FreeCAD/src/Mod/Fem/App/FemMesh.cpp

1203 lines
46 KiB
C++
Executable File

/***************************************************************************
* Copyright (c) Jürgen Riegel (juergen.riegel@web.de) 2009 *
* *
* This file is part of the FreeCAD CAx development system. *
* *
* This library is free software; you can redistribute it and/or *
* modify it under the terms of the GNU Library General Public *
* License as published by the Free Software Foundation; either *
* version 2 of the License, or (at your option) any later version. *
* *
* This library is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU Library General Public License for more details. *
* *
* You should have received a copy of the GNU Library General Public *
* License along with this library; see the file COPYING.LIB. If not, *
* write to the Free Software Foundation, Inc., 59 Temple Place, *
* Suite 330, Boston, MA 02111-1307, USA *
* *
***************************************************************************/
#include "PreCompiled.h"
#ifndef _PreComp_
# include <cstdlib>
# include <memory>
# include <strstream>
# include <Bnd_Box.hxx>
# include <BRepBndLib.hxx>
# include <BRepExtrema_DistShapeShape.hxx>
# include <TopoDS_Vertex.hxx>
# include <BRepBuilderAPI_MakeVertex.hxx>
# include <gp_Pnt.hxx>
#endif
#include <Base/Writer.h>
#include <Base/Reader.h>
#include <Base/Stream.h>
#include <Base/Exception.h>
#include <Base/FileInfo.h>
#include <Base/TimeInfo.h>
#include <Base/Console.h>
#include <Mod/Mesh/App/Core/MeshKernel.h>
#include <Mod/Mesh/App/Core/Evaluation.h>
#include <Mod/Mesh/App/Core/Iterator.h>
#include "FemMesh.h"
#include <boost/assign/list_of.hpp>
#include <SMESH_Gen.hxx>
#include <SMESH_Mesh.hxx>
#include <SMDS_PolyhedralVolumeOfNodes.hxx>
#include <SMDS_VolumeTool.hxx>
#include <StdMeshers_MaxLength.hxx>
#include <StdMeshers_LocalLength.hxx>
#include <StdMeshers_MaxElementArea.hxx>
#include <StdMeshers_NumberOfSegments.hxx>
#include <StdMeshers_Deflection1D.hxx>
#include <StdMeshers_Regular_1D.hxx>
#include <StdMeshers_StartEndLength.hxx>
#include <StdMeshers_QuadranglePreference.hxx>
#include <StdMeshers_Quadrangle_2D.hxx>
#include <StdMeshers_QuadraticMesh.hxx>
# include <TopoDS_Face.hxx>
//to simplify parsing input files we use the boost lib
#include <boost/tokenizer.hpp>
using namespace Fem;
using namespace Base;
using namespace boost;
static int StatCount = 0;
TYPESYSTEM_SOURCE(Fem::FemMesh , Base::Persistence);
FemMesh::FemMesh()
{
//Base::Console().Log("FemMesh::FemMesh():%p (id=%i)\n",this,StatCount);
myGen = new SMESH_Gen();
// create a mesh allways with new StudyId to avoid overlapping destruction
myMesh = myGen->CreateMesh(StatCount++,false);
}
FemMesh::FemMesh(const FemMesh& mesh)
{
//Base::Console().Log("FemMesh::FemMesh(mesh):%p (id=%i)\n",this,StatCount);
myGen = new SMESH_Gen();
myMesh = myGen->CreateMesh(StatCount++,false);
copyMeshData(mesh);
}
FemMesh::~FemMesh()
{
//Base::Console().Log("FemMesh::~FemMesh():%p\n",this);
TopoDS_Shape aNull;
myMesh->ShapeToMesh(aNull);
myMesh->Clear();
//myMesh->ClearLog();
delete myMesh;
#if defined(__GNUC__)
delete myGen; // crashes with MSVC
#endif
}
FemMesh &FemMesh::operator=(const FemMesh& mesh)
{
if (this != &mesh) {
copyMeshData(mesh);
}
return *this;
}
void FemMesh::copyMeshData(const FemMesh& mesh)
{
//const SMDS_MeshInfo& info = mesh.myMesh->GetMeshDS()->GetMeshInfo();
//int numPoly = info.NbPolygons();
//int numVolu = info.NbVolumes();
//int numTetr = info.NbTetras();
//int numHexa = info.NbHexas();
//int numPyrd = info.NbPyramids();
//int numPris = info.NbPrisms();
//int numHedr = info.NbPolyhedrons();
_Mtrx = mesh._Mtrx;
SMESHDS_Mesh* meshds = this->myMesh->GetMeshDS();
meshds->ClearMesh();
SMDS_NodeIteratorPtr aNodeIter = mesh.myMesh->GetMeshDS()->nodesIterator();
for (;aNodeIter->more();) {
const SMDS_MeshNode* aNode = aNodeIter->next();
meshds->AddNodeWithID(aNode->X(),aNode->Y(),aNode->Z(), aNode->GetID());
}
SMDS_EdgeIteratorPtr aEdgeIter = mesh.myMesh->GetMeshDS()->edgesIterator();
for (;aEdgeIter->more();) {
const SMDS_MeshEdge* aEdge = aEdgeIter->next();
meshds->AddEdgeWithID(aEdge->GetNode(0), aEdge->GetNode(1), aEdge->GetID());
}
SMDS_FaceIteratorPtr aFaceIter = mesh.myMesh->GetMeshDS()->facesIterator();
for (;aFaceIter->more();) {
const SMDS_MeshFace* aFace = aFaceIter->next();
switch (aFace->NbNodes()) {
case 3:
meshds->AddFaceWithID(aFace->GetNode(0),
aFace->GetNode(1),
aFace->GetNode(2),
aFace->GetID());
break;
case 4:
meshds->AddFaceWithID(aFace->GetNode(0),
aFace->GetNode(1),
aFace->GetNode(2),
aFace->GetNode(3),
aFace->GetID());
break;
case 6:
meshds->AddFaceWithID(aFace->GetNode(0),
aFace->GetNode(1),
aFace->GetNode(2),
aFace->GetNode(3),
aFace->GetNode(4),
aFace->GetNode(5),
aFace->GetID());
break;
case 8:
meshds->AddFaceWithID(aFace->GetNode(0),
aFace->GetNode(1),
aFace->GetNode(2),
aFace->GetNode(3),
aFace->GetNode(4),
aFace->GetNode(5),
aFace->GetNode(6),
aFace->GetNode(7),
aFace->GetID());
break;
default:
{
std::vector<const SMDS_MeshNode*> aNodes;
for (int i=0; aFace->NbNodes(); i++)
aNodes.push_back(aFace->GetNode(0));
meshds->AddPolygonalFaceWithID(aNodes, aFace->GetID());
}
break;
}
}
SMDS_VolumeIteratorPtr aVolIter = mesh.myMesh->GetMeshDS()->volumesIterator();
for (;aVolIter->more();) {
const SMDS_MeshVolume* aVol = aVolIter->next();
switch (aVol->NbNodes()) {
case 4:
meshds->AddVolumeWithID(aVol->GetNode(0),
aVol->GetNode(1),
aVol->GetNode(2),
aVol->GetNode(3),
aVol->GetID());
break;
case 5:
meshds->AddVolumeWithID(aVol->GetNode(0),
aVol->GetNode(1),
aVol->GetNode(2),
aVol->GetNode(3),
aVol->GetNode(4),
aVol->GetID());
break;
case 6:
meshds->AddVolumeWithID(aVol->GetNode(0),
aVol->GetNode(1),
aVol->GetNode(2),
aVol->GetNode(3),
aVol->GetNode(4),
aVol->GetNode(5),
aVol->GetID());
break;
case 8:
meshds->AddVolumeWithID(aVol->GetNode(0),
aVol->GetNode(1),
aVol->GetNode(2),
aVol->GetNode(3),
aVol->GetNode(4),
aVol->GetNode(5),
aVol->GetNode(6),
aVol->GetNode(7),
aVol->GetID());
break;
case 10:
meshds->AddVolumeWithID(aVol->GetNode(0),
aVol->GetNode(1),
aVol->GetNode(2),
aVol->GetNode(3),
aVol->GetNode(4),
aVol->GetNode(5),
aVol->GetNode(6),
aVol->GetNode(7),
aVol->GetNode(8),
aVol->GetNode(9),
aVol->GetID());
break;
case 13:
meshds->AddVolumeWithID(aVol->GetNode(0),
aVol->GetNode(1),
aVol->GetNode(2),
aVol->GetNode(3),
aVol->GetNode(4),
aVol->GetNode(5),
aVol->GetNode(6),
aVol->GetNode(7),
aVol->GetNode(8),
aVol->GetNode(9),
aVol->GetNode(10),
aVol->GetNode(11),
aVol->GetNode(12),
aVol->GetID());
break;
case 15:
meshds->AddVolumeWithID(aVol->GetNode(0),
aVol->GetNode(1),
aVol->GetNode(2),
aVol->GetNode(3),
aVol->GetNode(4),
aVol->GetNode(5),
aVol->GetNode(6),
aVol->GetNode(7),
aVol->GetNode(8),
aVol->GetNode(9),
aVol->GetNode(10),
aVol->GetNode(11),
aVol->GetNode(12),
aVol->GetNode(13),
aVol->GetNode(14),
aVol->GetID());
break;
case 20:
meshds->AddVolumeWithID(aVol->GetNode(0),
aVol->GetNode(1),
aVol->GetNode(2),
aVol->GetNode(3),
aVol->GetNode(4),
aVol->GetNode(5),
aVol->GetNode(6),
aVol->GetNode(7),
aVol->GetNode(8),
aVol->GetNode(9),
aVol->GetNode(10),
aVol->GetNode(11),
aVol->GetNode(12),
aVol->GetNode(13),
aVol->GetNode(14),
aVol->GetNode(15),
aVol->GetNode(16),
aVol->GetNode(17),
aVol->GetNode(18),
aVol->GetNode(19),
aVol->GetID());
break;
default:
{
if (aVol->IsPoly()) {
const SMDS_PolyhedralVolumeOfNodes* aPolyVol = dynamic_cast<const SMDS_PolyhedralVolumeOfNodes*>(aVol);
if (!aPolyVol) break;
std::vector<const SMDS_MeshNode*> aNodes;
for (int i=0; i<aPolyVol->NbNodes(); i++)
aNodes.push_back(aPolyVol->GetNode(i));
meshds->AddPolyhedralVolumeWithID(aNodes,
aPolyVol->GetQuanities(), aPolyVol->GetID());
}
}
break;
}
}
}
const SMESH_Mesh* FemMesh::getSMesh() const
{
return myMesh;
}
SMESH_Mesh* FemMesh::getSMesh()
{
return myMesh;
}
SMESH_Gen * FemMesh::getGenerator()
{
return myGen;
}
void FemMesh::addHypothesis(const TopoDS_Shape & aSubShape, SMESH_HypothesisPtr hyp)
{
myMesh->AddHypothesis(aSubShape, hyp->GetID());
SMESH_HypothesisPtr ptr(hyp);
hypoth.push_back(ptr);
}
void FemMesh::setStanardHypotheses()
{
if (!hypoth.empty())
return;
int hyp=0;
SMESH_HypothesisPtr len(new StdMeshers_MaxLength(hyp++, 1, myGen));
static_cast<StdMeshers_MaxLength*>(len.get())->SetLength(1.0);
hypoth.push_back(len);
SMESH_HypothesisPtr loc(new StdMeshers_LocalLength(hyp++, 1, myGen));
static_cast<StdMeshers_LocalLength*>(loc.get())->SetLength(1.0);
hypoth.push_back(loc);
SMESH_HypothesisPtr area(new StdMeshers_MaxElementArea(hyp++, 1, myGen));
static_cast<StdMeshers_MaxElementArea*>(area.get())->SetMaxArea(1.0);
hypoth.push_back(area);
SMESH_HypothesisPtr segm(new StdMeshers_NumberOfSegments(hyp++, 1, myGen));
static_cast<StdMeshers_NumberOfSegments*>(segm.get())->SetNumberOfSegments(1);
hypoth.push_back(segm);
SMESH_HypothesisPtr defl(new StdMeshers_Deflection1D(hyp++, 1, myGen));
static_cast<StdMeshers_Deflection1D*>(defl.get())->SetDeflection(0.01);
hypoth.push_back(defl);
SMESH_HypothesisPtr reg(new StdMeshers_Regular_1D(hyp++, 1, myGen));
hypoth.push_back(reg);
//SMESH_HypothesisPtr sel(new StdMeshers_StartEndLength(hyp++, 1, myGen));
//static_cast<StdMeshers_StartEndLength*>(sel.get())->SetLength(1.0, true);
//hypoth.push_back(sel);
SMESH_HypothesisPtr qdp(new StdMeshers_QuadranglePreference(hyp++,1,myGen));
hypoth.push_back(qdp);
SMESH_HypothesisPtr q2d(new StdMeshers_Quadrangle_2D(hyp++,1,myGen));
hypoth.push_back(q2d);
// Apply hypothesis
for (int i=0; i<hyp;i++)
myMesh->AddHypothesis(myMesh->GetShapeToMesh(), i);
}
void FemMesh::compute()
{
myGen->Compute(*myMesh, myMesh->GetShapeToMesh());
}
std::set<long> FemMesh::getSurfaceNodes(long ElemId,short FaceId, float Angle) const
{
std::set<long> result;
//const SMESHDS_Mesh* data = myMesh->GetMeshDS();
//const SMDS_MeshElement * element = data->FindElement(ElemId);
//int fNbr = element->NbFaces();
//element->
return result;
}
std::set<long> FemMesh::getSurfaceNodes(const TopoDS_Face &face)const
{
std::set<long> result;
Bnd_Box box;
BRepBndLib::Add(face, box);
// limit where the mesh node belongs to the face:
double limit = box.SquareExtent()/10000.0;
box.Enlarge(limit);
// get the actuall transform of the FemMesh
const Base::Matrix4D Mtrx(getTransform());
SMDS_NodeIteratorPtr aNodeIter = myMesh->GetMeshDS()->nodesIterator();
while (aNodeIter->more()) {
const SMDS_MeshNode* aNode = aNodeIter->next();
Base::Vector3d vec(aNode->X(),aNode->Y(),aNode->Z());
// Apply the matrix to hold the BoundBox in absolute space.
vec = Mtrx * vec;
if(!box.IsOut(gp_Pnt(vec.x,vec.y,vec.z))){
// create a Vertex
BRepBuilderAPI_MakeVertex aBuilder(gp_Pnt(vec.x,vec.y,vec.z));
TopoDS_Shape s = aBuilder.Vertex();
// measure distance
BRepExtrema_DistShapeShape measure(face,s);
measure.Perform();
if (!measure.IsDone() || measure.NbSolution() < 1)
continue;
if(measure.Value() < limit)
result.insert(aNode->GetID());
}
}
return result;
}
std::set<long> FemMesh::getSurfaceNodes(const TopoDS_Edge &edge)const
{
std::set<long> result;
Bnd_Box box;
BRepBndLib::Add(edge, box);
// limit where the mesh node belongs to the edge:
double limit = box.SquareExtent()/10000.0;
box.Enlarge(limit);
// get the actuall transform of the FemMesh
const Base::Matrix4D Mtrx(getTransform());
SMDS_NodeIteratorPtr aNodeIter = myMesh->GetMeshDS()->nodesIterator();
while (aNodeIter->more()) {
const SMDS_MeshNode* aNode = aNodeIter->next();
Base::Vector3d vec(aNode->X(),aNode->Y(),aNode->Z());
// Apply the matrix to hold the BoundBox in absolute space.
vec = Mtrx * vec;
if(!box.IsOut(gp_Pnt(vec.x,vec.y,vec.z))){
// create a Vertex
BRepBuilderAPI_MakeVertex aBuilder(gp_Pnt(vec.x,vec.y,vec.z));
TopoDS_Shape s = aBuilder.Vertex();
// measure distance
BRepExtrema_DistShapeShape measure(edge,s);
measure.Perform();
if (!measure.IsDone() || measure.NbSolution() < 1)
continue;
if(measure.Value() < limit)
result.insert(aNode->GetID());
}
}
return result;
}
void FemMesh::readNastran(const std::string &Filename)
{
Base::TimeInfo Start;
Base::Console().Log("Start: FemMesh::readNastran() =================================\n");
_Mtrx = Base::Matrix4D();
std::ifstream inputfile;
inputfile.open(Filename.c_str());
inputfile.seekg(std::ifstream::beg);
std::string line1,line2,temp;
std::vector<string> token_results;
token_results.clear();
Base::Vector3d current_node;
std::vector<Base::Vector3d> vertices;
vertices.clear();
std::vector<unsigned int> nodal_id;
nodal_id.clear();
std::vector<unsigned int> tetra_element;
std::vector<std::vector<unsigned int> > all_elements;
std::vector<unsigned int> element_id;
element_id.clear();
bool nastran_free_format = false;
do
{
std::getline(inputfile,line1);
if (line1.size() == 0) continue;
if (!nastran_free_format && line1.find(",")!= std::string::npos)
nastran_free_format = true;
if (!nastran_free_format && line1.find("GRID*")!= std::string::npos ) //We found a Grid line
{
//Now lets extract the GRID Points = Nodes
//As each GRID Line consists of two subsequent lines we have to
//take care of that as well
std::getline(inputfile,line2);
//Get the Nodal ID
nodal_id.push_back(atoi(line1.substr(8,24).c_str()));
//Extract X Value
current_node.x = atof(line1.substr(40,56).c_str());
//Extract Y Value
current_node.y = atof(line1.substr(56,72).c_str());
//Extract Z Value
current_node.z = atof(line2.substr(8,24).c_str());
vertices.push_back(current_node);
}
else if (!nastran_free_format && line1.find("CTETRA")!= std::string::npos)
{
tetra_element.clear();
//Lets extract the elements
//As each Element Line consists of two subsequent lines as well
//we have to take care of that
//At a first step we only extract Quadratic Tetrahedral Elements
std::getline(inputfile,line2);
unsigned int id = atoi(line1.substr(8,16).c_str());
int offset = 0;
if(id < 1000000)
offset = 0;
else if (id < 10000000)
offset = 1;
else if (id < 100000000)
offset = 2;
element_id.push_back(id);
tetra_element.push_back(atoi(line1.substr(24,32).c_str()));
tetra_element.push_back(atoi(line1.substr(32,40).c_str()));
tetra_element.push_back(atoi(line1.substr(40,48).c_str()));
tetra_element.push_back(atoi(line1.substr(48,56).c_str()));
tetra_element.push_back(atoi(line1.substr(56,64).c_str()));
tetra_element.push_back(atoi(line1.substr(64,72).c_str()));
tetra_element.push_back(atoi(line2.substr(8+offset,16+offset).c_str()));
tetra_element.push_back(atoi(line2.substr(16+offset,24+offset).c_str()));
tetra_element.push_back(atoi(line2.substr(24+offset,32+offset).c_str()));
tetra_element.push_back(atoi(line2.substr(32+offset,40+offset).c_str()));
all_elements.push_back(tetra_element);
}
else if (nastran_free_format && line1.find("GRID")!= std::string::npos ) //We found a Grid line
{
char_separator<char> sep(",");
tokenizer<char_separator<char> > tokens(line1, sep);
token_results.assign(tokens.begin(),tokens.end());
if (token_results.size() < 3)
continue;//Line does not include Nodal coordinates
nodal_id.push_back(atoi(token_results[1].c_str()));
current_node.x = atof(token_results[3].c_str());
current_node.y = atof(token_results[4].c_str());
current_node.z = atof(token_results[5].c_str());
vertices.push_back(current_node);
}
else if (nastran_free_format && line1.find("CTETRA")!= std::string::npos)
{
tetra_element.clear();
//Lets extract the elements
//As each Element Line consists of two subsequent lines as well
//we have to take care of that
//At a first step we only extract Quadratic Tetrahedral Elements
std::getline(inputfile,line2);
char_separator<char> sep(",");
tokenizer<char_separator<char> > tokens(line1.append(line2), sep);
token_results.assign(tokens.begin(),tokens.end());
if (token_results.size() < 11)
continue;//Line does not include enough nodal IDs
element_id.push_back(atoi(token_results[1].c_str()));
tetra_element.push_back(atoi(token_results[3].c_str()));
tetra_element.push_back(atoi(token_results[4].c_str()));
tetra_element.push_back(atoi(token_results[5].c_str()));
tetra_element.push_back(atoi(token_results[6].c_str()));
tetra_element.push_back(atoi(token_results[7].c_str()));
tetra_element.push_back(atoi(token_results[8].c_str()));
tetra_element.push_back(atoi(token_results[10].c_str()));
tetra_element.push_back(atoi(token_results[11].c_str()));
tetra_element.push_back(atoi(token_results[12].c_str()));
tetra_element.push_back(atoi(token_results[13].c_str()));
all_elements.push_back(tetra_element);
}
}
while (inputfile.good());
inputfile.close();
Base::Console().Log(" %f: File read, start building mesh\n",Base::TimeInfo::diffTimeF(Start,Base::TimeInfo()));
//Now fill the SMESH datastructure
std::vector<Base::Vector3d>::const_iterator anodeiterator;
SMESHDS_Mesh* meshds = this->myMesh->GetMeshDS();
meshds->ClearMesh();
unsigned int j=0;
for(anodeiterator=vertices.begin(); anodeiterator!=vertices.end(); anodeiterator++)
{
meshds->AddNodeWithID((*anodeiterator).x,(*anodeiterator).y,(*anodeiterator).z,nodal_id[j]);
j++;
}
for(unsigned int i=0;i<all_elements.size();i++)
{
//Die Reihenfolge wie hier die Elemente hinzugefügt werden ist sehr wichtig.
//Ansonsten ist eine konsistente Datenstruktur nicht möglich
//meshds->AddVolumeWithID
//(
// meshds->FindNode(all_elements[i][0]),
// meshds->FindNode(all_elements[i][2]),
// meshds->FindNode(all_elements[i][1]),
// meshds->FindNode(all_elements[i][3]),
// meshds->FindNode(all_elements[i][6]),
// meshds->FindNode(all_elements[i][5]),
// meshds->FindNode(all_elements[i][4]),
// meshds->FindNode(all_elements[i][9]),
// meshds->FindNode(all_elements[i][7]),
// meshds->FindNode(all_elements[i][8]),
// element_id[i]
//);
meshds->AddVolumeWithID
(
meshds->FindNode(all_elements[i][1]),
meshds->FindNode(all_elements[i][0]),
meshds->FindNode(all_elements[i][2]),
meshds->FindNode(all_elements[i][3]),
meshds->FindNode(all_elements[i][4]),
meshds->FindNode(all_elements[i][6]),
meshds->FindNode(all_elements[i][5]),
meshds->FindNode(all_elements[i][8]),
meshds->FindNode(all_elements[i][7]),
meshds->FindNode(all_elements[i][9]),
element_id[i]
);
}
Base::Console().Log(" %f: Done \n",Base::TimeInfo::diffTimeF(Start,Base::TimeInfo()));
}
void FemMesh::read(const char *FileName)
{
Base::FileInfo File(FileName);
_Mtrx = Base::Matrix4D();
// checking on the file
if (!File.isReadable())
throw Base::Exception("File to load not existing or not readable");
if (File.hasExtension("unv") ) {
// read UNV file
myMesh->UNVToMesh(File.filePath().c_str());
}
else if (File.hasExtension("med") ) {
myMesh->MEDToMesh(File.filePath().c_str(),File.fileNamePure().c_str());
}
else if (File.hasExtension("stl") ) {
// read brep-file
myMesh->STLToMesh(File.filePath().c_str());
}
else if (File.hasExtension("dat") ) {
// read brep-file
myMesh->DATToMesh(File.filePath().c_str());
}
else if (File.hasExtension("bdf") ) {
// read Nastran-file
readNastran(File.filePath());
}
else{
throw Base::Exception("Unknown extension");
}
}
void FemMesh::writeABAQUS(const std::string &Filename) const
{
static std::map<std::string, std::vector<int> > elemOrderMap;
static std::map<int, std::string> edgeTypeMap;
static std::map<int, std::string> faceTypeMap;
static std::map<int, std::string> volTypeMap;
if (elemOrderMap.empty()) {
// dimension 1
//
// FIXME: get the right order
std::vector<int> b31 = boost::assign::list_of(0)(1);
std::vector<int> b32 = boost::assign::list_of(0)(1)(2);
#if 0
elemOrderMap.insert(std::make_pair("B31", b31));
edgeTypeMap.insert(std::make_pair(elemOrderMap["B31"].size(), "B31"));
elemOrderMap.insert(std::make_pair("B32", b32));
edgeTypeMap.insert(std::make_pair(elemOrderMap["B32"].size(), "B32"));
#endif
// dimension 2
//
// FIXME: get the right order
std::vector<int> s3;
std::vector<int> s6;
std::vector<int> s4r;
std::vector<int> s8r;
#if 0
elemOrderMap.insert(std::make_pair("S3", s3));
faceTypeMap.insert(std::make_pair(elemOrderMap["S3"].size(), "S3"));
elemOrderMap.insert(std::make_pair("S6", s6));
faceTypeMap.insert(std::make_pair(elemOrderMap["S6"].size(), "S6"));
elemOrderMap.insert(std::make_pair("S4R", s4r));
faceTypeMap.insert(std::make_pair(elemOrderMap["S4R"].size(), "S4R"));
elemOrderMap.insert(std::make_pair("S8R", s8r));
faceTypeMap.insert(std::make_pair(elemOrderMap["S8R"].size(), "S8R"));
#endif
// dimension 3
//
//std::vector<int> c3d4 = boost::assign::list_of(0)(3)(1)(2);
//std::vector<int> c3d10 = boost::assign::list_of(0)(2)(1)(3)(6)(5)(4)(7)(9)(8);
std::vector<int> c3d4 = boost::assign::list_of(1)(0)(2)(3);
std::vector<int> c3d10 = boost::assign::list_of(1)(0)(2)(3)(4)(6)(5)(8)(7)(9);
// FIXME: get the right order
std::vector<int> c3d6;
std::vector<int> c3d8;
std::vector<int> c3d15;
std::vector<int> c3d20;
elemOrderMap.insert(std::make_pair("C3D4", c3d4));
volTypeMap.insert(std::make_pair(elemOrderMap["C3D4"].size(), "C3D4"));
elemOrderMap.insert(std::make_pair("C3D10", c3d10));
volTypeMap.insert(std::make_pair(elemOrderMap["C3D10"].size(), "C3D10"));
#if 0
elemOrderMap.insert(std::make_pair("C3D6", c3d6));
volTypeMap.insert(std::make_pair(elemOrderMap["C3D6"].size(), "C3D6"));
elemOrderMap.insert(std::make_pair("C3D8", c3d8));
volTypeMap.insert(std::make_pair(elemOrderMap["C3D8"].size(), "C3D8"));
elemOrderMap.insert(std::make_pair("C3D15", c3d15));
volTypeMap.insert(std::make_pair(elemOrderMap["C3D15"].size(), "C3D15"));
elemOrderMap.insert(std::make_pair("C3D20", c3d20));
volTypeMap.insert(std::make_pair(elemOrderMap["C3D20"].size(), "C3D20"));
#endif
}
std::ofstream anABAQUS_Output;
anABAQUS_Output.open(Filename.c_str());
anABAQUS_Output << "*Node, NSET=Nall" << std::endl;
//Extract Nodes and Elements of the current SMESH datastructure
SMDS_NodeIteratorPtr aNodeIter = myMesh->GetMeshDS()->nodesIterator();
Base::Vector3d current_node;
while (aNodeIter->more()) {
const SMDS_MeshNode* aNode = aNodeIter->next();
current_node.Set(aNode->X(),aNode->Y(),aNode->Z());
current_node = _Mtrx * current_node;
anABAQUS_Output << aNode->GetID() << ", "
<< current_node.x << ", "
<< current_node.y << ", "
<< current_node.z << std::endl;
}
typedef std::map<int, std::vector<int> > NodesMap;
typedef std::map<std::string, NodesMap> ElementsMap;
ElementsMap elementsMap;
// add volumes
//
SMDS_VolumeIteratorPtr aVolIter = myMesh->GetMeshDS()->volumesIterator();
while (aVolIter->more()) {
const SMDS_MeshVolume* aVol = aVolIter->next();
std::pair<int, std::vector<int> > apair;
apair.first = aVol->GetID();
int numNodes = aVol->NbNodes();
std::map<int, std::string>::iterator it = volTypeMap.find(numNodes);
if (it != volTypeMap.end()) {
const std::vector<int>& order = elemOrderMap[it->second];
for (std::vector<int>::const_iterator jt = order.begin(); jt != order.end(); ++jt)
apair.second.push_back(aVol->GetNode(*jt)->GetID());
elementsMap[it->second].insert(apair);
}
}
for (ElementsMap::iterator it = elementsMap.begin(); it != elementsMap.end(); ++it) {
anABAQUS_Output << "*Element, TYPE=" << it->first << ", ELSET=Eall" << std::endl;
for (NodesMap::iterator jt = it->second.begin(); jt != it->second.end(); ++jt) {
anABAQUS_Output << jt->first << ", ";
for (std::vector<int>::iterator kt = jt->second.begin(); kt != jt->second.end(); ++kt) {
anABAQUS_Output << *kt << ", ";
}
anABAQUS_Output << std::endl;
}
}
elementsMap.clear();
// add faces
//
SMDS_FaceIteratorPtr aFaceIter = myMesh->GetMeshDS()->facesIterator();
while (aFaceIter->more()) {
const SMDS_MeshFace* aFace = aFaceIter->next();
std::pair<int, std::vector<int> > apair;
apair.first = aFace->GetID();
int numNodes = aFace->NbNodes();
std::map<int, std::string>::iterator it = faceTypeMap.find(numNodes);
if (it != faceTypeMap.end()) {
const std::vector<int>& order = elemOrderMap[it->second];
for (std::vector<int>::const_iterator jt = order.begin(); jt != order.end(); ++jt)
apair.second.push_back(aFace->GetNode(*jt)->GetID());
elementsMap[it->second].insert(apair);
}
}
for (ElementsMap::iterator it = elementsMap.begin(); it != elementsMap.end(); ++it) {
anABAQUS_Output << "*Element, TYPE=" << it->first << ", ELSET=Eall" << std::endl;
for (NodesMap::iterator jt = it->second.begin(); jt != it->second.end(); ++jt) {
anABAQUS_Output << jt->first << ", ";
for (std::vector<int>::iterator kt = jt->second.begin(); kt != jt->second.end(); ++kt) {
anABAQUS_Output << *kt << ", ";
}
anABAQUS_Output << std::endl;
}
}
elementsMap.clear();
// add edges
//
SMDS_EdgeIteratorPtr aEdgeIter = myMesh->GetMeshDS()->edgesIterator();
while (aEdgeIter->more()) {
const SMDS_MeshEdge* aEdge = aEdgeIter->next();
std::pair<int, std::vector<int> > apair;
apair.first = aEdge->GetID();
int numNodes = aEdge->NbNodes();
std::map<int, std::string>::iterator it = edgeTypeMap.find(numNodes);
if (it != edgeTypeMap.end()) {
const std::vector<int>& order = elemOrderMap[it->second];
for (std::vector<int>::const_iterator jt = order.begin(); jt != order.end(); ++jt)
apair.second.push_back(aEdge->GetNode(*jt)->GetID());
elementsMap[it->second].insert(apair);
}
}
for (ElementsMap::iterator it = elementsMap.begin(); it != elementsMap.end(); ++it) {
anABAQUS_Output << "*Element, TYPE=" << it->first << ", ELSET=Eall" << std::endl;
for (NodesMap::iterator jt = it->second.begin(); jt != it->second.end(); ++jt) {
anABAQUS_Output << jt->first << ", ";
for (std::vector<int>::iterator kt = jt->second.begin(); kt != jt->second.end(); ++kt) {
anABAQUS_Output << *kt << ", ";
}
anABAQUS_Output << std::endl;
}
}
elementsMap.clear();
anABAQUS_Output.close();
}
void FemMesh::write(const char *FileName) const
{
Base::FileInfo File(FileName);
if (File.hasExtension("unv") ) {
// read UNV file
myMesh->ExportUNV(File.filePath().c_str());
}
else if (File.hasExtension("med") ) {
myMesh->ExportMED(File.filePath().c_str());
}
else if (File.hasExtension("stl") ) {
// read brep-file
myMesh->ExportSTL(File.filePath().c_str(),false);
}
else if (File.hasExtension("dat") ) {
// read brep-file
myMesh->ExportDAT(File.filePath().c_str());
}
else if (File.hasExtension("inp") ) {
// write ABAQUS Output
writeABAQUS(File.filePath());
}
else{
throw Base::Exception("Unknown extension");
}
}
// ==== Base class implementer ==============================================================
unsigned int FemMesh::getMemSize (void) const
{
return 0;
}
void FemMesh::Save (Base::Writer &writer) const
{
if (!writer.isForceXML()) {
//See SaveDocFile(), RestoreDocFile()
writer.Stream() << writer.ind() << "<FemMesh file=\"" ;
writer.Stream() << writer.addFile("FemMesh.unv", this) << "\"";
writer.Stream() << " a11=\"" << _Mtrx[0][0] << "\" a12=\"" << _Mtrx[0][1] << "\" a13=\"" << _Mtrx[0][2] << "\" a14=\"" << _Mtrx[0][3] << "\"";
writer.Stream() << " a21=\"" << _Mtrx[1][0] << "\" a22=\"" << _Mtrx[1][1] << "\" a23=\"" << _Mtrx[1][2] << "\" a24=\"" << _Mtrx[1][3] << "\"";
writer.Stream() << " a31=\"" << _Mtrx[2][0] << "\" a32=\"" << _Mtrx[2][1] << "\" a33=\"" << _Mtrx[2][2] << "\" a34=\"" << _Mtrx[2][3] << "\"";
writer.Stream() << " a41=\"" << _Mtrx[3][0] << "\" a42=\"" << _Mtrx[3][1] << "\" a43=\"" << _Mtrx[3][2] << "\" a44=\"" << _Mtrx[3][3] << "\"";
writer.Stream() << "/>" << std::endl;
}
else {
writer.Stream() << writer.ind() << "<FemMesh file=\"\"" ;
writer.Stream() << " a11=\"" << _Mtrx[0][0] << "\" a12=\"" << _Mtrx[0][1] << "\" a13=\"" << _Mtrx[0][2] << "\" a14=\"" << _Mtrx[0][3] << "\"";
writer.Stream() << " a21=\"" << _Mtrx[1][0] << "\" a22=\"" << _Mtrx[1][1] << "\" a23=\"" << _Mtrx[1][2] << "\" a24=\"" << _Mtrx[1][3] << "\"";
writer.Stream() << " a31=\"" << _Mtrx[2][0] << "\" a32=\"" << _Mtrx[2][1] << "\" a33=\"" << _Mtrx[2][2] << "\" a34=\"" << _Mtrx[2][3] << "\"";
writer.Stream() << " a41=\"" << _Mtrx[3][0] << "\" a42=\"" << _Mtrx[3][1] << "\" a43=\"" << _Mtrx[3][2] << "\" a44=\"" << _Mtrx[3][3] << "\"";
writer.Stream() << "/>" << std::endl;
}
}
void FemMesh::Restore(Base::XMLReader &reader)
{
reader.readElement("FemMesh");
std::string file (reader.getAttribute("file") );
if (!file.empty()) {
// initate a file read
reader.addFile(file.c_str(),this);
}
if( reader.hasAttribute("a11")){
_Mtrx[0][0] = (float)reader.getAttributeAsFloat("a11");
_Mtrx[0][1] = (float)reader.getAttributeAsFloat("a12");
_Mtrx[0][2] = (float)reader.getAttributeAsFloat("a13");
_Mtrx[0][3] = (float)reader.getAttributeAsFloat("a14");
_Mtrx[1][0] = (float)reader.getAttributeAsFloat("a21");
_Mtrx[1][1] = (float)reader.getAttributeAsFloat("a22");
_Mtrx[1][2] = (float)reader.getAttributeAsFloat("a23");
_Mtrx[1][3] = (float)reader.getAttributeAsFloat("a24");
_Mtrx[2][0] = (float)reader.getAttributeAsFloat("a31");
_Mtrx[2][1] = (float)reader.getAttributeAsFloat("a32");
_Mtrx[2][2] = (float)reader.getAttributeAsFloat("a33");
_Mtrx[2][3] = (float)reader.getAttributeAsFloat("a34");
_Mtrx[3][0] = (float)reader.getAttributeAsFloat("a41");
_Mtrx[3][1] = (float)reader.getAttributeAsFloat("a42");
_Mtrx[3][2] = (float)reader.getAttributeAsFloat("a43");
_Mtrx[3][3] = (float)reader.getAttributeAsFloat("a44");
}
}
void FemMesh::SaveDocFile (Base::Writer &writer) const
{
// create a temporary file and copy the content to the zip stream
Base::FileInfo fi(Base::FileInfo::getTempFileName().c_str());
myMesh->ExportUNV(fi.filePath().c_str());
Base::ifstream file(fi, std::ios::in | std::ios::binary);
if (file){
unsigned long ulSize = 0;
std::streambuf* buf = file.rdbuf();
if (buf) {
unsigned long ulCurr;
ulCurr = buf->pubseekoff(0, std::ios::cur, std::ios::in);
ulSize = buf->pubseekoff(0, std::ios::end, std::ios::in);
buf->pubseekoff(ulCurr, std::ios::beg, std::ios::in);
}
// read in the ASCII file and write back to the stream
std::strstreambuf sbuf(ulSize);
file >> &sbuf;
writer.Stream() << &sbuf;
}
file.close();
// remove temp file
fi.deleteFile();
}
void FemMesh::RestoreDocFile(Base::Reader &reader)
{
// create a temporary file and copy the content from the zip stream
Base::FileInfo fi(Base::FileInfo::getTempFileName().c_str());
// read in the ASCII file and write back to the file stream
Base::ofstream file(fi, std::ios::out | std::ios::binary);
if (reader)
reader >> file.rdbuf();
file.close();
// read the shape from the temp file
myMesh->UNVToMesh(fi.filePath().c_str());
// delete the temp file
fi.deleteFile();
}
void FemMesh::transformGeometry(const Base::Matrix4D& rclTrf)
{
//We perform a translation and rotation of the current active Mesh object
Base::Matrix4D clMatrix(rclTrf);
SMDS_NodeIteratorPtr aNodeIter = myMesh->GetMeshDS()->nodesIterator();
Base::Vector3d current_node;
for (;aNodeIter->more();) {
const SMDS_MeshNode* aNode = aNodeIter->next();
current_node.Set(aNode->X(),aNode->Y(),aNode->Z());
current_node = clMatrix * current_node;
myMesh->GetMeshDS()->MoveNode(aNode,current_node.x,current_node.y,current_node.z);
}
}
void FemMesh::setTransform(const Base::Matrix4D& rclTrf)
{
// Placement handling, no geometric transformation
_Mtrx = rclTrf;
}
Base::Matrix4D FemMesh::getTransform(void) const
{
return _Mtrx;
}
Base::BoundBox3d FemMesh::getBoundBox(void) const
{
Base::BoundBox3d box;
SMESHDS_Mesh* data = const_cast<SMESH_Mesh*>(getSMesh())->GetMeshDS();
SMDS_NodeIteratorPtr aNodeIter = data->nodesIterator();
for (;aNodeIter->more();) {
const SMDS_MeshNode* aNode = aNodeIter->next();
Base::Vector3d vec(aNode->X(),aNode->Y(),aNode->Z());
// Apply the matrix to hold the BoundBox in absolute space.
vec = _Mtrx * vec;
box.Add(vec);
}
return box;
}
std::vector<const char*> FemMesh::getElementTypes(void) const
{
std::vector<const char*> temp;
temp.push_back("Vertex");
temp.push_back("Edge");
temp.push_back("Face");
temp.push_back("Volume");
return temp;
}
unsigned long FemMesh::countSubElements(const char* Type) const
{
return 0;
}
Data::Segment* FemMesh::getSubElement(const char* Type, unsigned long n) const
{
// FIXME implement subelement interface
//std::stringstream str;
//str << Type << n;
//std::string temp = str.str();
//return new ShapeSegment(getSubShape(temp.c_str()));
return 0;
}
struct Fem::FemMesh::FemMeshInfo FemMesh::getInfo(void) const{
struct FemMeshInfo rtrn;
SMESHDS_Mesh* data = const_cast<SMESH_Mesh*>(getSMesh())->GetMeshDS();
const SMDS_MeshInfo& info = data->GetMeshInfo();
rtrn.numFaces = data->NbFaces();
rtrn.numNode = info.NbNodes();
rtrn.numTria = info.NbTriangles();
rtrn.numQuad = info.NbQuadrangles();
rtrn.numPoly = info.NbPolygons();
rtrn.numVolu = info.NbVolumes();
rtrn.numTetr = info.NbTetras();
rtrn.numHexa = info.NbHexas();
rtrn.numPyrd = info.NbPyramids();
rtrn.numPris = info.NbPrisms();
rtrn.numHedr = info.NbPolyhedrons();
return rtrn;
}
// for(unsigned int i=0;i<all_elements.size();i++)
// {
// //Die Reihenfolge wie hier die Elemente hinzugefügt werden ist sehr wichtig.
// //Ansonsten ist eine konsistente Datenstruktur nicht möglich
// meshds->AddVolumeWithID(
// meshds->FindNode(all_elements[i][0]),
// meshds->FindNode(all_elements[i][2]),
// meshds->FindNode(all_elements[i][1]),
// meshds->FindNode(all_elements[i][3]),
// meshds->FindNode(all_elements[i][6]),
// meshds->FindNode(all_elements[i][5]),
// meshds->FindNode(all_elements[i][4]),
// meshds->FindNode(all_elements[i][9]),
// meshds->FindNode(all_elements[i][7]),
// meshds->FindNode(all_elements[i][8]),
// element_id[i]
// );
// }
Base::Quantity FemMesh::getVolume(void)const
{
SMDS_VolumeIteratorPtr aVolIter = myMesh->GetMeshDS()->volumesIterator();
//Calculate Mesh Volume
//For an accurate Volume Calculation of a quadratic Tetrahedron
//we have to calculate the Volume of 8 Sub-Tetrahedrons
Base::Vector3d a,b,c,a_b_product;
double volume = 0.0;
for (;aVolIter->more();)
{
const SMDS_MeshVolume* aVol = aVolIter->next();
if ( aVol->NbNodes() != 10 ) continue;
Base::Vector3d v1(aVol->GetNode(1)->X(),aVol->GetNode(1)->Y(),aVol->GetNode(1)->Z());
Base::Vector3d v0(aVol->GetNode(0)->X(),aVol->GetNode(0)->Y(),aVol->GetNode(0)->Z());
Base::Vector3d v2(aVol->GetNode(2)->X(),aVol->GetNode(2)->Y(),aVol->GetNode(2)->Z());
Base::Vector3d v3(aVol->GetNode(3)->X(),aVol->GetNode(3)->Y(),aVol->GetNode(3)->Z());
Base::Vector3d v4(aVol->GetNode(4)->X(),aVol->GetNode(4)->Y(),aVol->GetNode(4)->Z());
Base::Vector3d v6(aVol->GetNode(6)->X(),aVol->GetNode(6)->Y(),aVol->GetNode(6)->Z());
Base::Vector3d v5(aVol->GetNode(5)->X(),aVol->GetNode(5)->Y(),aVol->GetNode(5)->Z());
Base::Vector3d v8(aVol->GetNode(8)->X(),aVol->GetNode(8)->Y(),aVol->GetNode(8)->Z());
Base::Vector3d v7(aVol->GetNode(7)->X(),aVol->GetNode(7)->Y(),aVol->GetNode(7)->Z());
Base::Vector3d v9(aVol->GetNode(9)->X(),aVol->GetNode(9)->Y(),aVol->GetNode(9)->Z());
//1,5,8,7
a = v4 -v0 ;
b = v7 -v0 ;
c = v6 -v0 ;
a_b_product.x = a.y*b.z-b.y*a.z;a_b_product.y = a.z*b.x-b.z*a.x;a_b_product.z = a.x*b.y-b.x*a.y;
volume += 1.0/6.0 * fabs((a_b_product.x * c.x)+ (a_b_product.y * c.y)+(a_b_product.z * c.z));
//5,9,8,7
a = v8 -v4 ;
b = v7 -v4 ;
c = v6 -v4 ;
a_b_product.x = a.y*b.z-b.y*a.z;a_b_product.y = a.z*b.x-b.z*a.x;a_b_product.z = a.x*b.y-b.x*a.y;
volume += 1.0/6.0 * fabs((a_b_product.x * c.x)+ (a_b_product.y * c.y)+(a_b_product.z * c.z));
//5,2,9,7
a = v1 -v4 ;
b = v8 -v4 ;
c = v6 -v4 ;
a_b_product.x = a.y*b.z-b.y*a.z;a_b_product.y = a.z*b.x-b.z*a.x;a_b_product.z = a.x*b.y-b.x*a.y;
volume += 1.0/6.0 * fabs((a_b_product.x * c.x)+ (a_b_product.y * c.y)+(a_b_product.z * c.z));
//2,6,9,7
a = v5 -v1 ;
b = v8 -v1 ;
c = v6 -v1 ;
a_b_product.x = a.y*b.z-b.y*a.z;a_b_product.y = a.z*b.x-b.z*a.x;a_b_product.z = a.x*b.y-b.x*a.y;
volume += 1.0/6.0 * fabs((a_b_product.x * c.x)+ (a_b_product.y * c.y)+(a_b_product.z * c.z));
//9,6,10,7
a = v5 -v8 ;
b = v9 -v8 ;
c = v6 -v8 ;
a_b_product.x = a.y*b.z-b.y*a.z;a_b_product.y = a.z*b.x-b.z*a.x;a_b_product.z = a.x*b.y-b.x*a.y;
volume += 1.0/6.0 * fabs((a_b_product.x * c.x)+ (a_b_product.y * c.y)+(a_b_product.z * c.z));
//6,3,10,7
a = v2 -v5 ;
b = v9 -v5 ;
c = v6 -v5 ;
a_b_product.x = a.y*b.z-b.y*a.z;a_b_product.y = a.z*b.x-b.z*a.x;a_b_product.z = a.x*b.y-b.x*a.y;
volume += 1.0/6.0 * fabs((a_b_product.x * c.x)+ (a_b_product.y * c.y)+(a_b_product.z * c.z));
//8,9,10,7
a = v8 -v7 ;
b = v9 -v7 ;
c = v6 -v7 ;
a_b_product.x = a.y*b.z-b.y*a.z;a_b_product.y = a.z*b.x-b.z*a.x;a_b_product.z = a.x*b.y-b.x*a.y;
volume += 1.0/6.0 * fabs((a_b_product.x * c.x)+ (a_b_product.y * c.y)+(a_b_product.z * c.z));
//8,9,10,4
a = v8 -v7 ;
b = v9 -v7 ;
c = v3 -v7 ;
a_b_product.x = a.y*b.z-b.y*a.z;a_b_product.y = a.z*b.x-b.z*a.x;a_b_product.z = a.x*b.y-b.x*a.y;
volume += 1.0/6.0 * fabs((a_b_product.x * c.x)+ (a_b_product.y * c.y)+(a_b_product.z * c.z));
}
return Base::Quantity(volume,Unit::Volume);
}