FreeCAD/src/Mod/Part/App/BSplineSurfacePyImp.cpp

1679 lines
55 KiB
C++

/***************************************************************************
* Copyright (c) 2008 Werner Mayer <wmayer[at]users.sourceforge.net> *
* *
* This file is part of the FreeCAD CAx development system. *
* *
* This library is free software; you can redistribute it and/or *
* modify it under the terms of the GNU Library General Public *
* License as published by the Free Software Foundation; either *
* version 2 of the License, or (at your option) any later version. *
* *
* This library is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU Library General Public License for more details. *
* *
* You should have received a copy of the GNU Library General Public *
* License along with this library; see the file COPYING.LIB. If not, *
* write to the Free Software Foundation, Inc., 59 Temple Place, *
* Suite 330, Boston, MA 02111-1307, USA *
* *
***************************************************************************/
#include "PreCompiled.h"
#ifndef _PreComp_
# include <Geom_BSplineCurve.hxx>
# include <Geom_BSplineSurface.hxx>
# include <Geom_BSplineCurve.hxx>
# include <TColStd_Array1OfReal.hxx>
# include <TColStd_Array2OfReal.hxx>
# include <TColStd_Array1OfInteger.hxx>
# include <TColgp_Array1OfPnt.hxx>
# include <TColgp_Array2OfPnt.hxx>
# include <Precision.hxx>
# include <GeomAPI_PointsToBSplineSurface.hxx>
# include <GeomAbs_Shape.hxx>
#endif
#include <Base/GeometryPyCXX.h>
#include <Base/VectorPy.h>
#include "OCCError.h"
#include "Geometry.h"
#include "BSplineCurvePy.h"
#include "BSplineSurfacePy.h"
#include "BSplineSurfacePy.cpp"
using namespace Part;
// returns a string which represents the object e.g. when printed in python
std::string BSplineSurfacePy::representation(void) const
{
return "<BSplineSurface object>";
}
PyObject *BSplineSurfacePy::PyMake(struct _typeobject *, PyObject *, PyObject *) // Python wrapper
{
// create a new instance of BSplineSurfacePy and the Twin object
return new BSplineSurfacePy(new GeomBSplineSurface);
}
// constructor method
int BSplineSurfacePy::PyInit(PyObject* /*args*/, PyObject* /*kwd*/)
{
return 0;
}
PyObject* BSplineSurfacePy::bounds(PyObject *args)
{
if (!PyArg_ParseTuple(args, ""))
return 0;
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
Py::Tuple bound(4);
Standard_Real u1,u2,v1,v2;
surf->Bounds(u1,u2,v1,v2);
bound.setItem(0,Py::Float(u1));
bound.setItem(1,Py::Float(u2));
bound.setItem(2,Py::Float(v1));
bound.setItem(3,Py::Float(v2));
return Py::new_reference_to(bound);
}
PyObject* BSplineSurfacePy::isURational(PyObject *args)
{
if (!PyArg_ParseTuple(args, ""))
return 0;
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
Standard_Boolean val = surf->IsURational();
return PyBool_FromLong(val ? 1 : 0);
}
PyObject* BSplineSurfacePy::isVRational(PyObject *args)
{
if (!PyArg_ParseTuple(args, ""))
return 0;
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
Standard_Boolean val = surf->IsVRational();
return PyBool_FromLong(val ? 1 : 0);
}
PyObject* BSplineSurfacePy::isUPeriodic(PyObject *args)
{
if (!PyArg_ParseTuple(args, ""))
return 0;
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
Standard_Boolean val = surf->IsUPeriodic();
return PyBool_FromLong(val ? 1 : 0);
}
PyObject* BSplineSurfacePy::isVPeriodic(PyObject *args)
{
if (!PyArg_ParseTuple(args, ""))
return 0;
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
Standard_Boolean val = surf->IsVPeriodic();
return PyBool_FromLong(val ? 1 : 0);
}
PyObject* BSplineSurfacePy::isUClosed(PyObject *args)
{
if (!PyArg_ParseTuple(args, ""))
return 0;
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
Standard_Boolean val = surf->IsUClosed();
return PyBool_FromLong(val ? 1 : 0);
}
PyObject* BSplineSurfacePy::isVClosed(PyObject *args)
{
if (!PyArg_ParseTuple(args, ""))
return 0;
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
Standard_Boolean val = surf->IsVPeriodic();
return PyBool_FromLong(val ? 1 : 0);
}
PyObject* BSplineSurfacePy::increaseDegree(PyObject *args)
{
int udegree, vdegree;
if (!PyArg_ParseTuple(args, "ii",&udegree,&vdegree))
return 0;
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
surf->IncreaseDegree(udegree,vdegree);
Py_Return;
}
PyObject* BSplineSurfacePy::increaseUMultiplicity(PyObject *args)
{
int mult=-1;
int start, end;
if (!PyArg_ParseTuple(args, "ii|i", &start, &end, &mult))
return 0;
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
if (mult == -1) {
mult = end;
surf->IncreaseUMultiplicity(start, mult);
}
else {
surf->IncreaseUMultiplicity(start, end, mult);
}
Py_Return;
}
PyObject* BSplineSurfacePy::increaseVMultiplicity(PyObject *args)
{
int mult=-1;
int start, end;
if (!PyArg_ParseTuple(args, "ii|i", &start, &end, &mult))
return 0;
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
if (mult == -1) {
mult = end;
surf->IncreaseVMultiplicity(start, mult);
}
else {
surf->IncreaseVMultiplicity(start, end, mult);
}
Py_Return;
}
PyObject* BSplineSurfacePy::incrementUMultiplicity(PyObject *args)
{
int start, end, mult;
if (!PyArg_ParseTuple(args, "iii", &start, &end, &mult))
return 0;
try {
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
surf->IncrementUMultiplicity(start, end, mult);
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PartExceptionOCCError, e->GetMessageString());
return 0;
}
Py_Return;
}
PyObject* BSplineSurfacePy::incrementVMultiplicity(PyObject *args)
{
int start, end, mult;
if (!PyArg_ParseTuple(args, "iii", &start, &end, &mult))
return 0;
try {
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
surf->IncrementVMultiplicity(start, end, mult);
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PartExceptionOCCError, e->GetMessageString());
return 0;
}
Py_Return;
}
PyObject* BSplineSurfacePy::insertUKnot(PyObject *args)
{
double U, tol = 0.0;
int M=1;
PyObject* add = Py_True;
if (!PyArg_ParseTuple(args, "did|O!", &U, &M, &tol, &PyBool_Type, &add))
return 0;
try {
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
surf->InsertUKnot(U,M,tol,PyObject_IsTrue(add) ? Standard_True : Standard_False);
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PartExceptionOCCError, e->GetMessageString());
return 0;
}
Py_Return;
}
PyObject* BSplineSurfacePy::insertUKnots(PyObject *args)
{
double tol = 0.0;
PyObject* add = Py_True;
PyObject* obj1;
PyObject* obj2;
if (!PyArg_ParseTuple(args, "OO|dO!", &obj1,
&obj2,
&tol, &PyBool_Type, &add))
return 0;
try {
Py::Sequence knots(obj1);
TColStd_Array1OfReal k(1,knots.size());
int index=1;
for (Py::Sequence::iterator it = knots.begin(); it != knots.end(); ++it) {
Py::Float val(*it);
k(index++) = (double)val;
}
Py::Sequence mults(obj2);
TColStd_Array1OfInteger m(1,mults.size());
index=1;
for (Py::Sequence::iterator it = mults.begin(); it != mults.end(); ++it) {
#if PY_MAJOR_VERSION >= 3
Py::Long val(*it);
#else
Py::Int val(*it);
#endif
m(index++) = (int)val;
}
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
surf->InsertUKnots(k,m,tol,PyObject_IsTrue(add) ? Standard_True : Standard_False);
Py_Return;
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PartExceptionOCCError, e->GetMessageString());
return 0;
}
Py_Return;
}
PyObject* BSplineSurfacePy::insertVKnot(PyObject *args)
{
double V, tol = 0.0;
int M=1;
PyObject* add = Py_True;
if (!PyArg_ParseTuple(args, "did|O!", &V, &M, &tol, &PyBool_Type, &add))
return 0;
try {
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
surf->InsertVKnot(V,M,tol,PyObject_IsTrue(add) ? Standard_True : Standard_False);
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PartExceptionOCCError, e->GetMessageString());
return 0;
}
Py_Return;
}
PyObject* BSplineSurfacePy::insertVKnots(PyObject *args)
{
double tol = 0.0;
PyObject* add = Py_True;
PyObject* obj1;
PyObject* obj2;
if (!PyArg_ParseTuple(args, "OO|dO!", &obj1,
&obj2,
&tol, &PyBool_Type, &add))
return 0;
try {
Py::Sequence knots(obj1);
TColStd_Array1OfReal k(1,knots.size());
int index=1;
for (Py::Sequence::iterator it = knots.begin(); it != knots.end(); ++it) {
Py::Float val(*it);
k(index++) = (double)val;
}
Py::Sequence mults(obj2);
TColStd_Array1OfInteger m(1,mults.size());
index=1;
for (Py::Sequence::iterator it = mults.begin(); it != mults.end(); ++it) {
#if PY_MAJOR_VERSION >= 3
Py::Long val(*it);
#else
Py::Int val(*it);
#endif
m(index++) = (int)val;
}
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
surf->InsertVKnots(k,m,tol,PyObject_IsTrue(add) ? Standard_True : Standard_False);
Py_Return;
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PartExceptionOCCError, e->GetMessageString());
return 0;
}
Py_Return;
}
PyObject* BSplineSurfacePy::removeUKnot(PyObject *args)
{
double tol;
int Index,M;
if (!PyArg_ParseTuple(args, "iid", &Index, &M, &tol))
return 0;
try {
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
Standard_Boolean ok = surf->RemoveUKnot(Index,M,tol);
return PyBool_FromLong(ok ? 1 : 0);
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PartExceptionOCCError, e->GetMessageString());
return 0;
}
}
PyObject* BSplineSurfacePy::removeVKnot(PyObject *args)
{
double tol;
int Index,M;
if (!PyArg_ParseTuple(args, "iid", &Index, &M, &tol))
return 0;
try {
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
Standard_Boolean ok = surf->RemoveVKnot(Index,M,tol);
return PyBool_FromLong(ok ? 1 : 0);
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PartExceptionOCCError, e->GetMessageString());
return 0;
}
}
PyObject* BSplineSurfacePy::segment(PyObject *args)
{
double u1,u2,v1,v2;
if (!PyArg_ParseTuple(args, "dddd", &u1,&u2,&v1,&v2))
return 0;
try {
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
surf->Segment(u1,u2,v1,v2);
Py_Return;
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PartExceptionOCCError, e->GetMessageString());
return 0;
}
}
PyObject* BSplineSurfacePy::setUKnot(PyObject *args)
{
int Index, M=-1;
double K;
if (!PyArg_ParseTuple(args, "id|i", &Index, &K, &M))
return 0;
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
if (M == -1) {
surf->SetUKnot(Index, K);
}
else {
surf->SetUKnot(Index, K, M);
}
Py_Return;
}
PyObject* BSplineSurfacePy::setVKnot(PyObject *args)
{
int Index, M=-1;
double K;
if (!PyArg_ParseTuple(args, "id|i", &Index, &K, &M))
return 0;
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
if (M == -1) {
surf->SetUKnot(Index, K);
}
else {
surf->SetUKnot(Index, K, M);
}
Py_Return;
}
PyObject* BSplineSurfacePy::getUKnot(PyObject *args)
{
int Index;
if (!PyArg_ParseTuple(args, "i", &Index))
return 0;
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
double M = surf->UKnot(Index);
return Py_BuildValue("d",M);
}
PyObject* BSplineSurfacePy::getVKnot(PyObject *args)
{
int Index;
if (!PyArg_ParseTuple(args, "i", &Index))
return 0;
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
double M = surf->VKnot(Index);
return Py_BuildValue("d",M);
}
PyObject* BSplineSurfacePy::setUKnots(PyObject *args)
{
PyObject* obj;
if (!PyArg_ParseTuple(args, "O", &obj))
return 0;
try {
Py::Sequence list(obj);
TColStd_Array1OfReal k(1,list.size());
int index=1;
for (Py::Sequence::iterator it = list.begin(); it != list.end(); ++it) {
Py::Float val(*it);
k(index++) = (double)val;
}
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
surf->SetUKnots(k);
Py_Return;
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PartExceptionOCCError, e->GetMessageString());
return 0;
}
}
PyObject* BSplineSurfacePy::setVKnots(PyObject *args)
{
PyObject* obj;
if (!PyArg_ParseTuple(args, "O", &obj))
return 0;
try {
Py::Sequence list(obj);
TColStd_Array1OfReal k(1,list.size());
int index=1;
for (Py::Sequence::iterator it = list.begin(); it != list.end(); ++it) {
Py::Float val(*it);
k(index++) = (double)val;
}
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
surf->SetVKnots(k);
Py_Return;
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PartExceptionOCCError, e->GetMessageString());
return 0;
}
}
PyObject* BSplineSurfacePy::getUKnots(PyObject *args)
{
if (!PyArg_ParseTuple(args, ""))
return 0;
try {
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
TColStd_Array1OfReal w(1,surf->NbUKnots());
surf->UKnots(w);
Py::List knots;
for (Standard_Integer i=w.Lower(); i<=w.Upper(); i++) {
knots.append(Py::Float(w(i)));
}
return Py::new_reference_to(knots);
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PartExceptionOCCError, e->GetMessageString());
return 0;
}
}
PyObject* BSplineSurfacePy::getVKnots(PyObject *args)
{
if (!PyArg_ParseTuple(args, ""))
return 0;
try {
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
TColStd_Array1OfReal w(1,surf->NbVKnots());
surf->VKnots(w);
Py::List knots;
for (Standard_Integer i=w.Lower(); i<=w.Upper(); i++) {
knots.append(Py::Float(w(i)));
}
return Py::new_reference_to(knots);
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PartExceptionOCCError, e->GetMessageString());
return 0;
}
}
PyObject* BSplineSurfacePy::setPole(PyObject *args)
{
int uindex, vindex;
double weight=-1.0;
PyObject* p;
if (!PyArg_ParseTuple(args, "iiO!|d", &uindex,&vindex,&(Base::VectorPy::Type),&p,&weight))
return 0;
Base::Vector3d vec = static_cast<Base::VectorPy*>(p)->value();
gp_Pnt pnt(vec.x, vec.y, vec.z);
try {
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
if (weight < 0.0)
surf->SetPole(uindex,vindex,pnt);
else
surf->SetPole(uindex,vindex,pnt,weight);
Py_Return;
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PartExceptionOCCError, e->GetMessageString());
return 0;
}
}
PyObject* BSplineSurfacePy::setPoleCol(PyObject *args)
{
int vindex;
PyObject* obj;
PyObject* obj2=0;
if (!PyArg_ParseTuple(args, "iO|O",&vindex,&obj,&obj2))
return 0;
try {
Py::Sequence list(obj);
TColgp_Array1OfPnt poles(1, list.size());
int index=1;
for (Py::Sequence::iterator it = list.begin(); it != list.end(); ++it) {
Py::Vector p(*it);
Base::Vector3d v = p.toVector();
poles(index++) = gp_Pnt(v.x,v.y,v.z);
}
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
if (obj2 == 0) {
surf->SetPoleCol(vindex, poles);
}
else {
Py::Sequence list(obj2);
TColStd_Array1OfReal weights(1, list.size());
int index=1;
for (Py::Sequence::iterator it = list.begin(); it != list.end(); ++it) {
weights(index++) = (double)Py::Float(*it);
}
surf->SetPoleCol(vindex, poles, weights);
}
Py_Return;
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PartExceptionOCCError, e->GetMessageString());
return 0;
}
}
PyObject* BSplineSurfacePy::setPoleRow(PyObject *args)
{
int uindex;
PyObject* obj;
PyObject* obj2=0;
if (!PyArg_ParseTuple(args, "iO|O",&uindex,&obj,&obj2))
return 0;
try {
Py::Sequence list(obj);
TColgp_Array1OfPnt poles(1, list.size());
int index=1;
for (Py::Sequence::iterator it = list.begin(); it != list.end(); ++it) {
Py::Vector p(*it);
Base::Vector3d v = p.toVector();
poles(index++) = gp_Pnt(v.x,v.y,v.z);
}
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
if (obj2 == 0) {
surf->SetPoleRow(uindex, poles);
}
else {
Py::Sequence list(obj2);
TColStd_Array1OfReal weights(1, list.size());
int index=1;
for (Py::Sequence::iterator it = list.begin(); it != list.end(); ++it) {
weights(index++) = (double)Py::Float(*it);
}
surf->SetPoleRow(uindex, poles, weights);
}
Py_Return;
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PartExceptionOCCError, e->GetMessageString());
return 0;
}
}
PyObject* BSplineSurfacePy::getPole(PyObject *args)
{
int uindex,vindex;
if (!PyArg_ParseTuple(args, "ii", &uindex,&vindex))
return 0;
try {
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
Standard_OutOfRange_Raise_if
(uindex < 1 || uindex > surf->NbUPoles() ||
vindex < 1 || vindex > surf->NbVPoles(), "Pole index out of range");
gp_Pnt pnt = surf->Pole(uindex,vindex);
Base::VectorPy* vec = new Base::VectorPy(Base::Vector3d(
pnt.X(), pnt.Y(), pnt.Z()));
return vec;
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PartExceptionOCCError, e->GetMessageString());
return 0;
}
}
PyObject* BSplineSurfacePy::getPoles(PyObject *args)
{
if (!PyArg_ParseTuple(args, ""))
return 0;
try {
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
TColgp_Array2OfPnt p(1,surf->NbUPoles(),1,surf->NbVPoles());
surf->Poles(p);
Py::List poles;
for (Standard_Integer i=p.LowerRow(); i<=p.UpperRow(); i++) {
Py::List row;
for (Standard_Integer j=p.LowerCol(); j<=p.UpperCol(); j++) {
const gp_Pnt& pole = p(i,j);
row.append(Py::Object(new Base::VectorPy(
Base::Vector3d(pole.X(),pole.Y(),pole.Z()))));
}
poles.append(row);
}
return Py::new_reference_to(poles);
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PartExceptionOCCError, e->GetMessageString());
return 0;
}
}
PyObject* BSplineSurfacePy::setWeight(PyObject *args)
{
int uindex,vindex;
double weight;
if (!PyArg_ParseTuple(args, "iid",&uindex,&vindex,&weight))
return 0;
try {
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
surf->SetWeight(uindex,vindex,weight);
Py_Return;
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PartExceptionOCCError, e->GetMessageString());
return 0;
}
}
PyObject* BSplineSurfacePy::setWeightCol(PyObject *args)
{
int vindex;
PyObject* obj;
if (!PyArg_ParseTuple(args, "iO",&vindex,&obj))
return 0;
try {
Py::Sequence list(obj);
TColStd_Array1OfReal weights(1, list.size());
int index=1;
for (Py::Sequence::iterator it = list.begin(); it != list.end(); ++it) {
weights(index++) = (double)Py::Float(*it);
}
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
surf->SetWeightCol(vindex, weights);
Py_Return;
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PartExceptionOCCError, e->GetMessageString());
return 0;
}
}
PyObject* BSplineSurfacePy::setWeightRow(PyObject *args)
{
int uindex;
PyObject* obj;
if (!PyArg_ParseTuple(args, "iO",&uindex,&obj))
return 0;
try {
Py::Sequence list(obj);
TColStd_Array1OfReal weights(1, list.size());
int index=1;
for (Py::Sequence::iterator it = list.begin(); it != list.end(); ++it) {
weights(index++) = (double)Py::Float(*it);
}
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
surf->SetWeightRow(uindex, weights);
Py_Return;
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PartExceptionOCCError, e->GetMessageString());
return 0;
}
}
PyObject* BSplineSurfacePy::getWeight(PyObject *args)
{
int uindex,vindex;
if (!PyArg_ParseTuple(args, "ii",&uindex,&vindex))
return 0;
try {
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
Standard_OutOfRange_Raise_if
(uindex < 1 || uindex > surf->NbUPoles() ||
vindex < 1 || vindex > surf->NbVPoles(), "Weight index out of range");
double w = surf->Weight(uindex,vindex);
return Py_BuildValue("d", w);
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PartExceptionOCCError, e->GetMessageString());
return 0;
}
}
PyObject* BSplineSurfacePy::getWeights(PyObject *args)
{
if (!PyArg_ParseTuple(args, ""))
return 0;
try {
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
TColStd_Array2OfReal w(1,surf->NbUPoles(),1,surf->NbVPoles());
surf->Weights(w);
Py::List weights;
for (Standard_Integer i=w.LowerRow(); i<=w.UpperRow(); i++) {
Py::List row;
for (Standard_Integer j=w.LowerCol(); j<=w.UpperCol(); j++) {
row.append(Py::Float(w(i,j)));
}
weights.append(row);
}
return Py::new_reference_to(weights);
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PartExceptionOCCError, e->GetMessageString());
return 0;
}
}
PyObject* BSplineSurfacePy::getPolesAndWeights(PyObject *args)
{
if (!PyArg_ParseTuple(args, ""))
return 0;
try {
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
TColgp_Array2OfPnt p(1,surf->NbUPoles(),1,surf->NbVPoles());
surf->Poles(p);
TColStd_Array2OfReal w(1,surf->NbUPoles(),1,surf->NbVPoles());
surf->Weights(w);
Py::List poles;
for (Standard_Integer i=p.LowerRow(); i<=p.UpperRow(); i++) {
Py::List row;
for (Standard_Integer j=p.LowerCol(); j<=p.UpperCol(); j++) {
const gp_Pnt& pole = p(i,j);
double weight = w(i,j);
Py::Tuple t(4);
t.setItem(0, Py::Float(pole.X()));
t.setItem(1, Py::Float(pole.Y()));
t.setItem(2, Py::Float(pole.Z()));
t.setItem(3, Py::Float(weight));
row.append(t);
}
poles.append(row);
}
return Py::new_reference_to(poles);
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PartExceptionOCCError, e->GetMessageString());
return 0;
}
}
PyObject* BSplineSurfacePy::getResolution(PyObject *args)
{
double tol;
if (!PyArg_ParseTuple(args, "d", &tol))
return 0;
try {
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
double utol, vtol;
surf->Resolution(tol,utol,vtol);
return Py_BuildValue("(dd)",utol,vtol);
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PartExceptionOCCError, e->GetMessageString());
return 0;
}
}
PyObject* BSplineSurfacePy::movePoint(PyObject *args)
{
double U,V;
int uindex1, uindex2;
int vindex1, vindex2;
PyObject* pnt;
if (!PyArg_ParseTuple(args, "ddO!iiii", &U, &V, &(Base::VectorPy::Type),&pnt,
&uindex1, &uindex2,&vindex1, &vindex2))
return 0;
try {
Base::Vector3d p = static_cast<Base::VectorPy*>(pnt)->value();
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
int ufirst, ulast, vfirst, vlast;
surf->MovePoint(U, V, gp_Pnt(p.x,p.y,p.z), uindex1, uindex2, vindex1, vindex2,
ufirst, ulast, vfirst, vlast);
return Py_BuildValue("(iiii)",ufirst, ulast, vfirst, vlast);
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PartExceptionOCCError, e->GetMessageString());
return 0;
}
}
PyObject* BSplineSurfacePy::setUNotPeriodic(PyObject *args)
{
if (!PyArg_ParseTuple(args, ""))
return 0;
try {
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
surf->SetUNotPeriodic();
Py_Return;
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PartExceptionOCCError, e->GetMessageString());
return 0;
}
}
PyObject* BSplineSurfacePy::setVNotPeriodic(PyObject *args)
{
if (!PyArg_ParseTuple(args, ""))
return 0;
try {
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
surf->SetVNotPeriodic();
Py_Return;
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PartExceptionOCCError, e->GetMessageString());
return 0;
}
}
PyObject* BSplineSurfacePy::setUPeriodic(PyObject *args)
{
if (!PyArg_ParseTuple(args, ""))
return 0;
try {
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
surf->SetUPeriodic();
Py_Return;
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PartExceptionOCCError, e->GetMessageString());
return 0;
}
}
PyObject* BSplineSurfacePy::setVPeriodic(PyObject *args)
{
if (!PyArg_ParseTuple(args, ""))
return 0;
try {
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
surf->SetVPeriodic();
Py_Return;
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PartExceptionOCCError, e->GetMessageString());
return 0;
}
}
PyObject* BSplineSurfacePy::setUOrigin(PyObject *args)
{
int index;
if (!PyArg_ParseTuple(args, "i", &index))
return 0;
try {
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
surf->SetUOrigin(index);
Py_Return;
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PartExceptionOCCError, e->GetMessageString());
return 0;
}
}
PyObject* BSplineSurfacePy::setVOrigin(PyObject *args)
{
int index;
if (!PyArg_ParseTuple(args, "i", &index))
return 0;
try {
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
surf->SetVOrigin(index);
Py_Return;
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PartExceptionOCCError, e->GetMessageString());
return 0;
}
}
PyObject* BSplineSurfacePy::getUMultiplicity(PyObject *args)
{
int index;
if (!PyArg_ParseTuple(args, "i", &index))
return 0;
try {
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
int mult = surf->UMultiplicity(index);
return Py_BuildValue("i", mult);
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PartExceptionOCCError, e->GetMessageString());
return 0;
}
}
PyObject* BSplineSurfacePy::getVMultiplicity(PyObject *args)
{
int index;
if (!PyArg_ParseTuple(args, "i", &index))
return 0;
try {
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
int mult = surf->VMultiplicity(index);
return Py_BuildValue("i", mult);
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PartExceptionOCCError, e->GetMessageString());
return 0;
}
}
PyObject* BSplineSurfacePy::getUMultiplicities(PyObject *args)
{
if (!PyArg_ParseTuple(args, ""))
return 0;
try {
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
TColStd_Array1OfInteger m(1,surf->NbUKnots());
surf->UMultiplicities(m);
Py::List mults;
for (Standard_Integer i=m.Lower(); i<=m.Upper(); i++) {
mults.append(Py::Long(m(i)));
}
return Py::new_reference_to(mults);
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PartExceptionOCCError, e->GetMessageString());
return 0;
}
}
PyObject* BSplineSurfacePy::getVMultiplicities(PyObject *args)
{
if (!PyArg_ParseTuple(args, ""))
return 0;
try {
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
TColStd_Array1OfInteger m(1,surf->NbVKnots());
surf->VMultiplicities(m);
Py::List mults;
for (Standard_Integer i=m.Lower(); i<=m.Upper(); i++) {
mults.append(Py::Long(m(i)));
}
return Py::new_reference_to(mults);
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PartExceptionOCCError, e->GetMessageString());
return 0;
}
}
PyObject* BSplineSurfacePy::exchangeUV(PyObject *args)
{
if (!PyArg_ParseTuple(args, ""))
return 0;
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
surf->ExchangeUV();
Py_Return;
}
PyObject* BSplineSurfacePy::uIso(PyObject * args)
{
double u;
if (!PyArg_ParseTuple(args, "d", &u))
return 0;
try {
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
Handle_Geom_Curve c = surf->UIso(u);
return new BSplineCurvePy(new GeomBSplineCurve(Handle_Geom_BSplineCurve::DownCast(c)));
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PartExceptionOCCError, e->GetMessageString());
return 0;
}
}
PyObject* BSplineSurfacePy::vIso(PyObject * args)
{
double v;
if (!PyArg_ParseTuple(args, "d", &v))
return 0;
try {
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
Handle_Geom_Curve c = surf->VIso(v);
return new BSplineCurvePy(new GeomBSplineCurve(Handle_Geom_BSplineCurve::DownCast(c)));
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PartExceptionOCCError, e->GetMessageString());
return 0;
}
}
PyObject* BSplineSurfacePy::reparametrize(PyObject * args)
{
int u,v;
double tol = 0.000001;
if (!PyArg_ParseTuple(args, "ii|d", &u, &v, &tol))
return 0;
// u,v must be at least 2
u = std::max<int>(u, 2);
v = std::max<int>(v, 2);
try {
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
double maxU = surf->UKnot(surf->NbUKnots()); // 1.0 if normalized surface
double maxV = surf->VKnot(surf->NbVKnots()); // 1.0 if normalized surface
GeomBSplineSurface* geom = new GeomBSplineSurface();
Handle_Geom_BSplineSurface spline = Handle_Geom_BSplineSurface::DownCast
(geom->handle());
for (int i=1; i<u-1; i++) {
double U = i * 1.0 / (u-1.0);
spline->InsertUKnot(U,i,tol,Standard_True);
}
for (int i=1; i<v-1; i++) {
double V = i * 1.0 / (v-1.0);
spline->InsertVKnot(V,i,tol,Standard_True);
}
for (int j=0; j<u; j++) {
double U = j * maxU / (u-1.0);
double newU = j * 1.0 / (u-1.0);
for (int k=0; k<v; k++) {
double V = k * maxV / (v-1.0);
double newV = k * 1.0 / (v-1.0);
// Get UV point and move new surface UV point
gp_Pnt point = surf->Value(U,V);
int ufirst, ulast, vfirst, vlast;
spline->MovePoint(newU, newV, point, j+1, j+1, k+1, k+1, ufirst, ulast, vfirst, vlast);
}
}
return new BSplineSurfacePy(geom);
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(PartExceptionOCCError, e->GetMessageString());
return 0;
}
}
PyObject* BSplineSurfacePy::approximate(PyObject *args)
{
PyObject* obj;
Standard_Integer degMin=0;
Standard_Integer degMax=0;
Standard_Integer continuity=0;
Standard_Real tol3d = Precision::Approximation();
Standard_Real X0=0;
Standard_Real dX=0;
Standard_Real Y0=0;
Standard_Real dY=0;
int len = PyTuple_GET_SIZE(args);
if (!PyArg_ParseTuple(args, "Oiiid|dddd", &obj, &degMin, &degMax, &continuity, &tol3d, &X0, &dX, &Y0, &dY))
return 0;
try {
Py::Sequence list(obj);
Standard_Integer lu = list.size();
Py::Sequence col(list.getItem(0));
Standard_Integer lv = col.size();
TColgp_Array2OfPnt interpolationPoints(1, lu, 1, lv);
TColStd_Array2OfReal zPoints(1, lu, 1, lv);
//Base::Console().Message("lu=%d, lv=%d\n", lu, lv);
Standard_Integer index1 = 0;
Standard_Integer index2 = 0;
for (Py::Sequence::iterator it1 = list.begin(); it1 != list.end(); ++it1) {
index1++;
index2=0;
Py::Sequence row(*it1);
for (Py::Sequence::iterator it2 = row.begin(); it2 != row.end(); ++it2) {
index2++;
if(len == 5){
Py::Vector v(*it2);
Base::Vector3d pnt = v.toVector();
gp_Pnt newPoint(pnt.x,pnt.y,pnt.z);
interpolationPoints.SetValue(index1, index2, newPoint);
}
else {
Standard_Real val = PyFloat_AsDouble((*it2).ptr());
zPoints.SetValue(index1, index2, val);
}
}
}
if (continuity<0 || continuity>3) {
Standard_Failure::Raise("continuity must be between 0 and 3");
}
if (interpolationPoints.RowLength() < 2 || interpolationPoints.ColLength() < 2) {
Standard_Failure::Raise("not enough points given");
}
GeomAbs_Shape c = GeomAbs_CN;
switch(continuity){
case 0:
c = GeomAbs_C0;
break;
case 1:
c = GeomAbs_C1;
break;
case 2:
c = GeomAbs_C2;
break;
case 3:
c = GeomAbs_C3;
break;
}
GeomAPI_PointsToBSplineSurface surInterpolation;
if (len == 5) {
surInterpolation.Init(interpolationPoints, degMin, degMax, c, tol3d);
}
else {
surInterpolation.Init(zPoints, X0, dX, Y0, dY, degMin, degMax, c, tol3d);
}
Handle_Geom_BSplineSurface sur(surInterpolation.Surface());
this->getGeomBSplineSurfacePtr()->setHandle(sur);
Py_Return;
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
std::string err = e->GetMessageString();
if (err.empty()) err = e->DynamicType()->Name();
PyErr_SetString(PartExceptionOCCError, err.c_str());
return 0;
}
}
PyObject* BSplineSurfacePy::interpolate(PyObject *args)
{
PyObject* obj;
Standard_Real X0=0;
Standard_Real dX=0;
Standard_Real Y0=0;
Standard_Real dY=0;
int len = PyTuple_GET_SIZE(args);
if (!PyArg_ParseTuple(args, "O|dddd", &obj, &X0, &dX, &Y0, &dY))
return 0;
try {
Py::Sequence list(obj);
Standard_Integer lu = list.size();
Py::Sequence col(list.getItem(0));
Standard_Integer lv = col.size();
TColgp_Array2OfPnt interpolationPoints(1, lu, 1, lv);
TColStd_Array2OfReal zPoints(1, lu, 1, lv);
Standard_Integer index1 = 0;
Standard_Integer index2 = 0;
for (Py::Sequence::iterator it1 = list.begin(); it1 != list.end(); ++it1) {
index1++;
index2=0;
Py::Sequence row(*it1);
for (Py::Sequence::iterator it2 = row.begin(); it2 != row.end(); ++it2) {
index2++;
if(len == 1){
Py::Vector v(*it2);
Base::Vector3d pnt = v.toVector();
gp_Pnt newPoint(pnt.x,pnt.y,pnt.z);
interpolationPoints.SetValue(index1, index2, newPoint);
}
else {
Standard_Real val = PyFloat_AsDouble((*it2).ptr());
zPoints.SetValue(index1, index2, val);
}
}
}
if (interpolationPoints.RowLength() < 2 || interpolationPoints.ColLength() < 2) {
Standard_Failure::Raise("not enough points given");
}
GeomAPI_PointsToBSplineSurface surInterpolation;
if(len == 1){
surInterpolation.Interpolate (interpolationPoints);
}
else {
surInterpolation.Interpolate(zPoints, X0, dX, Y0, dY);
}
Handle_Geom_BSplineSurface sur(surInterpolation.Surface());
this->getGeomBSplineSurfacePtr()->setHandle(sur);
Py_Return;
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
std::string err = e->GetMessageString();
if (err.empty()) err = e->DynamicType()->Name();
PyErr_SetString(PartExceptionOCCError, err.c_str());
return 0;
}
}
PyObject* BSplineSurfacePy::buildFromPolesMultsKnots(PyObject *args, PyObject *keywds)
{
static char *kwlist[] = {"poles", "umults", "vmults",
"uknots", "vknots", "uperiodic", "vperiodic", "udegree", "vdegree", "weights", NULL};
PyObject* uperiodic = Py_False;
PyObject* vperiodic = Py_False;
PyObject* poles = Py_None;
PyObject* umults = Py_None;
PyObject* vmults = Py_None;
PyObject* uknots = Py_None;
PyObject* vknots = Py_None;
PyObject* weights = Py_None;
int udegree = 3;
int vdegree = 3;
int number_of_uknots = 0;
int number_of_vknots = 0;
int sum_of_umults = 0;
int sum_of_vmults = 0;
if (!PyArg_ParseTupleAndKeywords(args, keywds, "OOO|OOO!O!iiO", kwlist,
&poles, &umults, &vmults, //required
&uknots, &vknots, //optional
&PyBool_Type, &uperiodic, &PyBool_Type, &vperiodic, //optinoal
&udegree, &vdegree, &weights)) //optional
return 0;
try {
Py::Sequence list(poles);
Standard_Integer lu = list.size();
Py::Sequence col(list.getItem(0));
Standard_Integer lv = col.size();
TColgp_Array2OfPnt occpoles(1, lu, 1, lv);
TColStd_Array2OfReal occweights(1, lu, 1, lv);
Standard_Boolean genweights = PyObject_Not(weights) ? Standard_True : Standard_False; //cache
Standard_Integer index1 = 0;
Standard_Integer index2 = 0;
for (Py::Sequence::iterator it1 = list.begin(); it1 != list.end(); ++it1) {
index1++;
index2=0;
Py::Sequence row(*it1);
for (Py::Sequence::iterator it2 = row.begin(); it2 != row.end(); ++it2) {
index2++;
Py::Vector v(*it2);
Base::Vector3d pnt = v.toVector();
gp_Pnt newPoint(pnt.x,pnt.y,pnt.z);
occpoles.SetValue(index1, index2, newPoint);
if (genweights) occweights.SetValue(index1, index2, 1.0); //set weights if they are not given
}
}
if (occpoles.RowLength() < 2 || occpoles.ColLength() < 2) {
Standard_Failure::Raise("not enough points given");
}
if (!genweights) {//copy the weights
Py::Sequence list(weights);
Standard_Integer lwu = list.size();
Py::Sequence col(list.getItem(0));
Standard_Integer lwv = col.size();
if (lwu != lu || lwv != lv) { Standard_Failure::Raise("weights and poles mismatch");}
Standard_Integer index1 = 0;
Standard_Integer index2 = 0;
for (Py::Sequence::iterator it1 = list.begin(); it1 != list.end(); ++it1) {
index1++;
index2=0;
Py::Sequence row(*it1);
for (Py::Sequence::iterator it2 = row.begin(); it2 != row.end(); ++it2) {
index2++;
Py::Float f(*it2);
occweights.SetValue(index1, index2, f);
}
}
}
number_of_uknots = PyObject_Length(umults);
number_of_vknots = PyObject_Length(vmults);
if ((PyObject_IsTrue(uknots) && PyObject_Length(uknots) != number_of_uknots) ||
(PyObject_IsTrue(vknots) && PyObject_Length(vknots) != number_of_vknots)){
Standard_Failure::Raise("number of knots and mults mismatch");
return 0;
}
//copy mults
TColStd_Array1OfInteger occumults(1,number_of_uknots);
TColStd_Array1OfInteger occvmults(1,number_of_vknots);
TColStd_Array1OfReal occuknots(1,number_of_uknots);
TColStd_Array1OfReal occvknots(1,number_of_vknots);
Py::Sequence umultssq(umults);
Standard_Integer index = 1;
for (Py::Sequence::iterator it = umultssq.begin(); it != umultssq.end() && index <= occumults.Length(); ++it) {
#if PY_MAJOR_VERSION >= 3
Py::Long mult(*it);
#else
Py::Int mult(*it);
#endif
if (index < occumults.Length() || PyObject_Not(uperiodic)) {
sum_of_umults += static_cast<int>(mult); //sum up the mults to compare them against the number of poles later
}
occumults(index++) = static_cast<int>(mult);
}
Py::Sequence vmultssq(vmults);
index = 1;
for (Py::Sequence::iterator it = vmultssq.begin(); it != vmultssq.end() && index <= occvmults.Length(); ++it) {
#if PY_MAJOR_VERSION >= 3
Py::Long mult(*it);
#else
Py::Int mult(*it);
#endif
if (index < occvmults.Length() || PyObject_Not(vperiodic)) {
sum_of_vmults += static_cast<int>(mult); //sum up the mults to compare them against the number of poles later
}
occvmults(index++) = static_cast<int>(mult);
}
//copy or generate knots
if (uknots != Py_None) { //uknots are given
Py::Sequence uknotssq(uknots);
index = 1;
for (Py::Sequence::iterator it = uknotssq.begin(); it != uknotssq.end() && index <= occuknots.Length(); ++it) {
Py::Float knot(*it);
occuknots(index++) = knot;
}
}
else { // knotes are uniformly spaced 0..1 if not given
for (int i=1; i<=occuknots.Length(); i++){
occuknots.SetValue(i,(double)(i-1)/(occuknots.Length()-1));
}
}
if (vknots != Py_None) { //vknots are given
Py::Sequence vknotssq(vknots);
index = 1;
for (Py::Sequence::iterator it = vknotssq.begin(); it != vknotssq.end() && index <= occvknots.Length(); ++it) {
Py::Float knot(*it);
occvknots(index++) = knot;
}
}
else { // knotes are uniformly spaced 0..1 if not given
for (int i=1; i<=occvknots.Length(); i++){
occvknots.SetValue(i,(double)(i-1)/(occvknots.Length()-1));
}
}
if ((PyObject_IsTrue(uperiodic) && sum_of_umults != lu) ||
(PyObject_Not(uperiodic) && sum_of_umults - udegree -1 != lu) ||
(PyObject_IsTrue(vperiodic) && sum_of_vmults != lv) ||
(PyObject_Not(vperiodic) && sum_of_vmults - vdegree -1 != lv)) {
Standard_Failure::Raise("number of poles and sum of mults mismatch");
}
Handle_Geom_BSplineSurface spline = new Geom_BSplineSurface(occpoles,occweights,
occuknots,occvknots,occumults,occvmults,udegree,vdegree,
PyObject_IsTrue(uperiodic) ? Standard_True : Standard_False,
PyObject_IsTrue(vperiodic) ? Standard_True : Standard_False);
if (!spline.IsNull()) {
this->getGeomBSplineSurfacePtr()->setHandle(spline);
Py_Return;
}
else {
Standard_Failure::Raise("failed to create spline");
return 0; // goes to the catch block
}
}
catch (const Standard_Failure & ) {
Handle_Standard_Failure e = Standard_Failure::Caught();
Standard_CString msg = e->GetMessageString();
PyErr_SetString(PartExceptionOCCError, msg ? msg : "");
return 0;
}
}
Py::Long BSplineSurfacePy::getUDegree(void) const
{
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
int deg = surf->UDegree();
return Py::Long(deg);
}
Py::Long BSplineSurfacePy::getVDegree(void) const
{
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
int deg = surf->VDegree();
return Py::Long(deg);
}
Py::Long BSplineSurfacePy::getMaxDegree(void) const
{
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
return Py::Long(surf->MaxDegree());
}
Py::Long BSplineSurfacePy::getNbUPoles(void) const
{
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
return Py::Long(surf->NbUPoles());
}
Py::Long BSplineSurfacePy::getNbVPoles(void) const
{
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
return Py::Long(surf->NbVPoles());
}
Py::Long BSplineSurfacePy::getNbUKnots(void) const
{
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
return Py::Long(surf->NbUKnots());
}
Py::Long BSplineSurfacePy::getNbVKnots(void) const
{
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
return Py::Long(surf->NbVKnots());
}
Py::Object BSplineSurfacePy::getFirstUKnotIndex(void) const
{
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
int index = surf->FirstUKnotIndex();
return Py::Long(index);
}
Py::Object BSplineSurfacePy::getLastUKnotIndex(void) const
{
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
int index = surf->LastUKnotIndex();
return Py::Long(index);
}
Py::Object BSplineSurfacePy::getFirstVKnotIndex(void) const
{
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
int index = surf->FirstVKnotIndex();
return Py::Long(index);
}
Py::Object BSplineSurfacePy::getLastVKnotIndex(void) const
{
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
int index = surf->LastVKnotIndex();
return Py::Long(index);
}
Py::List BSplineSurfacePy::getUKnotSequence(void) const
{
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
Standard_Integer m = 0;
for (int i=1; i<= surf->NbUKnots(); i++)
m += surf->UMultiplicity(i);
TColStd_Array1OfReal k(1,m);
surf->UKnotSequence(k);
Py::List list;
for (Standard_Integer i=k.Lower(); i<=k.Upper(); i++) {
list.append(Py::Float(k(i)));
}
return list;
}
Py::List BSplineSurfacePy::getVKnotSequence(void) const
{
Handle_Geom_BSplineSurface surf = Handle_Geom_BSplineSurface::DownCast
(getGeometryPtr()->handle());
Standard_Integer m = 0;
for (int i=1; i<= surf->NbVKnots(); i++)
m += surf->VMultiplicity(i);
TColStd_Array1OfReal k(1,m);
surf->VKnotSequence(k);
Py::List list;
for (Standard_Integer i=k.Lower(); i<=k.Upper(); i++) {
list.append(Py::Float(k(i)));
}
return list;
}
PyObject *BSplineSurfacePy::getCustomAttributes(const char* /*attr*/) const
{
return 0;
}
int BSplineSurfacePy::setCustomAttributes(const char* /*attr*/, PyObject* /*obj*/)
{
return 0;
}