FreeCAD/src/Mod/ReverseEngineering/App/SurfaceTriangulation.h

194 lines
7.4 KiB
C++

/***************************************************************************
* Copyright (c) 2012 Werner Mayer <wmayer[at]users.sourceforge.net> *
* *
* This file is part of the FreeCAD CAx development system. *
* *
* This library is free software; you can redistribute it and/or *
* modify it under the terms of the GNU Library General Public *
* License as published by the Free Software Foundation; either *
* version 2 of the License, or (at your option) any later version. *
* *
* This library is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU Library General Public License for more details. *
* *
* You should have received a copy of the GNU Library General Public *
* License along with this library; see the file COPYING.LIB. If not, *
* write to the Free Software Foundation, Inc., 59 Temple Place, *
* Suite 330, Boston, MA 02111-1307, USA *
* *
***************************************************************************/
#ifndef REEN_SURFACETRIANGULATION_H
#define REEN_SURFACETRIANGULATION_H
#include <Base/Vector3D.h>
#include <vector>
namespace Points {class PointKernel;}
namespace Mesh {class MeshObject;}
namespace pcl {struct PolygonMesh;}
namespace Reen {
class MeshConversion
{
public:
static void convert(const pcl::PolygonMesh&, Mesh::MeshObject&);
};
class SurfaceTriangulation
{
public:
SurfaceTriangulation(const Points::PointKernel&, Mesh::MeshObject&);
/** \brief Set the number of k nearest neighbors to use for the normal estimation.
* \param[in] k the number of k-nearest neighbors
*/
void perform(int ksearch);
/** \brief Pass the normals to the points given in the constructor.
* \param[in] normals the normals to the given points.
*/
void perform(const std::vector<Base::Vector3f>& normals);
/** \brief Set the multiplier of the nearest neighbor distance to obtain the final search radius for each point
* (this will make the algorithm adapt to different point densities in the cloud).
* \param[in] mu the multiplier
*/
inline void
setMu (double mu) { this->mu = mu; }
/** \brief Set the sphere radius that is to be used for determining the k-nearest neighbors used for triangulating.
* \param[in] radius the sphere radius that is to contain all k-nearest neighbors
* \note This distance limits the maximum edge length!
*/
inline void
setSearchRadius (double radius) { this->searchRadius = radius; }
private:
const Points::PointKernel& myPoints;
Mesh::MeshObject& myMesh;
double mu;
double searchRadius;
};
class PoissonReconstruction
{
public:
PoissonReconstruction(const Points::PointKernel&, Mesh::MeshObject&);
/** \brief Set the number of k nearest neighbors to use for the normal estimation.
* \param[in] k the number of k-nearest neighbors
*/
void perform(int ksearch=5);
/** \brief Pass the normals to the points given in the constructor.
* \param[in] normals the normals to the given points.
*/
void perform(const std::vector<Base::Vector3f>& normals);
/** \brief Set the maximum depth of the tree that will be used for surface reconstruction.
* \note Running at depth d corresponds to solving on a voxel grid whose resolution is no larger than
* 2^d x 2^d x 2^d. Note that since the reconstructor adapts the octree to the sampling density, the specified
* reconstruction depth is only an upper bound.
* \param[in] depth the depth parameter
*/
inline void
setDepth (int depth) { this->depth = depth; }
/** \brief Set the the depth at which a block Gauss-Seidel solver is used to solve the Laplacian equation
* \note Using this parameter helps reduce the memory overhead at the cost of a small increase in
* reconstruction time. (In practice, we have found that for reconstructions of depth 9 or higher a subdivide
* depth of 7 or 8 can greatly reduce the memory usage.)
* \param[in] solver_divide the given parameter value
*/
inline void
setSolverDivide (int solverDivide) { this->solverDivide = solverDivide; }
/** \brief Set the minimum number of sample points that should fall within an octree node as the octree
* construction is adapted to sampling density
* \note For noise-free samples, small values in the range [1.0 - 5.0] can be used. For more noisy samples,
* larger values in the range [15.0 - 20.0] may be needed to provide a smoother, noise-reduced, reconstruction.
* \param[in] samples_per_node the given parameter value
*/
inline void
setSamplesPerNode(float samplesPerNode) { this->samplesPerNode = samplesPerNode; }
private:
const Points::PointKernel& myPoints;
Mesh::MeshObject& myMesh;
int depth;
int solverDivide;
float samplesPerNode;
};
class GridReconstruction
{
public:
GridReconstruction(const Points::PointKernel&, Mesh::MeshObject&);
/** \brief Set the number of k nearest neighbors to use for the normal estimation.
* \param[in] k the number of k-nearest neighbors
*/
void perform(int ksearch=5);
/** \brief Pass the normals to the points given in the constructor.
* \param[in] normals the normals to the given points.
*/
void perform(const std::vector<Base::Vector3f>& normals);
private:
const Points::PointKernel& myPoints;
Mesh::MeshObject& myMesh;
};
class ImageTriangulation
{
public:
ImageTriangulation(int width, int height, const Points::PointKernel&, Mesh::MeshObject&);
void perform();
private:
int width, height;
const Points::PointKernel& myPoints;
Mesh::MeshObject& myMesh;
};
class MarchingCubesRBF
{
public:
MarchingCubesRBF(const Points::PointKernel&, Mesh::MeshObject&);
/** \brief Set the number of k nearest neighbors to use for the normal estimation.
* \param[in] k the number of k-nearest neighbors
*/
void perform(int ksearch=5);
/** \brief Pass the normals to the points given in the constructor.
* \param[in] normals the normals to the given points.
*/
void perform(const std::vector<Base::Vector3f>& normals);
private:
const Points::PointKernel& myPoints;
Mesh::MeshObject& myMesh;
};
class MarchingCubesHoppe
{
public:
MarchingCubesHoppe(const Points::PointKernel&, Mesh::MeshObject&);
/** \brief Set the number of k nearest neighbors to use for the normal estimation.
* \param[in] k the number of k-nearest neighbors
*/
void perform(int ksearch=5);
/** \brief Pass the normals to the points given in the constructor.
* \param[in] normals the normals to the given points.
*/
void perform(const std::vector<Base::Vector3f>& normals);
private:
const Points::PointKernel& myPoints;
Mesh::MeshObject& myMesh;
};
} // namespace Reen
#endif // REEN_SURFACETRIANGULATION_H