phi=atan2(dy,dx); double nx = vertex.m_c.x * CArea::m_units + radius * cos(phi-dphi); double ny = vertex.m_c.y * CArea::m_units + radius * sin(phi-dphi); AddPoint(DoubleAreaPoint(nx, ny)); px = nx; py = ny; } } } } static bool IsPolygonClockwise(const TPolygon& p) { #if 1 double area = 0.0; unsigned int s = p.size(); for(unsigned int i = 0; i 0.0; #else return IsClockwise(p); #endif } static void MakeLoop(const DoubleAreaPoint &pt0, const DoubleAreaPoint &pt1, const DoubleAreaPoint &pt2, double radius) { Point p0(pt0.X, pt0.Y); Point p1(pt1.X, pt1.Y); Point p2(pt2.X, pt2.Y); Point forward0 = p1 - p0; Point right0(forward0.y, -forward0.x); right0.normalize(); Point forward1 = p2 - p1; Point right1(forward1.y, -forward1.x); right1.normalize(); int arc_dir = (radius > 0) ? 1 : -1; CVertex v0(0, p1 + right0 * radius, Point(0, 0)); CVertex v1(arc_dir, p1 + right1 * radius, p1); CVertex v2(0, p2 + right1 * radius, Point(0, 0)); double save_units = CArea::m_units; CArea::m_units = 1.0; AddVertex(v1, &v0); AddVertex(v2, &v1); CArea::m_units = save_units; } static void OffsetWithLoops(const TPolyPolygon &pp, TPolyPolygon &pp_new, double inwards_value) { Clipper c; bool inwards = (inwards_value > 0); bool reverse = false; double radius = -fabs(inwards_value); if(inwards) { // add a large square on the outside, to be removed later TPolygon p; p.push_back(DoubleAreaPoint(-10000.0, -10000.0).int_point()); p.push_back(DoubleAreaPoint(-10000.0, 10000.0).int_point()); p.push_back(DoubleAreaPoint(10000.0, 10000.0).int_point()); p.push_back(DoubleAreaPoint(10000.0, -10000.0).int_point()); c.AddPath(p, ptSubject, true); } else { reverse = true; } for(unsigned int i = 0; i < pp.size(); i++) { const TPolygon& p = pp[i]; pts_for_AddVertex.clear(); if(p.size() > 2) { if(reverse) { for(unsigned int j = p.size()-1; j > 1; j--)MakeLoop(p[j], p[j-1], p[j-2], radius); MakeLoop(p[1], p[0], p[p.size()-1], radius); MakeLoop(p[0], p[p.size()-1], p[p.size()-2], radius); } else { MakeLoop(p[p.size()-2], p[p.size()-1], p[0], radius); MakeLoop(p[p.size()-1], p[0], p[1], radius); for(unsigned int j = 2; j < p.size(); j++)MakeLoop(p[j-2], p[j-1], p[j], radius); } TPolygon loopy_polygon; loopy_polygon.reserve(pts_for_AddVertex.size()); for(std::list::iterator It = pts_for_AddVertex.begin(); It != pts_for_AddVertex.end(); It++) { loopy_polygon.push_back(It->int_point()); } c.AddPath(loopy_polygon, ptSubject, true); pts_for_AddVertex.clear(); } } //c.ForceOrientation(false); c.Execute(ctUnion, pp_new, pftNonZero, pftNonZero); if(inwards) { // remove the large square if(pp_new.size() > 0) { pp_new.erase(pp_new.begin()); } } else { // reverse all the resulting polygons TPolyPolygon copy = pp_new; pp_new.clear(); pp_new.resize(copy.size()); for(unsigned int i = 0; i < copy.size(); i++) { const TPolygon& p = copy[i]; TPolygon p_new; p_new.resize(p.size()); int size_minus_one = p.size() - 1; for(unsigned int j = 0; j < p.size(); j++)p_new[j] = p[size_minus_one - j]; pp_new[i] = p_new; } } } static void MakeObround(const Point &pt0, const CVertex &vt1, double radius) { Span span(pt0, vt1); Point forward0 = span.GetVector(0.0); Point forward1 = span.GetVector(1.0); Point right0(forward0.y, -forward0.x); Point right1(forward1.y, -forward1.x); right0.normalize(); right1.normalize(); CVertex v0(pt0 + right0 * radius); CVertex v1(vt1.m_type, vt1.m_p + right1 * radius, vt1.m_c); CVertex v2(1, vt1.m_p + right1 * -radius, vt1.m_p); CVertex v3(-vt1.m_type, pt0 + right0 * -radius, vt1.m_c); CVertex v4(1, pt0 + right0 * radius, pt0); double save_units = CArea::m_units; CArea::m_units = 1.0; AddVertex(v0, NULL); AddVertex(v1, &v0); AddVertex(v2, &v1); AddVertex(v3, &v2); AddVertex(v4, &v3); CArea::m_units = save_units; } static void OffsetSpansWithObrounds(const CArea& area, TPolyPolygon &pp_new, double radius) { Clipper c; for(std::list::const_iterator It = area.m_curves.begin(); It != area.m_curves.end(); It++) { pts_for_AddVertex.clear(); const CCurve& curve = *It; const CVertex* prev_vertex = NULL; for(std::list::const_iterator It2 = curve.m_vertices.begin(); It2 != curve.m_vertices.end(); It2++) { const CVertex& vertex = *It2; if(prev_vertex) { MakeObround(prev_vertex->m_p, vertex, radius); TPolygon loopy_polygon; loopy_polygon.reserve(pts_for_AddVertex.size()); for(std::list::iterator It = pts_for_AddVertex.begin(); It != pts_for_AddVertex.end(); It++) { loopy_polygon.push_back(It->int_point()); } c.AddPath(loopy_polygon, ptSubject, true); pts_for_AddVertex.clear(); } prev_vertex = &vertex; } } pp_new.clear(); c.Execute(ctUnion, pp_new, pftNonZero, pftNonZero); // reverse all the resulting polygons TPolyPolygon copy = pp_new; pp_new.clear(); pp_new.resize(copy.size()); for(unsigned int i = 0; i < copy.size(); i++) { const TPolygon& p = copy[i]; TPolygon p_new; p_new.resize(p.size()); int size_minus_one = p.size() - 1; for(unsigned int j = 0; j < p.size(); j++)p_new[j] = p[size_minus_one - j]; pp_new[i] = p_new; } } static void MakePolyPoly( const CArea& area, TPolyPolygon &pp, bool reverse = true ){ pp.clear(); for(std::list::const_iterator It = area.m_curves.begin(); It != area.m_curves.end(); It++) { pts_for_AddVertex.clear(); const CCurve& curve = *It; const CVertex* prev_vertex = NULL; for(std::list::const_iterator It2 = curve.m_vertices.begin(); It2 != curve.m_vertices.end(); It2++) { const CVertex& vertex = *It2; if(prev_vertex)AddVertex(vertex, prev_vertex); prev_vertex = &vertex; } TPolygon p; p.resize(pts_for_AddVertex.size()); if(reverse) { unsigned int i = pts_for_AddVertex.size() - 1;// clipper wants them the opposite way to CArea for(std::list::iterator It = pts_for_AddVertex.begin(); It != pts_for_AddVertex.end(); It++, i--) { p[i] = It->int_point(); } } else { unsigned int i = 0; for(std::list::iterator It = pts_for_AddVertex.begin(); It != pts_for_AddVertex.end(); It++, i++) { p[i] = It->int_point(); } } pp.push_back(p); } } static void SetFromResult( CCurve& curve, const TPolygon& p, bool reverse = true ) { for(unsigned int j = 0; j < p.size(); j++) { const IntPoint &pt = p[j]; DoubleAreaPoint dp(pt); CVertex vertex(0, Point(dp.X / CArea::m_units, dp.Y / CArea::m_units), Point(0.0, 0.0)); if(reverse)curve.m_vertices.push_front(vertex); else curve.m_vertices.push_back(vertex); } // make a copy of the first point at the end if(reverse)curve.m_vertices.push_front(curve.m_vertices.back()); else curve.m_vertices.push_back(curve.m_vertices.front()); if(CArea::m_fit_arcs)curve.FitArcs(); } static void SetFromResult( CArea& area, const TPolyPolygon& pp, bool reverse = true ) { // delete existing geometry area.m_curves.clear(); for(unsigned int i = 0; i < pp.size(); i++) { const TPolygon& p = pp[i]; area.m_curves.push_back(CCurve()); CCurve &curve = area.m_curves.back(); SetFromResult(curve, p, reverse); } } void CArea::Subtract(const CArea& a2) { Clipper c; TPolyPolygon pp1, pp2; MakePolyPoly(*this, pp1); MakePolyPoly(a2, pp2); c.AddPaths(pp1, ptSubject, true); c.AddPaths(pp2, ptClip, true); TPolyPolygon solution; c.Execute(ctDifference, solution); SetFromResult(*this, solution); } void CArea::Intersect(const CArea& a2) { Clipper c; TPolyPolygon pp1, pp2; MakePolyPoly(*this, pp1); MakePolyPoly(a2, pp2); c.AddPaths(pp1, ptSubject, true); c.AddPaths(pp2, ptClip, true); TPolyPolygon solution; c.Execute(ctIntersection, solution); SetFromResult(*this, solution); } void CArea::Union(const CArea& a2) { Clipper c; TPolyPolygon pp1, pp2; MakePolyPoly(*this, pp1); MakePolyPoly(a2, pp2); c.AddPaths(pp1, ptSubject, true); c.AddPaths(pp2, ptClip, true); TPolyPolygon solution; c.Execute(ctUnion, solution); SetFromResult(*this, solution); } void CArea::Xor(const CArea& a2) { Clipper c; TPolyPolygon pp1, pp2; MakePolyPoly(*this, pp1); MakePolyPoly(a2, pp2); c.AddPaths(pp1, ptSubject, true); c.AddPaths(pp2, ptClip, true); TPolyPolygon solution; c.Execute(ctXor, solution); SetFromResult(*this, solution); } void CArea::Offset(double inwards_value) { TPolyPolygon pp, pp2; MakePolyPoly(*this, pp, false); OffsetWithLoops(pp, pp2, inwards_value * m_units); SetFromResult(*this, pp2, false); this->Reorder(); } void CArea::Thicken(double value) { TPolyPolygon pp; OffsetSpansWithObrounds(*this, pp, value * m_units); SetFromResult(*this, pp, false); this->Reorder(); } void UnFitArcs(CCurve &curve) { pts_for_AddVertex.clear(); const CVertex* prev_vertex = NULL; for(std::list::const_iterator It2 = curve.m_vertices.begin(); It2 != curve.m_vertices.end(); It2++) { const CVertex& vertex = *It2; AddVertex(vertex, prev_vertex); prev_vertex = &vertex; } curve.m_vertices.clear(); for(std::list::iterator It = pts_for_AddVertex.begin(); It != pts_for_AddVertex.end(); It++) { DoubleAreaPoint &pt = *It; CVertex vertex(0, Point(pt.X / CArea::m_units, pt.Y / CArea::m_units), Point(0.0, 0.0)); curve.m_vertices.push_back(vertex); } }