FreeCAD/src/Mod/Fem/FemTools.py
Przemo Firszt 042ded01e0 FEM: Add EigenmodeLowLimit property to analysis object
Signed-off-by: Przemo Firszt <przemo@firszt.eu>
2015-10-25 12:46:22 +01:00

465 lines
22 KiB
Python

#***************************************************************************
#* *
#* Copyright (c) 2015 - Przemo Firszt <przemo@firszt.eu> *
#* *
#* This program is free software; you can redistribute it and/or modify *
#* it under the terms of the GNU Lesser General Public License (LGPL) *
#* as published by the Free Software Foundation; either version 2 of *
#* the License, or (at your option) any later version. *
#* for detail see the LICENCE text file. *
#* *
#* This program is distributed in the hope that it will be useful, *
#* but WITHOUT ANY WARRANTY; without even the implied warranty of *
#* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
#* GNU Library General Public License for more details. *
#* *
#* You should have received a copy of the GNU Library General Public *
#* License along with this program; if not, write to the Free Software *
#* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 *
#* USA *
#* *
#***************************************************************************
import FreeCAD
from PySide import QtCore
class FemTools(QtCore.QRunnable, QtCore.QObject):
finished = QtCore.Signal(int)
known_analysis_types = ["static", "frequency"]
## The constructor
# @param analysis - analysis object to be used as the core object.
# @param test_mode - True indicates that no real calculations will take place, so ccx bianry is not required. Used by test module.
# "__init__" tries to use current active analysis in analysis is left empty.
# Rises exception if analysis is not set and there is no active analysis
def __init__(self, analysis=None, test_mode=False):
QtCore.QRunnable.__init__(self)
QtCore.QObject.__init__(self)
if analysis:
## @var analysis
# FEM analysis - the core object. Has to be present.
# It's set to analysis passed in "__init__" or set to current active analysis by default if nothing has been passed to "__init__".
self.analysis = analysis
else:
import FemGui
self.analysis = FemGui.getActiveAnalysis()
if self.analysis:
self.update_objects()
self.set_analysis_type()
self.set_eigenmode_parameters()
## @var base_name
# base name of .inp/.frd file (without extension). It is used to construct .inp file path that is passed to CalculiX ccx
self.base_name = ""
## @var results_present
# boolean variable indicating if there are calculation results ready for use
self.results_present = False
self.setup_working_dir()
if test_mode:
self.ccx_binary_present = True
else:
self.ccx_binary_present = False
self.setup_ccx()
else:
raise Exception('FEM: No active analysis found!')
## Removes all result objects
# @param self The python object self
def purge_results(self):
for m in self.analysis.Member:
if (m.isDerivedFrom('Fem::FemResultObject')):
self.analysis.Document.removeObject(m.Name)
self.results_present = False
## Resets mesh deformation
# @param self The python object self
def reset_mesh_deformation(self):
if self.mesh:
self.mesh.ViewObject.applyDisplacement(0.0)
## Resets mesh color
# @param self The python object self
def reset_mesh_color(self):
if self.mesh:
self.mesh.ViewObject.NodeColor = {}
self.mesh.ViewObject.ElementColor = {}
self.mesh.ViewObject.setNodeColorByScalars()
## Resets mesh color, deformation and removes all result objects
# @param self The python object self
def reset_all(self):
self.purge_results()
self.reset_mesh_color()
self.reset_mesh_deformation()
## Sets mesh color using selected type of results (Sabs by default)
# @param self The python object self
# @param result_type Type of FEM result, allowed are:
# - U1, U2, U3 - deformation
# - Uabs - absolute deformation
# - Sabs - Von Mises stress
# @param limit cutoff value. All values over the limit are treated as equel to the limit. Useful for filtering out hot spots.
def show_result(self, result_type="Sabs", limit=None):
self.update_objects()
if result_type == "None":
self.reset_mesh_color()
return
if self.result_object:
if result_type == "Sabs":
values = self.result_object.StressValues
elif result_type == "Uabs":
values = self.result_object.DisplacementLengths
else:
match = {"U1": 0, "U2": 1, "U3": 2}
d = zip(*self.result_object.DisplacementVectors)
values = list(d[match[result_type]])
self.show_color_by_scalar_with_cutoff(values, limit)
## Sets mesh color using list of values. Internally used by show_result function.
# @param self The python object self
# @param values list of values
# @param limit cutoff value. All values over the limit are treated as equel to the limit. Useful for filtering out hot spots.
def show_color_by_scalar_with_cutoff(self, values, limit=None):
if limit:
filtered_values = []
for v in values:
if v > limit:
filtered_values.append(limit)
else:
filtered_values.append(v)
else:
filtered_values = values
self.mesh.ViewObject.setNodeColorByScalars(self.result_object.ElementNumbers, filtered_values)
def show_displacement(self, displacement_factor=0.0):
self.mesh.ViewObject.setNodeDisplacementByVectors(self.result_object.ElementNumbers,
self.result_object.DisplacementVectors)
self.mesh.ViewObject.applyDisplacement(displacement_factor)
def update_objects(self):
# [{'Object':material}, {}, ...]
# [{'Object':fixed_constraints, 'NodeSupports':bool}, {}, ...]
# [{'Object':force_constraints, 'NodeLoad':value}, {}, ...
# [{'Object':pressure_constraints, 'xxxxxxxx':value}, {}, ...]
# [{'Object':beam_sections, 'xxxxxxxx':value}, {}, ...]
# [{'Object':shell_thicknesses, 'xxxxxxxx':value}, {}, ...]
## @var mesh
# mesh of the analysis. Used to generate .inp file and to show results
self.mesh = None
self.material = []
## @var fixed_constraints
# set of fixed constraints from the analysis. Updated with update_objects
# Individual constraints are "Fem::ConstraintFixed" type
self.fixed_constraints = []
## @var force_constraints
# set of force constraints from the analysis. Updated with update_objects
# Individual constraints are "Fem::ConstraintForce" type
self.force_constraints = []
## @var pressure_constraints
# set of pressure constraints from the analysis. Updated with update_objects
# Individual constraints are "Fem::ConstraintPressure" type
self.pressure_constraints = []
self.beam_sections = []
self.shell_thicknesses = []
for m in self.analysis.Member:
if m.isDerivedFrom("Fem::FemMeshObject"):
self.mesh = m
elif m.isDerivedFrom("App::MaterialObjectPython"):
material_dict = {}
material_dict['Object'] = m
self.material.append(material_dict)
elif m.isDerivedFrom("Fem::ConstraintFixed"):
fixed_constraint_dict = {}
fixed_constraint_dict['Object'] = m
self.fixed_constraints.append(fixed_constraint_dict)
elif m.isDerivedFrom("Fem::ConstraintForce"):
force_constraint_dict = {}
force_constraint_dict['Object'] = m
self.force_constraints.append(force_constraint_dict)
elif m.isDerivedFrom("Fem::ConstraintPressure"):
PressureObjectDict = {}
PressureObjectDict['Object'] = m
self.pressure_constraints.append(PressureObjectDict)
elif hasattr(m, "Proxy") and m.Proxy.Type == 'FemBeamSection':
beam_section_dict = {}
beam_section_dict['Object'] = m
self.beam_sections.append(beam_section_dict)
elif hasattr(m, "Proxy") and m.Proxy.Type == 'FemShellThickness':
shell_thickness_dict = {}
shell_thickness_dict['Object'] = m
self.shell_thicknesses.append(shell_thickness_dict)
def check_prerequisites(self):
message = ""
if not self.analysis:
message += "No active Analysis\n"
if self.analysis_type not in self.known_analysis_types:
message += "Unknown analysis type: {}\n".format(self.analysis_type)
if not self.working_dir:
message += "Working directory not set\n"
import os
if not (os.path.isdir(self.working_dir)):
message += "Working directory \'{}\' doesn't exist.".format(self.working_dir)
if not self.mesh:
message += "No mesh object in the Analysis\n"
if not self.material:
message += "No material object in the Analysis\n"
if not self.fixed_constraints:
message += "No fixed-constraint nodes defined in the Analysis\n"
if self.analysis_type == "static":
if not (self.force_constraints or self.pressure_constraints):
message += "No force-constraint or pressure-constraint defined in the Analysis\n"
if self.beam_sections:
has_no_references = False
for b in self.beam_sections:
if len(b['Object'].References) == 0:
if has_no_references is True:
message += "More than one BeamSection has empty References list (Only one empty References list is allowed!).\n"
has_no_references = True
if self.shell_thicknesses:
has_no_references = False
for s in self.shell_thicknesses:
if len(s['Object'].References) == 0:
if has_no_references is True:
message += "More than one ShellThickness has empty References list (Only one empty References list is allowed!).\n"
has_no_references = True
return message
def write_inp_file(self):
import ccxInpWriter as iw
import sys
self.inp_file_name = ""
try:
inp_writer = iw.inp_writer(self.analysis, self.mesh, self.material,
self.fixed_constraints,
self.force_constraints, self.pressure_constraints,
self.beam_sections, self.shell_thicknesses,
self.analysis_type, self.eigenmode_parameters,
self.working_dir)
self.inp_file_name = inp_writer.write_calculix_input_file()
except:
print "Unexpected error when writing CalculiX input file:", sys.exc_info()[0]
raise
def start_ccx(self):
import multiprocessing
import os
import subprocess
self.ccx_stdout = ""
self.ccx_stderr = ""
if self.inp_file_name != "" and self.ccx_binary_present:
ont_backup = os.environ.get('OMP_NUM_THREADS')
if not ont_backup:
ont_backup = ""
_env = os.putenv('OMP_NUM_THREADS', str(multiprocessing.cpu_count()))
# change cwd because ccx may crash if directory has no write permission
# there is also a limit of the length of file names so jump to the document directory
cwd = QtCore.QDir.currentPath()
f = QtCore.QFileInfo(self.inp_file_name)
QtCore.QDir.setCurrent(f.path())
p = subprocess.Popen([self.ccx_binary, "-i ", f.baseName()],
stdout=subprocess.PIPE, stderr=subprocess.PIPE,
shell=False, env=_env)
self.ccx_stdout, self.ccx_stderr = p.communicate()
os.putenv('OMP_NUM_THREADS', ont_backup)
QtCore.QDir.setCurrent(cwd)
return p.returncode
return -1
## Sets eigenmode parameters for CalculiX frequency analysis
# @param self The python object self
# @param number number of eigenmodes that wll be calculated, default read for FEM prefs or 10 if not set in the FEM prefs
# @param limit_low lower value of requested eigenfrequency range, default read for FEM prefs or 0.0 if not set in the FEM prefs
# @param limit_high higher value of requested eigenfrequency range, default 1000000.0
def set_eigenmode_parameters(self, number=None, limit_low=None, limit_high=1000000.0):
self.fem_prefs = FreeCAD.ParamGet("User parameter:BaseApp/Preferences/Mod/Fem")
if number is not None:
_number = number
else:
try:
_number = self.analysis.NumberOfEigenmodes
except:
#Not yet in prefs, so it will always default to 10
_number = self.fem_prefs.GetString("NumberOfEigenmodes", 10)
if _number < 1:
_number = 1
if limit_low is not None:
_limit_low = limit_low
else:
try:
_limit_low = self.analysis.EigenmodeLowLimit
except:
#Not yet in prefs, so it will always default to 0.0
_limit_low = self.fem_prefs.GetString("EigenmodeLowLimit", 0.0)
self.eigenmode_parameters = (_number, _limit_low, limit_high)
## Sets base_name
# @param self The python object self
# @param base_name base name of .inp/.frd file (without extension). It is used to construct .inp file path that is passed to CalculiX ccx
def set_base_name(self, base_name=None):
if base_name is None:
self.base_name = ""
else:
self.base_name = base_name
# Update inp file name
self.set_inp_file_name()
## Sets inp file name that is used to determine location and name of frd result file.
# Normally inp file name is set set by write_inp_file
# Can be used to read mock calculations file
# @param self The python object self
# @inp_file_name .inp file name. If empty the .inp file path is constructed from working_dir, base_name and string ".inp"
def set_inp_file_name(self, inp_file_name=None):
if inp_file_name is not None:
self.inp_file_name = inp_file_name
else:
self.inp_file_name = self.working_dir + '/' + self.base_name + '.inp'
## Sets analysis type.
# @param self The python object self
# @param analysis_type type of the analysis. Allowed values are:
# - static
# - frequency
def set_analysis_type(self, analysis_type=None):
if analysis_type is not None:
self.analysis_type = analysis_type
else:
try:
self.analysis_type = self.analysis.AnalysisType
except:
self.fem_prefs = FreeCAD.ParamGet("User parameter:BaseApp/Preferences/Mod/Fem")
self.analysis_type = self.fem_prefs.GetString("AnalysisType", "static")
## Sets working dir for ccx execution. Called with no working_dir uses WorkingDir from FEM preferences
# @param self The python object self
# @working_dir directory to be used for writing .inp file and executing CalculiX ccx
def setup_working_dir(self, working_dir=None):
import os
if working_dir is not None:
self.working_dir = working_dir
else:
try:
self.working_dir = self.analysis.WorkingDir
except:
FreeCAD.ParamGet("User parameter:BaseApp/Preferences/Mod/Fem").GetString("WorkingDir")
self.working_dir = FreeCAD.ParamGet("User parameter:BaseApp/Preferences/Mod/Fem").GetString("WorkingDir")
if not (os.path.isdir(self.working_dir)):
try:
os.makedirs(self.working_dir)
except:
print ("Dir \'{}\' doesn't exist and cannot be created.".format(self.working_dir))
import tempfile
self.working_dir = tempfile.gettempdir()
print ("Dir \'{}\' will be used instead.".format(self.working_dir))
# Update inp file name
self.set_inp_file_name()
## Sets CalculiX ccx binary path and velidates if the binary can be executed
# @param self The python object self
# @ccx_binary path to ccx binary, default is guessed: "bin/ccx" windows, "ccx" for other systems
# @ccx_binary_sig expected output form ccx when run empty. Default value is "CalculiX.exe -i jobname"
def setup_ccx(self, ccx_binary=None, ccx_binary_sig="CalculiX"):
if not ccx_binary:
self.fem_prefs = FreeCAD.ParamGet("User parameter:BaseApp/Preferences/Mod/Fem")
ccx_binary = self.fem_prefs.GetString("ccxBinaryPath", "")
if not ccx_binary:
from platform import system
if system() == "Linux":
ccx_binary = "ccx"
elif system() == "Windows":
ccx_binary = FreeCAD.getHomePath() + "bin/ccx.exe"
else:
ccx_binary = "ccx"
self.ccx_binary = ccx_binary
import subprocess
try:
p = subprocess.Popen([self.ccx_binary], stdout=subprocess.PIPE,
stderr=subprocess.PIPE, shell=False)
ccx_stdout, ccx_stderr = p.communicate()
if ccx_binary_sig in ccx_stdout:
self.ccx_binary_present = True
except OSError, e:
FreeCAD.Console.PrintError(e.message)
if e.errno == 2:
raise Exception("FEM: CalculiX binary ccx \'{}\' not found. Please set it in FEM preferences.".format(ccx_binary))
except Exception as e:
FreeCAD.Console.PrintError(e.message)
raise Exception("FEM: CalculiX ccx \'{}\' output \'{}\' doesn't contain expected phrase \'{}\'. Please use ccx 2.6 or newer".
format(ccx_binary, ccx_stdout, ccx_binary_sig))
## Load results of ccx calculations from .frd file.
# @param self The python object self
def load_results(self):
import ccxFrdReader
import os
self.results_present = False
frd_result_file = os.path.splitext(self.inp_file_name)[0] + '.frd'
if os.path.isfile(frd_result_file):
ccxFrdReader.importFrd(frd_result_file, self.analysis)
for m in self.analysis.Member:
if m.isDerivedFrom("Fem::FemResultObject"):
self.result_object = m
if self.result_object is not None:
self.results_present = True
else:
raise Exception('FEM: No results found at {}!'.format(frd_result_file))
def use_results(self, results_name=None):
for m in self.analysis.Member:
if m.isDerivedFrom("Fem::FemResultObject") and m.Name == results_name:
self.result_object = m
break
if not self.result_object:
raise Exception("{} doesn't exist".format(results_name))
def run(self):
ret_code = 0
message = self.check_prerequisites()
if not message:
self.write_inp_file()
from FreeCAD import Base
progress_bar = Base.ProgressIndicator()
progress_bar.start("Running CalculiX ccx...", 0)
ret_code = self.start_ccx()
self.finished.emit(ret_code)
progress_bar.stop()
else:
print "Running analysis failed! " + message
if ret_code or self.ccx_stderr:
print "Analysis failed with exit code {}".format(ret_code)
print "--------start of stderr-------"
print self.ccx_stderr
print "--------end of stderr---------"
print "--------start of stdout-------"
print self.ccx_stdout
print "--------end of stdout---------"
## Returns minimum, average and maximum value for provided result type
# @param self The python object self
# @param result_type Type of FEM result, allowed are:
# - U1, U2, U3 - deformation
# - Uabs - absolute deformation
# - Sabs - Von Mises stress
# - None - always return (0.0, 0.0, 0.0)
def get_stats(self, result_type):
stats = (0.0, 0.0, 0.0)
for m in self.analysis.Member:
if m.isDerivedFrom("Fem::FemResultObject"):
match = {"U1": (m.Stats[0], m.Stats[1], m.Stats[2]),
"U2": (m.Stats[3], m.Stats[4], m.Stats[5]),
"U3": (m.Stats[6], m.Stats[7], m.Stats[8]),
"Uabs": (m.Stats[9], m.Stats[10], m.Stats[11]),
"Sabs": (m.Stats[12], m.Stats[13], m.Stats[14]),
"None": (0.0, 0.0, 0.0)}
stats = match[result_type]
return stats