First import of some implementations of the Union/Find algorithm in OCaml.

This commit is contained in:
Christian Rinderknecht 2018-08-12 15:04:27 +02:00
parent 97ba40fcbc
commit 2d994efcd2
10 changed files with 485 additions and 0 deletions

6
Item.mli Normal file
View File

@ -0,0 +1,6 @@
module type S =
sig
type t
val compare : t -> t -> int
val to_string : t -> string
end

64
Partition.mli Normal file
View File

@ -0,0 +1,64 @@
(** This module offers the abstract data type of a partition of
classes of equivalent items (Union & Find). *)
(** The items are of type [PrintOrdType.t], that is, they have to obey
a total order, but also they must be printable to ease
debugging. The signature [PrintOrdType] is the input signature of
the functor {!Partition.Make}. *)
module type PrintOrdType =
sig
(** Type of items *)
type t
(** Same convention as {!Pervasives.compare} *)
val compare : t -> t -> int
val to_string : t -> string
end
(** The module signature [S] is the output signature of the functor
{!Partition.Make}. *)
module type S =
sig
type item
type partition
type t = partition
(** {1 Creation} *)
(** The value [empty] is an empty partition. *)
val empty : partition
(** The value of [equiv i j p] is the partition [p] extended with
the equivalence of items [i] and [j]. If both [i] and [j] are
already known to be equivalent, then [equiv i j p == p]. *)
val equiv : item -> item -> partition -> partition
(** The value of [alias i j p] is the partition [p] extended with
the fact that item [i] is an alias of item [j]. This is the
same as [equiv i j p], except that it is guaranteed that the
item [i] is not the representative of its equivalence class in
[alias i j p]. *)
val alias : item -> item -> partition -> partition
(** {1 Projection} *)
(** The value of the call [repr i p] is the representative of item
[i] in the partition [p]. The built-in exception [Not_found]
is raised if [i] is not in [p]. *)
val repr : item -> partition -> item
(** The side-effect of the call [print p] is the printing of the
partition [p] on standard output, based on [Ord.to_string]. *)
val print : partition -> unit
(** {1 Predicates} *)
(** The value of [is_equiv i j p] is [true] if, and only if, the
items [i] and [j] belong to the same equivalence class in the
partition [p], that is, [i] and [j] have the same
representative. *)
val is_equiv : item -> item -> partition -> bool
end
module Make (Ord : PrintOrdType) : S with type item = Ord.t

47
Partition0.ml Normal file
View File

@ -0,0 +1,47 @@
(* Naive persistent implementation of Union/Find: O(n^2) worst case *)
module Make (Item: Item.S) =
struct
type item = Item.t
type repr = item (** Class representatives *)
let equal i j = Item.compare i j = 0
module ItemMap = Map.Make (Item)
type height = int
type partition = item ItemMap.t
type t = partition
let empty = ItemMap.empty
let rec repr item partition =
let parent = ItemMap.find item partition in
if equal parent item
then item
else repr parent partition
let is_equiv (i: item) (j: item) (p: partition) =
equal (repr i p) (repr j p)
let get_or_set (i: item) (p: partition) : item * partition =
try repr i p, p with Not_found -> i, ItemMap.add i i p
let equiv (i: item) (j :item) (p: partition) : partition =
let ri, p = get_or_set i p in
let rj, p = get_or_set j p in
if equal ri rj then p else ItemMap.add ri rj p
let alias = equiv
(* Printing *)
let print p =
let print src dst =
Printf.printf "%s -> %s\n"
(Item.to_string src) (Item.to_string dst)
in ItemMap.iter print p
end

69
Partition1.ml Normal file
View File

@ -0,0 +1,69 @@
(* Persistent implementation of Union/Find with height-balanced
forests and without path compression: O(n*log(n)).
In the definition of type [t], the height component is that of the
source, that is, if [ItemMap.find i m = (j,h)], then [h] is the
height of [i] (_not_ [j]).
*)
module Make (Item: Item.S) =
struct
type item = Item.t
type repr = item (** Class representatives *)
let equal i j = Item.compare i j = 0
module ItemMap = Map.Make (Item)
type height = int
type partition = (item * height) ItemMap.t
type t = partition
let empty = ItemMap.empty
let rec seek (i: item) (p: partition) : repr * height =
let j, _ as i' = ItemMap.find i p in
if equal i j then i' else seek j p
let repr item partition = fst (seek item partition)
let is_equiv (i: item) (j: item) (p: partition) =
equal (repr i p) (repr j p)
let get_or_set (i: item) (p: partition) =
try seek i p, p with
Not_found -> let i' = i,0 in (i', ItemMap.add i i' p)
let equiv (i: item) (j: item) (p: partition) : partition =
let (ri,hi), p = get_or_set i p in
let (rj,hj), p = get_or_set j p in
let add = ItemMap.add in
if equal ri rj
then p
else if hi > hj
then add rj (ri,hj) p
else add ri (rj,hi) (if hi < hj then p else add rj (rj,hj+1) p)
let alias (i: item) (j: item) (p: partition) : partition =
let (ri,hi), p = get_or_set i p in
let (rj,hj), p = get_or_set j p in
let add = ItemMap.add in
if equal ri rj
then p
else if hi = hj || equal ri i
then add ri (rj,hi) @@ add rj (rj, max hj (hi+1)) p
else if hi < hj then add ri (rj,hi) p
else add rj (ri,hj) p
(* Printing *)
let print (p: partition) =
let print i (j,hi) =
let _,hj = ItemMap.find j p in
Printf.printf "%s,%d -> %s,%d\n"
(Item.to_string i) hi (Item.to_string j) hj
in ItemMap.iter print p
end

115
Partition2.ml Normal file
View File

@ -0,0 +1,115 @@
(** Persistent implementation of the Union/Find algorithm with
height-balanced forests and without path compression. *)
module Make (Item: Item.S) =
struct
type item = Item.t
type repr = item (** Class representatives *)
let equal i j = Item.compare i j = 0
type height = int
(** Each equivalence class is implemented by a Catalan tree linked
upwardly and otherwise is a link to another node. Those trees
are height-balanced. The type [node] implements nodes in those
trees. *)
type node =
Root of height
(** The value of [Root h] denotes the root of a tree, that is,
the representative of the associated class. The height [h]
is that of the tree, so a tree reduced to its root alone has
heigh 0. *)
| Link of item * height
(** If not a root, a node is a link to another node. Because the
links are upward, that is, bottom-up, and we seek a purely
functional implementation, we need to uncouple the nodes and
the items here, so the first component of [Link] is an item,
not a node. That is why the type [node] is not recursive,
and called [node], not [tree]: to become a traversable tree,
it needs to be complemented by the type [partition] below to
associate items back to nodes. In order to follow a path
upward in the tree until the root, we start from a link node
giving us the next item, then find the node corresponding to
the item thanks to [partition], and again until we arrive at
the root.
The height component is that of the source of the link, that
is, [h] is the height of the node linking to the node [Link
(j,h)], _not_ of [j], except when [equal i j]. *)
module ItemMap = Map.Make (Item)
(** The type [partition] implements a partition of classes of
equivalent items by means of a map from items to nodes of type
[node] in trees. *)
type partition = node ItemMap.t
type t = partition
let empty = ItemMap.empty
let root (item, height) = ItemMap.add item (Root height)
let link (src, height) dst = ItemMap.add src (Link (dst, height))
let rec seek (i: item) (p: partition) : repr * height =
match ItemMap.find i p with
Root hi -> i,hi
| Link (j,_) -> seek j p
let repr item partition = fst (seek item partition)
let is_equiv (i: item) (j: item) (p: partition) =
equal (repr i p) (repr j p)
let get_or_set (i: item) (p: partition) =
try seek i p, p with
Not_found -> let n = i,0 in (n, root n p)
let equiv (i: item) (j: item) (p: partition) : partition =
let (ri,hi as ni), p = get_or_set i p in
let (rj,hj as nj), p = get_or_set j p in
if equal ri rj
then p
else if hi > hj
then link nj ri p
else link ni rj (if hi < hj then p else root (rj, hj+1) p)
(** The call [alias i j p] results in the same partition as [equiv
i j p], except that [i] is not the representative of its class
in [alias i j p] (whilst it may be in [equiv i j p]).
This property is irrespective of the heights of the
representatives of [i] and [j], that is, of the trees
implementing their classes. If [i] is not a representative of
its class before calling [alias], then the height criteria is
applied (which, without the constraint above, would yield a
height-balanced new tree). *)
let alias (i: item) (j: item) (p: partition) : partition =
let (ri,hi as ni), p = get_or_set i p in
let (rj,hj as nj), p = get_or_set j p in
if equal ri rj
then p
else if hi = hj || equal ri i
then link ni rj @@ root (rj, max hj (hi+1)) p
else if hi < hj then link ni rj p
else link nj ri p
(** {1 Printing} *)
let print (p: partition) =
let print i node =
let hi, hj, j =
match node with
Root hi -> hi,hi,i
| Link (j,hi) ->
match ItemMap.find j p with
Root hj | Link (_,hj) -> hi,hj,j in
Printf.printf "%s,%d -> %s,%d\n"
(Item.to_string i) hi (Item.to_string j) hj
in ItemMap.iter print p
end

86
Partition3.ml Normal file
View File

@ -0,0 +1,86 @@
(* Destructive implementation of union/find with height-balanced
forests but without path compression: O(n*log(n)). *)
module Make (Item: Item.S) =
struct
type item = Item.t
type repr = item (** Class representatives *)
let equal i j = Item.compare i j = 0
type height = int
(** Each equivalence class is implemented by a Catalan tree linked
upwardly and otherwise is a link to another node. Those trees
are height-balanced. The type [node] implements nodes in those
trees. *)
type node = {item: item; mutable height: int; mutable parent: node}
module ItemMap = Map.Make (Item)
(** The type [partition] implements a partition of classes of
equivalent items by means of a map from items to nodes of type
[node] in trees. *)
type partition = node ItemMap.t
type t = partition
let empty = ItemMap.empty
(** The function [repr] is faster than a persistent implementation
in the worst case because, in the latter case, the cost is O(log n)
for accessing each node in the path to the root, whereas, in the
former, only the access to the first node in the path incurs a cost
of O(log n) -- the other nodes are accessed in constant time by
following the [next] field of type [node]. *)
let seek (i: item) (p: partition) : node =
let rec find_root node =
if node.parent == node then node else find_root node.parent
in find_root (ItemMap.find i p)
let repr item partition = (seek item partition).item
let is_equiv (i: item) (j: item) (p: partition) =
equal (repr i p) (repr j p)
let get_or_set item (p: partition) =
try seek item p, p with
Not_found -> let rec loop = {item; height=0; parent=loop}
in loop, ItemMap.add item loop p
let link src dst = src.parent <- dst
let equiv (i: item) (j: item) (p: partition) : partition =
let ni,p = get_or_set i p in
let nj,p = get_or_set j p in
let hi,hj = ni.height, nj.height in
let () =
if not (equal ni.item nj.item)
then if hi > hj
then link nj ni
else (link ni nj; nj.height <- max hj (hi+1))
in p
let alias (i: item) (j: item) (p: partition) : partition =
let ni,p = get_or_set i p in
let nj,p = get_or_set j p in
let hi,hj = ni.height, nj.height in
let () =
if not (equal ni.item nj.item)
then if hi = hj || equal ni.item i
then (link ni nj; nj.height <- max hj (hi+1))
else if hi < hj then link ni nj
else link nj ni
in p
(* Printing *)
let print p =
let print _ node =
Printf.printf "%s,%d -> %s,%d\n"
(Item.to_string node.item) node.height
(Item.to_string node.parent.item) node.parent.height
in ItemMap.iter print p
end

40
PartitionMain.ml Normal file
View File

@ -0,0 +1,40 @@
module Int =
struct
type t = int
let compare (i: int) (j: int) = Pervasives.compare i j
let to_string = string_of_int
end
module Test (Part: Partition.S with type item = Int.t) =
struct
open Part
let () = empty
|> equiv 4 3
|> equiv 3 8
|> equiv 6 5
|> equiv 9 4
|> equiv 2 1
|> equiv 8 9
|> equiv 5 0
|> equiv 7 2
|> equiv 6 1
|> equiv 1 0
|> equiv 6 7
|> equiv 8 0
|> equiv 7 7
|> equiv 10 10
|> print
end
module Test0 = Test (Partition0.Make(Int))
let () = print_newline ()
module Test1 = Test (Partition1.Make(Int))
let () = print_newline ()
module Test2 = Test (Partition2.Make(Int))
let () = print_newline ()
module Test3 = Test (Partition3.Make(Int))

40
README.md Normal file
View File

@ -0,0 +1,40 @@
# Some implementations in OCaml of the Union/Find algorithm
All modules implementing Union/Find can be coerced by the same
signature `Partition.S`.
Note the function `alias` which is equivalent to `equiv`, but not
symmetric: `alias x y` means that `x` is an alias of `y`, which
translates in the present context as `x` not being the representative
of the equivalence class containing the equivalence between `x` and
`y`. The function `alias` is useful when managing aliases during the
static analyses of programmning languages, so the representatives of
the classes are always the original object.
The module `PartitionMain` tests each with the same equivalence
relations.
# `Partition0.ml`
This is a naive, persistent implementation of Union/Find featuring an
asymptotic worst case cost of O(n^2).
# `Partition1.ml`
This is a persistent implementation of Union/Find with height-balanced
forests and without path compression, featuring an asymptotic worst
case cost of O(n*log(n)).
# `Partition2.ml`
This is an alternate version of `Partition1.ml`, using a different
data type.
# `Partition3.ml`
This is a destructive implementation of Union/Find with
height-balanced forests but without path compression, featuring an
asymptotic worst case of O(n*log(n)). In practice, though, this
implementation should be faster than the previous ones, due to a
smaller multiplicative constant term.

15
build.sh Executable file
View File

@ -0,0 +1,15 @@
#!/bin/sh
set -x
ocamlfind ocamlc -strict-sequence -w +A-48-4 -c Item.mli
ocamlfind ocamlc -strict-sequence -w +A-48-4 -c Partition.mli
ocamlfind ocamlopt -strict-sequence -w +A-48-4 -c Partition0.ml
ocamlfind ocamlopt -strict-sequence -w +A-48-4 -c Partition2.ml
ocamlfind ocamlopt -strict-sequence -w +A-48-4 -c Partition1.ml
ocamlfind ocamlopt -strict-sequence -w +A-48-4 -c Partition3.ml
ocamlfind ocamlopt -strict-sequence -w +A-48-4 -c Partition1.ml
ocamlfind ocamlopt -strict-sequence -w +A-48-4 -c Partition3.ml
ocamlfind ocamlopt -strict-sequence -w +A-48-4 -c Partition0.ml
ocamlfind ocamlopt -strict-sequence -w +A-48-4 -c Partition2.ml
ocamlfind ocamlopt -strict-sequence -w +A-48-4 -c PartitionMain.ml
ocamlfind ocamlopt -strict-sequence -w +A-48-4 -c PartitionMain.ml
ocamlfind ocamlopt -o PartitionMain.opt Partition0.cmx Partition1.cmx Partition2.cmx Partition3.cmx PartitionMain.cmx

3
clean.sh Executable file
View File

@ -0,0 +1,3 @@
#!/bin/sh
\rm -f *.cmi *.cmo *.cmx *.o *.byte *.opt