FreeCAD/src/Mod/Part/App/PlateSurfacePyImp.cpp
2015-11-19 15:27:35 +01:00

209 lines
7.3 KiB
C++

/***************************************************************************
* Copyright (c) 2015 Werner Mayer <wmayer[at]users.sourceforge.net> *
* *
* This file is part of the FreeCAD CAx development system. *
* *
* This library is free software; you can redistribute it and/or *
* modify it under the terms of the GNU Library General Public *
* License as published by the Free Software Foundation; either *
* version 2 of the License, or (at your option) any later version. *
* *
* This library is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU Library General Public License for more details. *
* *
* You should have received a copy of the GNU Library General Public *
* License along with this library; see the file COPYING.LIB. If not, *
* write to the Free Software Foundation, Inc., 59 Temple Place, *
* Suite 330, Boston, MA 02111-1307, USA *
* *
***************************************************************************/
#include "PreCompiled.h"
#ifndef _PreComp_
# include <GeomPlate_MakeApprox.hxx>
# include <GeomPlate_Surface.hxx>
# include <GeomPlate_BuildPlateSurface.hxx>
# include <GeomPlate_PointConstraint.hxx>
# include <GeomPlate_CurveConstraint.hxx>
#endif
#include <Base/GeometryPyCXX.h>
#include <Base/VectorPy.h>
#include <Base/Vector3D.h>
#include "OCCError.h"
#include "Geometry.h"
#include "PlateSurfacePy.h"
#include "PlateSurfacePy.cpp"
#include "BSplineSurfacePy.h"
using namespace Part;
// returns a string which represents the object e.g. when printed in python
std::string PlateSurfacePy::representation(void) const
{
return "<PlateSurface object>";
}
PyObject *PlateSurfacePy::PyMake(struct _typeobject *, PyObject *, PyObject *) // Python wrapper
{
// create a new instance of PlateSurfacePy and the Twin object
return new PlateSurfacePy(new GeomPlateSurface);
}
// constructor method
int PlateSurfacePy::PyInit(PyObject* args, PyObject* kwds)
{
static char* kwds_Parameter[] = {"Surface","Points","Curves","Degree",
"NbPtsOnCur","NbIter","Tol2d","Tol3d","TolAng","TolCurv","Anisotropie",NULL};
PyObject* surface = 0;
PyObject* points = 0;
PyObject* curves = 0;
int Degree = 3;
int NbPtsOnCur = 10;
int NbIter = 3;
double Tol2d = 0.00001;
double Tol3d = 0.0001;
double TolAng = 0.01;
double TolCurv = 0.1;
PyObject* Anisotropie = Py_False;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|O!OOiiiddddO!", kwds_Parameter,
&(GeometryPy::Type), &surface, &points, &curves,
&Degree, &NbPtsOnCur, &NbIter, &Tol2d, &Tol3d, &TolAng, &TolCurv,
&PyBool_Type,&Anisotropie))
return -1;
if (!surface && !points && !curves) {
PyErr_SetString(PyExc_ValueError, "set points or curves as constraints");
return -1;
}
Handle_Geom_Surface surf;
if (surface) {
GeometryPy* pcGeo = static_cast<GeometryPy*>(surface);
surf = Handle_Geom_Surface::DownCast
(pcGeo->getGeometryPtr()->handle());
if (surf.IsNull()) {
PyErr_SetString(PyExc_TypeError, "geometry is not a surface");
return -1;
}
}
try {
GeomPlate_BuildPlateSurface buildPlate(Degree, NbPtsOnCur, NbIter, Tol2d, Tol3d, TolAng, TolCurv,
PyObject_IsTrue(Anisotropie) ? Standard_True : Standard_False);
if (!surf.IsNull()) {
buildPlate.LoadInitSurface(surf);
if (!points && !curves) {
Standard_Real U1,U2,V1,V2;
surf->Bounds(U1,U2,V1,V2);
buildPlate.Add(new GeomPlate_PointConstraint(surf->Value(U1,V1),0));
buildPlate.Add(new GeomPlate_PointConstraint(surf->Value(U1,V2),0));
buildPlate.Add(new GeomPlate_PointConstraint(surf->Value(U2,V1),0));
buildPlate.Add(new GeomPlate_PointConstraint(surf->Value(U2,V2),0));
}
}
if (points) {
Py::Sequence list(points);
for (Py::Sequence::iterator it = list.begin(); it != list.end(); ++it) {
Base::Vector3d vec = Py::Vector(*it).toVector();
Handle(GeomPlate_PointConstraint) PCont = new GeomPlate_PointConstraint(gp_Pnt(vec.x,vec.y,vec.z),0);
buildPlate.Add(PCont);
}
}
if (curves) {
Py::Sequence list(curves);
for (Py::Sequence::iterator it = list.begin(); it != list.end(); ++it) {
//TODO
}
}
buildPlate.Perform();
getGeomPlateSurfacePtr()->setHandle(buildPlate.Surface());
return 0;
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PartExceptionOCCError, e->GetMessageString());
return -1;
}
}
PyObject* PlateSurfacePy::makeApprox(PyObject *args, PyObject* kwds)
{
static char* kwds_Parameter[] = {"Tol3d","MaxSegments","MaxDegree","MaxDistance",
"CritOrder","Continuity","EnlargeCoeff",NULL};
double tol3d=0.01;
int maxSeg=9;
int maxDegree=3;
double dmax = 0.0001;
int critOrder=0;
char* cont = "C1";
double enlargeCoeff = 1.1;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|diidisd", kwds_Parameter,
&tol3d, &maxSeg, &maxDegree, &dmax, &critOrder, &cont, &enlargeCoeff))
return 0;
GeomAbs_Shape continuity;
std::string uc = cont;
if (uc == "C0")
continuity = GeomAbs_C0;
else if (uc == "C1")
continuity = GeomAbs_C1;
else if (uc == "C2")
continuity = GeomAbs_C2;
else if (uc == "C3")
continuity = GeomAbs_C3;
else if (uc == "CN")
continuity = GeomAbs_CN;
else if (uc == "G1")
continuity = GeomAbs_G1;
else
continuity = GeomAbs_C1;
PY_TRY {
GeomPlate_MakeApprox approx(Handle_GeomPlate_Surface::DownCast(getGeomPlateSurfacePtr()->handle()),
tol3d, maxSeg, maxDegree, dmax, critOrder, continuity, enlargeCoeff);
Handle_Geom_BSplineSurface hSurf = approx.Surface();
if (!hSurf.IsNull()) {
return new Part::BSplineSurfacePy(new Part::GeomBSplineSurface(hSurf));
}
PyErr_SetString(PyExc_RuntimeError, "Approximation of B-Spline surface failed");
return 0;
} PY_CATCH_OCC;
}
PyObject* PlateSurfacePy::uIso(PyObject *args)
{
PyErr_SetString(PyExc_NotImplementedError, "Not yet implemented");
return 0;
}
PyObject* PlateSurfacePy::vIso(PyObject *args)
{
PyErr_SetString(PyExc_NotImplementedError, "Not yet implemented");
return 0;
}
PyObject *PlateSurfacePy::getCustomAttributes(const char* /*attr*/) const
{
return 0;
}
int PlateSurfacePy::setCustomAttributes(const char* /*attr*/, PyObject* /*obj*/)
{
return 0;
}