
LIGO
Writing a Simple Smart Contract
Suzanne Soy
ligo@suzanne.soy

ligolang.org

Why Tezos?

Proof of Stake

Consensus-driven protocol upgrades

Formal methods

Ecosystem redundancy

Why Tezos?

Proof of Stake
i.e. no palm trees at the North Pole

Consensus-driven protocol upgrades
i.e. no hard forks

Formal methods
i.e. fewer bugs

Ecosystem redundancy
i.e. don’t put all your Tez in the same basket

Why LIGO?

Is Michelson suitable for application developers?

parameter unit ;
storage string ;
code {

DROP ;
PUSH string “Hello” ;
NIL operation ;
PAIR

}

Why LIGO?

Michelson is not very suitable for application developers!

Goal?

Reduce the barrier of entry and minimize risks of bugs

Why LIGO?

Michelson is not very suitable for application developers!

Goal?

Reduce the barrier of entry and minimize risks of bugs

Solution?

High-level language that compiles to Michelson with

four syntaxes, to cater for different developers' taste.

LIGO Foundations

LIGO Foundation :: Syntaxes

PascaLIGO a Pascal inspired syntax which provides an imperative developer experience.

Each syntax is as close as possible to the language it is inspired from

Imperative paradigm describes the operations in sequences of instructions executed to change the program's state.

LIGO Foundation :: Syntaxes

PascaLIGO a Pascal inspired syntax which provides an imperative developer experience.

CameLIGO an OCaml inspired syntax that allows you to write in a functional style.

Each syntax is as close as possible to the language it is inspired from

Imperative paradigm describes the operations in sequences of instructions executed to change the program's state.
Functional paradigm considers computation as an evaluation of mathematical functions

LIGO Foundation :: Syntaxes

PascaLIGO a Pascal inspired syntax which provides an imperative developer experience.

CameLIGO an OCaml inspired syntax that allows you to write in a functional style.

ReasonLIGO a ReasonML inspired syntax that allows you to write in a functional style.

Each syntax is as close as possible to the language it is inspired from

Imperative paradigm describes the operations in sequences of instructions executed to change the program's state.
Functional paradigm considers computation as an evaluation of mathematical functions

LIGO Foundation :: Syntaxes

PascaLIGO a Pascal inspired syntax which provides an imperative developer experience.

CameLIGO an OCaml inspired syntax that allows you to write in a functional style.

ReasonLIGO a ReasonML inspired syntax that allows you to write in a functional style.

JsLIGO a Javascript inspired syntax which provides an imperative developer experience.

Each syntax is as close as possible to the language it is inspired from

Imperative paradigm describes the operations in sequences of instructions executed to change the program's state.
Functional paradigm considers computation as an evaluation of mathematical functions

Formal methods

LIGO Foundation :: Syntaxes

Each syntax is as close as possible to the language it is inspired from

PascaLIGO a Pascal inspired syntax which provides an imperative developer experience.

CameLIGO an OCaml inspired syntax that allows you to write in a functional style.

ReasonLIGO a ReasonML inspired syntax that allows you to write in a functional style.

JsLIGO a Javascript inspired syntax which provides an imperative developer experience.

Imperative paradigm describes the operations in sequences of instructions executed to change the program's state.
Functional paradigm considers computation as an evaluation of mathematical functions

Formal methods

LIGO Foundation :: Interoperability

PascalLIGO

ReasonLIGO

CameLIGO

JsLIGO

LIGO Foundation :: Compiler Overview

PascalLIGOReasonLIGOCameLIGO JsLIGO

LIGO Foundation :: Compiler Overview

Intermediate Representation

Typed Intermediate Representation

Michelson Source Code

Compilation to Michelson

Type Checking

PascalLIGOReasonLIGOCameLIGO JsLIGO

LIGO Foundation :: Compiler Overview

Intermediate Representation

Typed Intermediate Representation

Michelson Source Code

Compilation to Michelson

Type Checking

PascalLIGOReasonLIGOCameLIGO JsLIGO

Soundness

LIGO Foundation :: Compiler Overview

Intermediate Representation

Typed Intermediate Representation

Michelson Source Code

Compilation to Michelson

Type Checking

PascalLIGOReasonLIGOCameLIGO JsLIGO

Soundness

Performance

LIGO Foundation :: Compiler Overview

Intermediate Representation

Typed Intermediate Representation

Michelson Source Code

Compilation to Michelson

Type Checking

PascalLIGOReasonLIGOCameLIGO JsLIGO

Soundness

Performance

{
{Coq

Contract Anatomy

type storage = int;

Storage

Contract Anatomy :: Storage

type storage = int;
type parameter =
 ["Increment", int]
| ["Decrement", int]
| ["Reset"]; Storage

Parameter

Contract Anatomy :: Parameter

Contract Anatomy :: Operations

type storage = int;
type parameter =
 ["Increment", int]
| ["Decrement", int]
| ["Reset"];
type result_ = [list<operation>, storage]

Storage

Parameter Operations

Contract Anatomy :: Behavior

type storage = int;
type parameter =
 ["Increment", int]
| ["Decrement", int]
| ["Reset"];
type result_ = [list<operation>, storage]

let main = ([action, store]: [parameter, storage]) : result_ => {
 return [
 list([]) as list<operation>,
 match(action, {
 Increment: (n: int) => store + n,
 Decrement: (n: int) => store - n,
 Reset: () => 0
 })
];
};

Storage

Parameter OperationsBehavior

JsLIGO Overview

JsLIGO Overview :: Types

Native types int, nat, tez, string, bytes… // 1 “Hello” …

JsLIGO Overview :: Types

Native types int, nat, tez, string, bytes… // 1 “Hello” …

Tuples [int, string, tez] // (1, “Hello”, 42 as tez)

JsLIGO Overview :: Types

Native types int, nat, tez, string, bytes… // 1 “Hello” …

Tuples [int, string, tez] // (1, “Hello”, 42 as tez)

Records { name: string } // { name: John }

JsLIGO Overview :: Types

Native types int, nat, tez, string, bytes… // 1 “Hello” …

Tuples [int, string, tez] // (1, “Hello”, 42 as tez)

Records { name: string } // { name: John }

Variants [“Foo”] | [“Bar”, nat] // [“Bar”, 1 as nat]

JsLIGO :: Type Examples

type buy = {

profile: bytes,

initial_controller: option<address>

};

type update = {

id: int,

new_owner: address

};

type action = | ["Buy", buy]

 | ["Update", update];

JsLIGO Overview :: Constants & Variables

Constants

let x = (a : int) : int => {
 const age : int = 25;
 return age
};

Variables

let add = (a: int, b: int): int => {
 let c = a;
 c = c + b;
 return c
}

JsLIGO Overview :: Case Matching

type action = | ["Buy", buy] | ["Update", update];

// …

let main = ([act, storage]: [action, storage]):[list<operation>, storage] => {

 return match (act, {

 Buy: b => buy([b, storage]),

 Update: u => update_owner([u, storage]),

 });

};

JsLIGO Overview :: Iteration

Terminal Recursion (Functional style)

let sum_list = ([l, acc]: [list<int>, int]): int => {

 return match(l, list([

 ([] : list<int>) => acc,

 ([hd, ...tl] : list<int>) => sum_list (tl, hd + acc)

]));

}

JsLIGO Overview :: Iteration

For Loop (Imperative style)

let sum_list = (l: list<int>): int => {
 let total : int = 0;
 for (const i of l) {
 total = total + i
 }
 return total
}

JsLIGO Overview :: Namespace (Module)

namespace EURO {
 export type t = nat;
 export let add = ([a, b]: [t, t]): t => a + b;
 export let zero: t = 0 as nat;
 export let one: t = 1 as nat
}

JsLIGO Overview :: Namespace (Module)

#import "euro.jsligo" "EURO"

type storage = EURO.t;
type return_ = [list<operation>, storage];

let main = ([action, store]: [unit, storage]): return_ =>
 [list([]) as list (operation),
 EURO.add(store, EURO.one)]

JsLIGO Overview :: Namespace (Module)

#import "euro.jsligo" "EURO"

type storage = EURO.t;
type return_ = [list<operation>, storage];

let main = ([action, store]: [unit, storage]): return_ =>
 [list([]) as list (operation),
 EURO.add(store, EURO.one)]

#import and syntaxes interoperability

Example Contract

Example Contract :: Behavior

type storage = int;
type parameter =
 ["Increment", int]
| ["Decrement", int]
| ["Reset"];
type result_ = [list<operation>, storage]

let main = ([action, store]: [parameter, storage]) : result_ => {
 return [
 list([]) as list<operation>,
 match(action, {
 Increment: (n: int) => store + n,
 Decrement: (n: int) => store - n,
 Reset: () => 0
 })
];
};

Storage

Parameter OperationsBehavior

Testing a Contract

Testing a Contract :: Framework

Tests are written in LIGO and work directly with LIGO code

Mutation testing primitives

Extra types and operations for manipulating Tezos context

Generation of random values for a type

Ability to catch errors in transactions

Testing a Contract :: Example

#import “contract.jsligo” “Contract”

let _test_increment = () : bool => {

}

let test_increment = _test_increment ();

Testing a Contract :: Example

#import “contract.jsligo” “ Contract”

let _test_increment = () : bool => {
 let initial_storage = 42 as int;
 let [address, _, _] = Test.originate(Contract.main, initial_storage, 0 as tez);

}

let test_increment = _test_increment ();

Testing a Contract :: Example

#import “contract.jsligo” “Contract”

let _test_increment = () : bool => {
 let initial_storage = 42 as int;
 let [address, _, _] = Test.originate(Contract.main, initial_storage, 0 as tez);
 let contract = Test.to_contract(address);

}

let test_increment = _test_increment ();

Testing a Contract :: Example

#import “contract.jsligo” “Contract”

let _test_increment = () : bool => {
 let initial_storage = 42 as int;
 let [address, _, _] = Test.originate(Contract.main, initial_storage, 0 as tez);
 let contract = Test.to_contract(address);
 let r = Test.transfer_to_contract_exn (contract, (Increment (1)), 1 as mutez);

}

let test_increment = _test_increment ();

Testing a Contract :: Example

#import “contract.jsligo” “Contract”

let _test_increment = () : bool => {
 let initial_storage = 42 as int;
 let [address, _, _] = Test.originate(Contract.main, initial_storage, 0 as tez);
 let contract = Test.to_contract(address);
 let r = Test.transfer_to_contract_exn (contract, (Increment (1)), 1 as mutez);
 return (Test.get_storage(address) == initial_storage + 1);
}

let test_increment = _test_increment ();

LIGO Tools

LIGO Tools :: CLI

Contract
Compilation

LIGO Tools :: CLI

Contract
Compilation

Expression
Compilation

LIGO Tools :: CLI

Contract
Compilation Run Tests

Expression
Compilation

LIGO Tools :: CLI

Contract
Compilation

Dry Run

Run Tests

Expression
Compilation

LIGO Tools :: CLI

Contract
Compilation

Dry Run

Run Tests

Expression
Compilation

Package
Manager

LIGO Tools :: Web IDE (ide.ligolang.org)

LIGO Tools :: VSCode

LIGO Tools :: Gitpod

LIGO Tools :: And more …

LIGO Tools :: Tutorial (academy.ligolang.org)

LIGO Catalog

LIGO Catalog :: Contract Library (Soon)

Smart contracts templates + Documentations

Gaming

NFT

Random

BigArray

…

ligolib.org

LIGO
“A programming language for writing Tezos smart contracts”

ligolang.org

