FreeCAD/src/Mod/Fem/App/FemMeshPyImp.cpp
2016-04-24 19:10:33 +02:00

963 lines
32 KiB
C++

/***************************************************************************
* Copyright (c) Jürgen Riegel (juergen.riegel@web.de) 2009 *
* *
* This file is part of the FreeCAD CAx development system. *
* *
* This library is free software; you can redistribute it and/or *
* modify it under the terms of the GNU Library General Public *
* License as published by the Free Software Foundation; either *
* version 2 of the License, or (at your option) any later version. *
* *
* This library is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU Library General Public License for more details. *
* *
* You should have received a copy of the GNU Library General Public *
* License along with this library; see the file COPYING.LIB. If not, *
* write to the Free Software Foundation, Inc., 59 Temple Place, *
* Suite 330, Boston, MA 02111-1307, USA *
* *
***************************************************************************/
#include "PreCompiled.h"
#include <stdexcept>
#include <SMESH_Gen.hxx>
#include <SMESH_Mesh.hxx>
#include <SMDS_VolumeTool.hxx>
#include <TopoDS_Shape.hxx>
#include <TopoDS_Face.hxx>
#include <TopoDS.hxx>
#include <Base/VectorPy.h>
#include <Base/MatrixPy.h>
#include <Base/PlacementPy.h>
#include <Base/QuantityPy.h>
#include <Mod/Part/App/TopoShapePy.h>
#include <Mod/Part/App/TopoShapeSolidPy.h>
#include <Mod/Part/App/TopoShapeFacePy.h>
#include <Mod/Part/App/TopoShapeEdgePy.h>
#include <Mod/Part/App/TopoShapeVertexPy.h>
#include <Mod/Part/App/TopoShape.h>
#include "Mod/Fem/App/FemMesh.h"
// inclusion of the generated files (generated out of FemMeshPy.xml)
#include "FemMeshPy.h"
#include "FemMeshPy.cpp"
#include "HypothesisPy.h"
using namespace Fem;
// returns a string which represents the object e.g. when printed in python
std::string FemMeshPy::representation(void) const
{
std::stringstream str;
getFemMeshPtr()->getSMesh()->Dump(str);
return str.str();
}
PyObject *FemMeshPy::PyMake(struct _typeobject *, PyObject *, PyObject *) // Python wrapper
{
// create a new instance of FemMeshPy and the Twin object
return new FemMeshPy(new FemMesh);
}
// constructor method
int FemMeshPy::PyInit(PyObject* args, PyObject* /*kwd*/)
{
PyObject *pcObj=0;
if (!PyArg_ParseTuple(args, "|O", &pcObj)) // convert args: Python->C
return -1; // NULL triggers exception
try {
// if no mesh is given
if (!pcObj) return 0;
if (PyObject_TypeCheck(pcObj, &(FemMeshPy::Type))) {
getFemMeshPtr()->operator= (*static_cast<FemMeshPy*>(pcObj)->getFemMeshPtr());
}
else {
PyErr_Format(PyExc_TypeError, "Cannot create a FemMesh out of a '%s'",
pcObj->ob_type->tp_name);
return -1;
}
}
catch (const Base::Exception &e) {
PyErr_SetString(Base::BaseExceptionFreeCADError,e.what());
return -1;
}
catch (const std::exception &e) {
PyErr_SetString(Base::BaseExceptionFreeCADError,e.what());
return -1;
}
catch (const Py::Exception&) {
return -1;
}
return 0;
}
// ===== Methods ============================================================
PyObject* FemMeshPy::setShape(PyObject *args)
{
PyObject *pcObj;
if (!PyArg_ParseTuple(args, "O!", &(Part::TopoShapePy::Type), &pcObj))
return 0;
try {
TopoDS_Shape shape = static_cast<Part::TopoShapePy*>(pcObj)->getTopoShapePtr()->_Shape;
getFemMeshPtr()->getSMesh()->ShapeToMesh(shape);
}
catch (const std::exception& e) {
PyErr_SetString(Base::BaseExceptionFreeCADError, e.what());
return 0;
}
Py_Return;
}
PyObject* FemMeshPy::addHypothesis(PyObject *args)
{
PyObject* hyp;
PyObject* shp=0;
// Since we have not a common base class for the Python binding of the
// hypotheses classes we cannot pass a certain Python type
if (!PyArg_ParseTuple(args, "O|O!",&hyp, &(Part::TopoShapePy::Type), &shp))
return 0;
TopoDS_Shape shape;
if (shp == 0)
shape = getFemMeshPtr()->getSMesh()->GetShapeToMesh();
else
shape = static_cast<Part::TopoShapePy*>(shp)->getTopoShapePtr()->_Shape;
try {
Py::Object obj(hyp);
Fem::Hypothesis attr(obj.getAttr("this"));
SMESH_HypothesisPtr thesis = attr.extensionObject()->getHypothesis();
getFemMeshPtr()->addHypothesis(shape, thesis);
}
catch (const Py::Exception&) {
return 0;
}
catch (const std::exception& e) {
PyErr_SetString(Base::BaseExceptionFreeCADError, e.what());
return 0;
}
Py_Return;
}
PyObject* FemMeshPy::setStanardHypotheses(PyObject *args)
{
if (!PyArg_ParseTuple(args, ""))
return 0;
try {
getFemMeshPtr()->setStanardHypotheses();
}
catch (const std::exception& e) {
PyErr_SetString(Base::BaseExceptionFreeCADError, e.what());
return 0;
}
Py_Return;
}
PyObject* FemMeshPy::compute(PyObject *args)
{
if (!PyArg_ParseTuple(args, ""))
return 0;
try {
getFemMeshPtr()->compute();
}
catch (const std::exception& e) {
PyErr_SetString(Base::BaseExceptionFreeCADError, e.what());
return 0;
}
Py_Return;
}
PyObject* FemMeshPy::addNode(PyObject *args)
{
double x,y,z;
int i = -1;
if (PyArg_ParseTuple(args, "ddd",&x,&y,&z)){
try {
SMESH_Mesh* mesh = getFemMeshPtr()->getSMesh();
SMESHDS_Mesh* meshDS = mesh->GetMeshDS();
SMDS_MeshNode* node = meshDS->AddNode(x,y,z);
if (!node)
throw std::runtime_error("Failed to add node");
return Py::new_reference_to(Py::Int(node->GetID()));
}
catch (const std::exception& e) {
PyErr_SetString(Base::BaseExceptionFreeCADError, e.what());
return 0;
}
}
PyErr_Clear();
if (PyArg_ParseTuple(args, "dddi",&x,&y,&z,&i)){
try {
SMESH_Mesh* mesh = getFemMeshPtr()->getSMesh();
SMESHDS_Mesh* meshDS = mesh->GetMeshDS();
SMDS_MeshNode* node = meshDS->AddNodeWithID(x,y,z,i);
if (!node)
throw std::runtime_error("Failed to add node");
return Py::new_reference_to(Py::Int(node->GetID()));
}
catch (const std::exception& e) {
PyErr_SetString(Base::BaseExceptionFreeCADError, e.what());
return 0;
}
}
PyErr_SetString(PyExc_TypeError, "addNode() accepts:\n"
"-- addNode(x,y,z)\n"
"-- addNode(x,y,z,ElemId)\n");
return 0;
}
PyObject* FemMeshPy::addEdge(PyObject *args)
{
int n1,n2;
if (!PyArg_ParseTuple(args, "ii",&n1,&n2))
return 0;
try {
SMESH_Mesh* mesh = getFemMeshPtr()->getSMesh();
SMESHDS_Mesh* meshDS = mesh->GetMeshDS();
const SMDS_MeshNode* node1 = meshDS->FindNode(n1);
const SMDS_MeshNode* node2 = meshDS->FindNode(n2);
if (!node1 || !node2)
throw std::runtime_error("Failed to get node of the given indices");
SMDS_MeshEdge* edge = meshDS->AddEdge(node1, node2);
if (!edge)
throw std::runtime_error("Failed to add edge");
return Py::new_reference_to(Py::Int(edge->GetID()));
}
catch (const std::exception& e) {
PyErr_SetString(Base::BaseExceptionFreeCADError, e.what());
return 0;
}
}
PyObject* FemMeshPy::addFace(PyObject *args)
{
SMESH_Mesh* mesh = getFemMeshPtr()->getSMesh();
SMESHDS_Mesh* meshDS = mesh->GetMeshDS();
int n1,n2,n3;
if (PyArg_ParseTuple(args, "iii",&n1,&n2,&n3))
{
// old form, deprecated
try {
const SMDS_MeshNode* node1 = meshDS->FindNode(n1);
const SMDS_MeshNode* node2 = meshDS->FindNode(n2);
const SMDS_MeshNode* node3 = meshDS->FindNode(n3);
if (!node1 || !node2 || !node3)
throw std::runtime_error("Failed to get node of the given indices");
SMDS_MeshFace* face = meshDS->AddFace(node1, node2, node3);
if (!face)
throw std::runtime_error("Failed to add face");
return Py::new_reference_to(Py::Int(face->GetID()));
}
catch (const std::exception& e) {
PyErr_SetString(Base::BaseExceptionFreeCADError, e.what());
return 0;
}
}
PyErr_Clear();
PyObject *obj;
int ElementId=-1;
if (PyArg_ParseTuple(args, "O!|i", &PyList_Type, &obj, &ElementId))
{
Py::List list(obj);
std::vector<const SMDS_MeshNode*> Nodes;
for (Py::List::iterator it = list.begin(); it != list.end(); ++it) {
Py::Int NoNr(*it);
const SMDS_MeshNode* node = meshDS->FindNode(NoNr);
if (!node)
throw std::runtime_error("Failed to get node of the given indices");
Nodes.push_back(node);
}
SMDS_MeshFace* face=0;
switch(Nodes.size()){
case 3:
face = meshDS->AddFace(Nodes[0],Nodes[1],Nodes[2]);
if (!face)
throw std::runtime_error("Failed to add triangular face");
break;
case 4:
face = meshDS->AddFace(Nodes[0],Nodes[1],Nodes[2],Nodes[3]);
if (!face)
throw std::runtime_error("Failed to add face");
break;
case 6:
face = meshDS->AddFace(Nodes[0],Nodes[1],Nodes[2],Nodes[3],Nodes[4],Nodes[5]);
if (!face)
throw std::runtime_error("Failed to add face");
break;
case 8:
face = meshDS->AddFace(Nodes[0],Nodes[1],Nodes[2],Nodes[3],Nodes[4],Nodes[5],Nodes[6],Nodes[7]);
if (!face)
throw std::runtime_error("Failed to add face");
break;
default:
throw std::runtime_error("Unknown node count, [3|4|6|8] are allowed"); //unknown face type
}
return Py::new_reference_to(Py::Int(face->GetID()));
}
PyErr_SetString(PyExc_TypeError, "addFace accepts:\n"
"-- int,int,int\n"
"-- [3|4|6|8 int],[int]\n");
return 0;
}
PyObject* FemMeshPy::addQuad(PyObject *args)
{
int n1,n2,n3,n4;
if (!PyArg_ParseTuple(args, "iiii",&n1,&n2,&n3,&n4))
return 0;
try {
SMESH_Mesh* mesh = getFemMeshPtr()->getSMesh();
SMESHDS_Mesh* meshDS = mesh->GetMeshDS();
const SMDS_MeshNode* node1 = meshDS->FindNode(n1);
const SMDS_MeshNode* node2 = meshDS->FindNode(n2);
const SMDS_MeshNode* node3 = meshDS->FindNode(n3);
const SMDS_MeshNode* node4 = meshDS->FindNode(n4);
if (!node1 || !node2 || !node3 || !node4)
throw std::runtime_error("Failed to get node of the given indices");
SMDS_MeshFace* face = meshDS->AddFace(node1, node2, node3, node4);
if (!face)
throw std::runtime_error("Failed to add quad");
return Py::new_reference_to(Py::Int(face->GetID()));
}
catch (const std::exception& e) {
PyErr_SetString(Base::BaseExceptionFreeCADError, e.what());
return 0;
}
}
PyObject* FemMeshPy::addVolume(PyObject *args)
{
SMESH_Mesh* mesh = getFemMeshPtr()->getSMesh();
SMESHDS_Mesh* meshDS = mesh->GetMeshDS();
int n1,n2,n3,n4;
if (PyArg_ParseTuple(args, "iiii",&n1,&n2,&n3,&n4))
{
try {
const SMDS_MeshNode* node1 = meshDS->FindNode(n1);
const SMDS_MeshNode* node2 = meshDS->FindNode(n2);
const SMDS_MeshNode* node3 = meshDS->FindNode(n3);
const SMDS_MeshNode* node4 = meshDS->FindNode(n4);
if (!node1 || !node2 || !node3 || !node4)
throw std::runtime_error("Failed to get node of the given indices");
SMDS_MeshVolume* vol = meshDS->AddVolume(node1, node2, node3, node4);
if (!vol)
throw std::runtime_error("Failed to add volume");
return Py::new_reference_to(Py::Int(vol->GetID()));
}
catch (const std::exception& e) {
PyErr_SetString(Base::BaseExceptionFreeCADError, e.what());
return 0;
}
}
PyErr_Clear();
PyObject *obj;
int ElementId=-1;
if (PyArg_ParseTuple(args, "O!|i", &PyList_Type, &obj, &ElementId))
{
Py::List list(obj);
std::vector<const SMDS_MeshNode*> Nodes;
for (Py::List::iterator it = list.begin(); it != list.end(); ++it) {
Py::Int NoNr(*it);
const SMDS_MeshNode* node = meshDS->FindNode(NoNr);
if (!node)
throw std::runtime_error("Failed to get node of the given indices");
Nodes.push_back(node);
}
SMDS_MeshVolume* vol=0;
if(ElementId != -1) {
switch(Nodes.size()){
case 4:
vol = meshDS->AddVolumeWithID(Nodes[0],Nodes[1],Nodes[2],Nodes[3],ElementId);
if (!vol)
throw std::runtime_error("Failed to add Tet4 volume");
break;
case 5:
vol = meshDS->AddVolumeWithID(Nodes[0],Nodes[1],Nodes[2],Nodes[3],Nodes[4],ElementId);
if (!vol)
throw std::runtime_error("Failed to add Pyra5 volume");
break;
case 6:
vol = meshDS->AddVolumeWithID(Nodes[0],Nodes[1],Nodes[2],Nodes[3],Nodes[4],Nodes[5],ElementId);
if (!vol)
throw std::runtime_error("Failed to add Penta6 volume");
break;
case 8:
vol = meshDS->AddVolumeWithID(Nodes[0],Nodes[1],Nodes[2],Nodes[3],Nodes[4],Nodes[5],Nodes[6],Nodes[7],ElementId);
if (!vol)
throw std::runtime_error("Failed to add Hexa8 volume");
break;
case 10:
vol = meshDS->AddVolumeWithID(Nodes[0],Nodes[1],Nodes[2],Nodes[3],Nodes[4],Nodes[5],Nodes[6],Nodes[7],Nodes[8],Nodes[9],ElementId);
if (!vol)
throw std::runtime_error("Failed to add Tet10 volume");
break;
case 13:
vol = meshDS->AddVolumeWithID(Nodes[0],Nodes[1],Nodes[2],Nodes[3],Nodes[4],Nodes[5],Nodes[6],Nodes[7],Nodes[8],Nodes[9],Nodes[10],Nodes[11],Nodes[12],ElementId);
if (!vol)
throw std::runtime_error("Failed to add Pyra13 volume");
case 15:
vol = meshDS->AddVolumeWithID(Nodes[0],Nodes[1],Nodes[2],Nodes[3],Nodes[4],Nodes[5],Nodes[6],Nodes[7],Nodes[8],Nodes[9],Nodes[10],Nodes[11],Nodes[12],Nodes[13],Nodes[14],ElementId);
if (!vol)
throw std::runtime_error("Failed to add Penta15 volume");
case 20:
vol = meshDS->AddVolumeWithID(Nodes[0],Nodes[1],Nodes[2],Nodes[3],Nodes[4],Nodes[5],Nodes[6],Nodes[7],Nodes[8],Nodes[9],Nodes[10],Nodes[11],Nodes[12],Nodes[13],Nodes[14],Nodes[15],Nodes[16],Nodes[17],Nodes[18],Nodes[19],ElementId);
if (!vol)
throw std::runtime_error("Failed to add Hexa20 volume");
break;
default: throw std::runtime_error("Unknown node count, [4|5|6|8|10|13|15|20] are allowed"); //unknown volume type
}
}else{
switch(Nodes.size()){
case 4:
vol = meshDS->AddVolume(Nodes[0],Nodes[1],Nodes[2],Nodes[3]);
if (!vol)
throw std::runtime_error("Failed to add Tet4 volume");
break;
case 5:
vol = meshDS->AddVolume(Nodes[0],Nodes[1],Nodes[2],Nodes[3],Nodes[4]);
if (!vol)
throw std::runtime_error("Failed to add Pyra5 volume");
break;
case 6:
vol = meshDS->AddVolume(Nodes[0],Nodes[1],Nodes[2],Nodes[3],Nodes[4],Nodes[5]);
if (!vol)
throw std::runtime_error("Failed to add Penta6 volume");
break;
case 8:
vol = meshDS->AddVolume(Nodes[0],Nodes[1],Nodes[2],Nodes[3],Nodes[4],Nodes[5],Nodes[6],Nodes[7]);
if (!vol)
throw std::runtime_error("Failed to add Hexa8 volume");
break;
case 10:
vol = meshDS->AddVolume(Nodes[0],Nodes[1],Nodes[2],Nodes[3],Nodes[4],Nodes[5],Nodes[6],Nodes[7],Nodes[8],Nodes[9]);
if (!vol)
throw std::runtime_error("Failed to add Tet10 volume");
break;
case 13:
vol = meshDS->AddVolume(Nodes[0],Nodes[1],Nodes[2],Nodes[3],Nodes[4],Nodes[5],Nodes[6],Nodes[7],Nodes[8],Nodes[9],Nodes[10],Nodes[11],Nodes[12]);
if (!vol)
throw std::runtime_error("Failed to add Pyra13 volume");
break;
case 15:
vol = meshDS->AddVolume(Nodes[0],Nodes[1],Nodes[2],Nodes[3],Nodes[4],Nodes[5],Nodes[6],Nodes[7],Nodes[8],Nodes[9],Nodes[10],Nodes[11],Nodes[12],Nodes[13],Nodes[14]);
if (!vol)
throw std::runtime_error("Failed to add Penta15 volume");
break;
case 20:
vol = meshDS->AddVolume(Nodes[0],Nodes[1],Nodes[2],Nodes[3],Nodes[4],Nodes[5],Nodes[6],Nodes[7],Nodes[8],Nodes[9],Nodes[10],Nodes[11],Nodes[12],Nodes[13],Nodes[14],Nodes[15],Nodes[16],Nodes[17],Nodes[18],Nodes[19]);
if (!vol)
throw std::runtime_error("Failed to add Hexa20 volume");
break;
default: throw std::runtime_error("Unknown node count, [4|5|6|8|10|13|15|20] are allowed"); //unknown volume type
}
}
return Py::new_reference_to(Py::Int(vol->GetID()));
}
PyErr_SetString(PyExc_TypeError, "addVolume accepts:\n"
"-- int,int,int,int\n"
"-- [4|5|6|8|10|13|15|20 int],[int]\n");
return 0;
}
PyObject* FemMeshPy::copy(PyObject *args)
{
if (!PyArg_ParseTuple(args, ""))
return 0;
const FemMesh& mesh = *getFemMeshPtr();
return new FemMeshPy(new FemMesh(mesh));
}
PyObject* FemMeshPy::read(PyObject *args)
{
char* Name;
if (!PyArg_ParseTuple(args, "et","utf-8",&Name))
return 0;
std::string EncodedName = std::string(Name);
PyMem_Free(Name);
try {
getFemMeshPtr()->read(EncodedName.c_str());
}
catch (const std::exception& e) {
PyErr_SetString(Base::BaseExceptionFreeCADError, e.what());
return 0;
}
Py_Return;
}
PyObject* FemMeshPy::write(PyObject *args)
{
char* Name;
if (!PyArg_ParseTuple(args, "et","utf-8",&Name))
return 0;
std::string EncodedName = std::string(Name);
PyMem_Free(Name);
try {
getFemMeshPtr()->write(EncodedName.c_str());
}
catch (const std::exception& e) {
PyErr_SetString(Base::BaseExceptionFreeCADError, e.what());
return 0;
}
Py_Return;
}
PyObject* FemMeshPy::writeABAQUS(PyObject *args)
{
char* Name;
if (!PyArg_ParseTuple(args, "et","utf-8",&Name))
return 0;
std::string EncodedName = std::string(Name);
PyMem_Free(Name);
try {
getFemMeshPtr()->writeABAQUS(EncodedName.c_str());
}
catch (const std::exception& e) {
PyErr_SetString(Base::BaseExceptionFreeCADError, e.what());
return 0;
}
Py_Return;
}
PyObject* FemMeshPy::setTransform(PyObject *args)
{
PyObject* ptr;
if (!PyArg_ParseTuple(args, "O!", &(Base::PlacementPy::Type), &ptr))
return 0;
try {
Base::Placement* placement = static_cast<Base::PlacementPy*>(ptr)->getPlacementPtr();
Base::Matrix4D mat = placement->toMatrix();
getFemMeshPtr()->transformGeometry(mat);
}
catch (const std::exception& e) {
PyErr_SetString(Base::BaseExceptionFreeCADError, e.what());
return 0;
}
Py_Return;
}
PyObject* FemMeshPy::getVolumesByFace(PyObject *args)
{
PyObject *pW;
if (!PyArg_ParseTuple(args, "O!", &(Part::TopoShapeFacePy::Type), &pW))
return 0;
try {
const TopoDS_Shape& sh = static_cast<Part::TopoShapeFacePy*>(pW)->getTopoShapePtr()->_Shape;
if (sh.IsNull()) {
PyErr_SetString(Base::BaseExceptionFreeCADError, "Face is empty");
return 0;
}
const TopoDS_Face& fc = TopoDS::Face(sh);
Py::List ret;
std::list<std::pair<int, int> > resultSet = getFemMeshPtr()->getVolumesByFace(fc);
for (std::list<std::pair<int, int> >::const_iterator it = resultSet.begin();it!=resultSet.end();++it) {
Py::Tuple vol_face(2);
vol_face.setItem(0, Py::Int(it->first));
vol_face.setItem(1, Py::Int(it->second));
ret.append(vol_face);
}
return Py::new_reference_to(ret);
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(Base::BaseExceptionFreeCADError, e->GetMessageString());
return 0;
}
}
PyObject* FemMeshPy::getccxVolumesByFace(PyObject *args)
{
PyObject *pW;
if (!PyArg_ParseTuple(args, "O!", &(Part::TopoShapeFacePy::Type), &pW))
return 0;
try {
const TopoDS_Shape& sh = static_cast<Part::TopoShapeFacePy*>(pW)->getTopoShapePtr()->_Shape;
if (sh.IsNull()) {
PyErr_SetString(Base::BaseExceptionFreeCADError, "Face is empty");
return 0;
}
const TopoDS_Face& fc = TopoDS::Face(sh);
Py::List ret;
std::map<int, int> resultSet = getFemMeshPtr()->getccxVolumesByFace(fc);
for (std::map<int, int>::const_iterator it = resultSet.begin();it!=resultSet.end();++it) {
Py::Tuple vol_face(2);
vol_face.setItem(0, Py::Int(it->first));
vol_face.setItem(1, Py::Int(it->second));
ret.append(vol_face);
}
return Py::new_reference_to(ret);
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(Base::BaseExceptionFreeCADError, e->GetMessageString());
return 0;
}
}
PyObject* FemMeshPy::getNodeById(PyObject *args)
{
int id;
if (!PyArg_ParseTuple(args, "i", &id))
return 0;
Base::Matrix4D Mtrx = getFemMeshPtr()->getTransform();
const SMDS_MeshNode* aNode = getFemMeshPtr()->getSMesh()->GetMeshDS()->FindNode(id);
if(aNode){
Base::Vector3d vec(aNode->X(),aNode->Y(),aNode->Z());
vec = Mtrx * vec;
return new Base::VectorPy( vec );
}else{
PyErr_SetString(Base::BaseExceptionFreeCADError, "No valid ID");
return 0;
}
}
PyObject* FemMeshPy::getNodesBySolid(PyObject *args)
{
PyObject *pW;
if (!PyArg_ParseTuple(args, "O!", &(Part::TopoShapeSolidPy::Type), &pW))
return 0;
try {
const TopoDS_Shape& sh = static_cast<Part::TopoShapeSolidPy*>(pW)->getTopoShapePtr()->_Shape;
const TopoDS_Solid& fc = TopoDS::Solid(sh);
if (sh.IsNull()) {
PyErr_SetString(Base::BaseExceptionFreeCADError, "Solid is empty");
return 0;
}
Py::List ret;
std::set<int> resultSet = getFemMeshPtr()->getNodesBySolid(fc);
for (std::set<int>::const_iterator it = resultSet.begin();it!=resultSet.end();++it)
ret.append(Py::Int(*it));
return Py::new_reference_to(ret);
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(Base::BaseExceptionFreeCADError, e->GetMessageString());
return 0;
}
}
PyObject* FemMeshPy::getNodesByFace(PyObject *args)
{
PyObject *pW;
if (!PyArg_ParseTuple(args, "O!", &(Part::TopoShapeFacePy::Type), &pW))
return 0;
try {
const TopoDS_Shape& sh = static_cast<Part::TopoShapeFacePy*>(pW)->getTopoShapePtr()->_Shape;
const TopoDS_Face& fc = TopoDS::Face(sh);
if (sh.IsNull()) {
PyErr_SetString(Base::BaseExceptionFreeCADError, "Face is empty");
return 0;
}
Py::List ret;
std::set<int> resultSet = getFemMeshPtr()->getNodesByFace(fc);
for (std::set<int>::const_iterator it = resultSet.begin();it!=resultSet.end();++it)
ret.append(Py::Int(*it));
return Py::new_reference_to(ret);
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(Base::BaseExceptionFreeCADError, e->GetMessageString());
return 0;
}
}
PyObject* FemMeshPy::getNodesByEdge(PyObject *args)
{
PyObject *pW;
if (!PyArg_ParseTuple(args, "O!", &(Part::TopoShapeEdgePy::Type), &pW))
return 0;
try {
const TopoDS_Shape& sh = static_cast<Part::TopoShapeEdgePy*>(pW)->getTopoShapePtr()->_Shape;
const TopoDS_Edge& fc = TopoDS::Edge(sh);
if (sh.IsNull()) {
PyErr_SetString(Base::BaseExceptionFreeCADError, "Edge is empty");
return 0;
}
Py::List ret;
std::set<int> resultSet = getFemMeshPtr()->getNodesByEdge(fc);
for (std::set<int>::const_iterator it = resultSet.begin();it!=resultSet.end();++it)
ret.append(Py::Int(*it));
return Py::new_reference_to(ret);
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(Base::BaseExceptionFreeCADError, e->GetMessageString());
return 0;
}
}
PyObject* FemMeshPy::getNodesByVertex(PyObject *args)
{
PyObject *pW;
if (!PyArg_ParseTuple(args, "O!", &(Part::TopoShapeVertexPy::Type), &pW))
return 0;
try {
const TopoDS_Shape& sh = static_cast<Part::TopoShapeVertexPy*>(pW)->getTopoShapePtr()->_Shape;
const TopoDS_Vertex& fc = TopoDS::Vertex(sh);
if (sh.IsNull()) {
PyErr_SetString(Base::BaseExceptionFreeCADError, "Vertex is empty");
return 0;
}
Py::List ret;
std::set<int> resultSet = getFemMeshPtr()->getNodesByVertex(fc);
for (std::set<int>::const_iterator it = resultSet.begin();it!=resultSet.end();++it)
ret.append(Py::Int(*it));
return Py::new_reference_to(ret);
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(Base::BaseExceptionFreeCADError, e->GetMessageString());
return 0;
}
}
PyObject* FemMeshPy::getElementNodes(PyObject *args)
{
int id;
if (!PyArg_ParseTuple(args, "i", &id))
return 0;
try {
std::list<int> resultSet = getFemMeshPtr()->getElementNodes(id);
Py::Tuple ret(resultSet.size());
int index = 0;
for (std::list<int>::const_iterator it = resultSet.begin();it!=resultSet.end();++it)
ret.setItem(index++, Py::Int(*it));
return Py::new_reference_to(ret);
}
catch (Standard_Failure) {
Handle_Standard_Failure e = Standard_Failure::Caught();
PyErr_SetString(Base::BaseExceptionFreeCADError, e->GetMessageString());
return 0;
}
}
// ===== Atributes ============================================================
Py::Dict FemMeshPy::getNodes(void) const
{
//int count = getFemMeshPtr()->getSMesh()->GetMeshDS()->NbNodes();
//Py::Tuple tup(count);
Py::Dict dict;
// get the actuall transform of the FemMesh
Base::Matrix4D Mtrx = getFemMeshPtr()->getTransform();
SMDS_NodeIteratorPtr aNodeIter = getFemMeshPtr()->getSMesh()->GetMeshDS()->nodesIterator();
for (int i=0;aNodeIter->more();i++) {
const SMDS_MeshNode* aNode = aNodeIter->next();
Base::Vector3d vec(aNode->X(),aNode->Y(),aNode->Z());
// Apply the matrix to hold the BoundBox in absolute space.
vec = Mtrx * vec;
int id = aNode->GetID();
dict[Py::Int(id)] = Py::asObject(new Base::VectorPy( vec ));
}
return dict;
}
Py::Int FemMeshPy::getNodeCount(void) const
{
return Py::Int(getFemMeshPtr()->getSMesh()->NbNodes());
}
Py::Tuple FemMeshPy::getEdges(void) const
{
std::set<int> ids;
SMDS_EdgeIteratorPtr aEdgeIter = getFemMeshPtr()->getSMesh()->GetMeshDS()->edgesIterator();
while (aEdgeIter->more()) {
const SMDS_MeshEdge* aEdge = aEdgeIter->next();
ids.insert(aEdge->GetID());
}
Py::Tuple tuple(ids.size());
int index = 0;
for (std::set<int>::iterator it = ids.begin(); it != ids.end(); ++it) {
tuple.setItem(index++, Py::Int(*it));
}
return tuple;
}
Py::Int FemMeshPy::getEdgeCount(void) const
{
return Py::Int(getFemMeshPtr()->getSMesh()->NbEdges());
}
Py::Tuple FemMeshPy::getFaces(void) const
{
std::set<int> ids;
SMDS_FaceIteratorPtr aFaceIter = getFemMeshPtr()->getSMesh()->GetMeshDS()->facesIterator();
while (aFaceIter->more()) {
const SMDS_MeshFace* aFace = aFaceIter->next();
ids.insert(aFace->GetID());
}
Py::Tuple tuple(ids.size());
int index = 0;
for (std::set<int>::iterator it = ids.begin(); it != ids.end(); ++it) {
tuple.setItem(index++, Py::Int(*it));
}
return tuple;
}
Py::Int FemMeshPy::getFaceCount(void) const
{
return Py::Int(getFemMeshPtr()->getSMesh()->NbFaces());
}
Py::Int FemMeshPy::getTriangleCount(void) const
{
return Py::Int(getFemMeshPtr()->getSMesh()->NbTriangles());
}
Py::Int FemMeshPy::getQuadrangleCount(void) const
{
return Py::Int(getFemMeshPtr()->getSMesh()->NbQuadrangles());
}
Py::Int FemMeshPy::getPolygonCount(void) const
{
return Py::Int(getFemMeshPtr()->getSMesh()->NbPolygons());
}
Py::Tuple FemMeshPy::getVolumes(void) const
{
std::set<int> ids;
SMDS_VolumeIteratorPtr aVolIter = getFemMeshPtr()->getSMesh()->GetMeshDS()->volumesIterator();
while (aVolIter->more()) {
const SMDS_MeshVolume* aVol = aVolIter->next();
ids.insert(aVol->GetID());
}
Py::Tuple tuple(ids.size());
int index = 0;
for (std::set<int>::iterator it = ids.begin(); it != ids.end(); ++it) {
tuple.setItem(index++, Py::Int(*it));
}
return tuple;
}
Py::Int FemMeshPy::getVolumeCount(void) const
{
return Py::Int(getFemMeshPtr()->getSMesh()->NbVolumes());
}
Py::Int FemMeshPy::getTetraCount(void) const
{
return Py::Int(getFemMeshPtr()->getSMesh()->NbTetras());
}
Py::Int FemMeshPy::getHexaCount(void) const
{
return Py::Int(getFemMeshPtr()->getSMesh()->NbHexas());
}
Py::Int FemMeshPy::getPyramidCount(void) const
{
return Py::Int(getFemMeshPtr()->getSMesh()->NbPyramids());
}
Py::Int FemMeshPy::getPrismCount(void) const
{
return Py::Int(getFemMeshPtr()->getSMesh()->NbPrisms());
}
Py::Int FemMeshPy::getPolyhedronCount(void) const
{
return Py::Int(getFemMeshPtr()->getSMesh()->NbPolyhedrons());
}
Py::Int FemMeshPy::getSubMeshCount(void) const
{
return Py::Int(getFemMeshPtr()->getSMesh()->NbSubMesh());
}
Py::Int FemMeshPy::getGroupCount(void) const
{
return Py::Int(getFemMeshPtr()->getSMesh()->NbGroup());
}
Py::Object FemMeshPy::getVolume(void) const
{
return Py::Object(new Base::QuantityPy(new Base::Quantity(getFemMeshPtr()->getVolume())));
}
// ===== custom attributes ============================================================
PyObject *FemMeshPy::getCustomAttributes(const char* /*attr*/) const
{
return 0;
}
int FemMeshPy::setCustomAttributes(const char* /*attr*/, PyObject* /*obj*/)
{
return 0;
}