First import of some implementations of the Union/Find algorithm in OCaml.
This commit is contained in:
parent
97ba40fcbc
commit
2d994efcd2
6
Item.mli
Normal file
6
Item.mli
Normal file
|
@ -0,0 +1,6 @@
|
|||
module type S =
|
||||
sig
|
||||
type t
|
||||
val compare : t -> t -> int
|
||||
val to_string : t -> string
|
||||
end
|
64
Partition.mli
Normal file
64
Partition.mli
Normal file
|
@ -0,0 +1,64 @@
|
|||
(** This module offers the abstract data type of a partition of
|
||||
classes of equivalent items (Union & Find). *)
|
||||
|
||||
(** The items are of type [PrintOrdType.t], that is, they have to obey
|
||||
a total order, but also they must be printable to ease
|
||||
debugging. The signature [PrintOrdType] is the input signature of
|
||||
the functor {!Partition.Make}. *)
|
||||
module type PrintOrdType =
|
||||
sig
|
||||
(** Type of items *)
|
||||
type t
|
||||
|
||||
(** Same convention as {!Pervasives.compare} *)
|
||||
val compare : t -> t -> int
|
||||
|
||||
val to_string : t -> string
|
||||
end
|
||||
|
||||
(** The module signature [S] is the output signature of the functor
|
||||
{!Partition.Make}. *)
|
||||
module type S =
|
||||
sig
|
||||
type item
|
||||
type partition
|
||||
type t = partition
|
||||
|
||||
(** {1 Creation} *)
|
||||
|
||||
(** The value [empty] is an empty partition. *)
|
||||
val empty : partition
|
||||
|
||||
(** The value of [equiv i j p] is the partition [p] extended with
|
||||
the equivalence of items [i] and [j]. If both [i] and [j] are
|
||||
already known to be equivalent, then [equiv i j p == p]. *)
|
||||
val equiv : item -> item -> partition -> partition
|
||||
|
||||
(** The value of [alias i j p] is the partition [p] extended with
|
||||
the fact that item [i] is an alias of item [j]. This is the
|
||||
same as [equiv i j p], except that it is guaranteed that the
|
||||
item [i] is not the representative of its equivalence class in
|
||||
[alias i j p]. *)
|
||||
val alias : item -> item -> partition -> partition
|
||||
|
||||
(** {1 Projection} *)
|
||||
|
||||
(** The value of the call [repr i p] is the representative of item
|
||||
[i] in the partition [p]. The built-in exception [Not_found]
|
||||
is raised if [i] is not in [p]. *)
|
||||
val repr : item -> partition -> item
|
||||
|
||||
(** The side-effect of the call [print p] is the printing of the
|
||||
partition [p] on standard output, based on [Ord.to_string]. *)
|
||||
val print : partition -> unit
|
||||
|
||||
(** {1 Predicates} *)
|
||||
|
||||
(** The value of [is_equiv i j p] is [true] if, and only if, the
|
||||
items [i] and [j] belong to the same equivalence class in the
|
||||
partition [p], that is, [i] and [j] have the same
|
||||
representative. *)
|
||||
val is_equiv : item -> item -> partition -> bool
|
||||
end
|
||||
|
||||
module Make (Ord : PrintOrdType) : S with type item = Ord.t
|
47
Partition0.ml
Normal file
47
Partition0.ml
Normal file
|
@ -0,0 +1,47 @@
|
|||
(* Naive persistent implementation of Union/Find: O(n^2) worst case *)
|
||||
|
||||
module Make (Item: Item.S) =
|
||||
struct
|
||||
|
||||
type item = Item.t
|
||||
type repr = item (** Class representatives *)
|
||||
|
||||
let equal i j = Item.compare i j = 0
|
||||
|
||||
module ItemMap = Map.Make (Item)
|
||||
|
||||
type height = int
|
||||
|
||||
type partition = item ItemMap.t
|
||||
type t = partition
|
||||
|
||||
let empty = ItemMap.empty
|
||||
|
||||
let rec repr item partition =
|
||||
let parent = ItemMap.find item partition in
|
||||
if equal parent item
|
||||
then item
|
||||
else repr parent partition
|
||||
|
||||
let is_equiv (i: item) (j: item) (p: partition) =
|
||||
equal (repr i p) (repr j p)
|
||||
|
||||
let get_or_set (i: item) (p: partition) : item * partition =
|
||||
try repr i p, p with Not_found -> i, ItemMap.add i i p
|
||||
|
||||
let equiv (i: item) (j :item) (p: partition) : partition =
|
||||
let ri, p = get_or_set i p in
|
||||
let rj, p = get_or_set j p in
|
||||
if equal ri rj then p else ItemMap.add ri rj p
|
||||
|
||||
let alias = equiv
|
||||
|
||||
(* Printing *)
|
||||
|
||||
let print p =
|
||||
let print src dst =
|
||||
Printf.printf "%s -> %s\n"
|
||||
(Item.to_string src) (Item.to_string dst)
|
||||
in ItemMap.iter print p
|
||||
|
||||
end
|
69
Partition1.ml
Normal file
69
Partition1.ml
Normal file
|
@ -0,0 +1,69 @@
|
|||
(* Persistent implementation of Union/Find with height-balanced
|
||||
forests and without path compression: O(n*log(n)).
|
||||
|
||||
In the definition of type [t], the height component is that of the
|
||||
source, that is, if [ItemMap.find i m = (j,h)], then [h] is the
|
||||
height of [i] (_not_ [j]).
|
||||
*)
|
||||
|
||||
module Make (Item: Item.S) =
|
||||
struct
|
||||
|
||||
type item = Item.t
|
||||
type repr = item (** Class representatives *)
|
||||
|
||||
let equal i j = Item.compare i j = 0
|
||||
|
||||
module ItemMap = Map.Make (Item)
|
||||
|
||||
type height = int
|
||||
|
||||
type partition = (item * height) ItemMap.t
|
||||
type t = partition
|
||||
|
||||
let empty = ItemMap.empty
|
||||
|
||||
let rec seek (i: item) (p: partition) : repr * height =
|
||||
let j, _ as i' = ItemMap.find i p in
|
||||
if equal i j then i' else seek j p
|
||||
|
||||
let repr item partition = fst (seek item partition)
|
||||
|
||||
let is_equiv (i: item) (j: item) (p: partition) =
|
||||
equal (repr i p) (repr j p)
|
||||
|
||||
let get_or_set (i: item) (p: partition) =
|
||||
try seek i p, p with
|
||||
Not_found -> let i' = i,0 in (i', ItemMap.add i i' p)
|
||||
|
||||
let equiv (i: item) (j: item) (p: partition) : partition =
|
||||
let (ri,hi), p = get_or_set i p in
|
||||
let (rj,hj), p = get_or_set j p in
|
||||
let add = ItemMap.add in
|
||||
if equal ri rj
|
||||
then p
|
||||
else if hi > hj
|
||||
then add rj (ri,hj) p
|
||||
else add ri (rj,hi) (if hi < hj then p else add rj (rj,hj+1) p)
|
||||
|
||||
let alias (i: item) (j: item) (p: partition) : partition =
|
||||
let (ri,hi), p = get_or_set i p in
|
||||
let (rj,hj), p = get_or_set j p in
|
||||
let add = ItemMap.add in
|
||||
if equal ri rj
|
||||
then p
|
||||
else if hi = hj || equal ri i
|
||||
then add ri (rj,hi) @@ add rj (rj, max hj (hi+1)) p
|
||||
else if hi < hj then add ri (rj,hi) p
|
||||
else add rj (ri,hj) p
|
||||
|
||||
(* Printing *)
|
||||
|
||||
let print (p: partition) =
|
||||
let print i (j,hi) =
|
||||
let _,hj = ItemMap.find j p in
|
||||
Printf.printf "%s,%d -> %s,%d\n"
|
||||
(Item.to_string i) hi (Item.to_string j) hj
|
||||
in ItemMap.iter print p
|
||||
|
||||
end
|
115
Partition2.ml
Normal file
115
Partition2.ml
Normal file
|
@ -0,0 +1,115 @@
|
|||
(** Persistent implementation of the Union/Find algorithm with
|
||||
height-balanced forests and without path compression. *)
|
||||
|
||||
module Make (Item: Item.S) =
|
||||
struct
|
||||
|
||||
type item = Item.t
|
||||
type repr = item (** Class representatives *)
|
||||
|
||||
let equal i j = Item.compare i j = 0
|
||||
|
||||
type height = int
|
||||
|
||||
(** Each equivalence class is implemented by a Catalan tree linked
|
||||
upwardly and otherwise is a link to another node. Those trees
|
||||
are height-balanced. The type [node] implements nodes in those
|
||||
trees. *)
|
||||
type node =
|
||||
Root of height
|
||||
(** The value of [Root h] denotes the root of a tree, that is,
|
||||
the representative of the associated class. The height [h]
|
||||
is that of the tree, so a tree reduced to its root alone has
|
||||
heigh 0. *)
|
||||
|
||||
| Link of item * height
|
||||
(** If not a root, a node is a link to another node. Because the
|
||||
links are upward, that is, bottom-up, and we seek a purely
|
||||
functional implementation, we need to uncouple the nodes and
|
||||
the items here, so the first component of [Link] is an item,
|
||||
not a node. That is why the type [node] is not recursive,
|
||||
and called [node], not [tree]: to become a traversable tree,
|
||||
it needs to be complemented by the type [partition] below to
|
||||
associate items back to nodes. In order to follow a path
|
||||
upward in the tree until the root, we start from a link node
|
||||
giving us the next item, then find the node corresponding to
|
||||
the item thanks to [partition], and again until we arrive at
|
||||
the root.
|
||||
|
||||
The height component is that of the source of the link, that
|
||||
is, [h] is the height of the node linking to the node [Link
|
||||
(j,h)], _not_ of [j], except when [equal i j]. *)
|
||||
|
||||
module ItemMap = Map.Make (Item)
|
||||
|
||||
(** The type [partition] implements a partition of classes of
|
||||
equivalent items by means of a map from items to nodes of type
|
||||
[node] in trees. *)
|
||||
type partition = node ItemMap.t
|
||||
|
||||
type t = partition
|
||||
|
||||
let empty = ItemMap.empty
|
||||
|
||||
let root (item, height) = ItemMap.add item (Root height)
|
||||
|
||||
let link (src, height) dst = ItemMap.add src (Link (dst, height))
|
||||
|
||||
let rec seek (i: item) (p: partition) : repr * height =
|
||||
match ItemMap.find i p with
|
||||
Root hi -> i,hi
|
||||
| Link (j,_) -> seek j p
|
||||
|
||||
let repr item partition = fst (seek item partition)
|
||||
|
||||
let is_equiv (i: item) (j: item) (p: partition) =
|
||||
equal (repr i p) (repr j p)
|
||||
|
||||
let get_or_set (i: item) (p: partition) =
|
||||
try seek i p, p with
|
||||
Not_found -> let n = i,0 in (n, root n p)
|
||||
|
||||
let equiv (i: item) (j: item) (p: partition) : partition =
|
||||
let (ri,hi as ni), p = get_or_set i p in
|
||||
let (rj,hj as nj), p = get_or_set j p in
|
||||
if equal ri rj
|
||||
then p
|
||||
else if hi > hj
|
||||
then link nj ri p
|
||||
else link ni rj (if hi < hj then p else root (rj, hj+1) p)
|
||||
|
||||
(** The call [alias i j p] results in the same partition as [equiv
|
||||
i j p], except that [i] is not the representative of its class
|
||||
in [alias i j p] (whilst it may be in [equiv i j p]).
|
||||
|
||||
This property is irrespective of the heights of the
|
||||
representatives of [i] and [j], that is, of the trees
|
||||
implementing their classes. If [i] is not a representative of
|
||||
its class before calling [alias], then the height criteria is
|
||||
applied (which, without the constraint above, would yield a
|
||||
height-balanced new tree). *)
|
||||
let alias (i: item) (j: item) (p: partition) : partition =
|
||||
let (ri,hi as ni), p = get_or_set i p in
|
||||
let (rj,hj as nj), p = get_or_set j p in
|
||||
if equal ri rj
|
||||
then p
|
||||
else if hi = hj || equal ri i
|
||||
then link ni rj @@ root (rj, max hj (hi+1)) p
|
||||
else if hi < hj then link ni rj p
|
||||
else link nj ri p
|
||||
|
||||
(** {1 Printing} *)
|
||||
|
||||
let print (p: partition) =
|
||||
let print i node =
|
||||
let hi, hj, j =
|
||||
match node with
|
||||
Root hi -> hi,hi,i
|
||||
| Link (j,hi) ->
|
||||
match ItemMap.find j p with
|
||||
Root hj | Link (_,hj) -> hi,hj,j in
|
||||
Printf.printf "%s,%d -> %s,%d\n"
|
||||
(Item.to_string i) hi (Item.to_string j) hj
|
||||
in ItemMap.iter print p
|
||||
|
||||
end
|
86
Partition3.ml
Normal file
86
Partition3.ml
Normal file
|
@ -0,0 +1,86 @@
|
|||
(* Destructive implementation of union/find with height-balanced
|
||||
forests but without path compression: O(n*log(n)). *)
|
||||
|
||||
module Make (Item: Item.S) =
|
||||
struct
|
||||
|
||||
type item = Item.t
|
||||
type repr = item (** Class representatives *)
|
||||
|
||||
let equal i j = Item.compare i j = 0
|
||||
|
||||
type height = int
|
||||
|
||||
(** Each equivalence class is implemented by a Catalan tree linked
|
||||
upwardly and otherwise is a link to another node. Those trees
|
||||
are height-balanced. The type [node] implements nodes in those
|
||||
trees. *)
|
||||
type node = {item: item; mutable height: int; mutable parent: node}
|
||||
|
||||
module ItemMap = Map.Make (Item)
|
||||
|
||||
(** The type [partition] implements a partition of classes of
|
||||
equivalent items by means of a map from items to nodes of type
|
||||
[node] in trees. *)
|
||||
type partition = node ItemMap.t
|
||||
|
||||
type t = partition
|
||||
|
||||
let empty = ItemMap.empty
|
||||
|
||||
(** The function [repr] is faster than a persistent implementation
|
||||
in the worst case because, in the latter case, the cost is O(log n)
|
||||
for accessing each node in the path to the root, whereas, in the
|
||||
former, only the access to the first node in the path incurs a cost
|
||||
of O(log n) -- the other nodes are accessed in constant time by
|
||||
following the [next] field of type [node]. *)
|
||||
let seek (i: item) (p: partition) : node =
|
||||
let rec find_root node =
|
||||
if node.parent == node then node else find_root node.parent
|
||||
in find_root (ItemMap.find i p)
|
||||
|
||||
let repr item partition = (seek item partition).item
|
||||
|
||||
let is_equiv (i: item) (j: item) (p: partition) =
|
||||
equal (repr i p) (repr j p)
|
||||
|
||||
let get_or_set item (p: partition) =
|
||||
try seek item p, p with
|
||||
Not_found -> let rec loop = {item; height=0; parent=loop}
|
||||
in loop, ItemMap.add item loop p
|
||||
|
||||
let link src dst = src.parent <- dst
|
||||
|
||||
let equiv (i: item) (j: item) (p: partition) : partition =
|
||||
let ni,p = get_or_set i p in
|
||||
let nj,p = get_or_set j p in
|
||||
let hi,hj = ni.height, nj.height in
|
||||
let () =
|
||||
if not (equal ni.item nj.item)
|
||||
then if hi > hj
|
||||
then link nj ni
|
||||
else (link ni nj; nj.height <- max hj (hi+1))
|
||||
in p
|
||||
|
||||
let alias (i: item) (j: item) (p: partition) : partition =
|
||||
let ni,p = get_or_set i p in
|
||||
let nj,p = get_or_set j p in
|
||||
let hi,hj = ni.height, nj.height in
|
||||
let () =
|
||||
if not (equal ni.item nj.item)
|
||||
then if hi = hj || equal ni.item i
|
||||
then (link ni nj; nj.height <- max hj (hi+1))
|
||||
else if hi < hj then link ni nj
|
||||
else link nj ni
|
||||
in p
|
||||
|
||||
(* Printing *)
|
||||
|
||||
let print p =
|
||||
let print _ node =
|
||||
Printf.printf "%s,%d -> %s,%d\n"
|
||||
(Item.to_string node.item) node.height
|
||||
(Item.to_string node.parent.item) node.parent.height
|
||||
in ItemMap.iter print p
|
||||
|
||||
end
|
40
PartitionMain.ml
Normal file
40
PartitionMain.ml
Normal file
|
@ -0,0 +1,40 @@
|
|||
module Int =
|
||||
struct
|
||||
type t = int
|
||||
let compare (i: int) (j: int) = Pervasives.compare i j
|
||||
let to_string = string_of_int
|
||||
end
|
||||
|
||||
module Test (Part: Partition.S with type item = Int.t) =
|
||||
struct
|
||||
open Part
|
||||
|
||||
let () = empty
|
||||
|> equiv 4 3
|
||||
|> equiv 3 8
|
||||
|> equiv 6 5
|
||||
|> equiv 9 4
|
||||
|> equiv 2 1
|
||||
|> equiv 8 9
|
||||
|> equiv 5 0
|
||||
|> equiv 7 2
|
||||
|> equiv 6 1
|
||||
|> equiv 1 0
|
||||
|> equiv 6 7
|
||||
|> equiv 8 0
|
||||
|> equiv 7 7
|
||||
|> equiv 10 10
|
||||
|> print
|
||||
end
|
||||
|
||||
|
||||
module Test0 = Test (Partition0.Make(Int))
|
||||
let () = print_newline ()
|
||||
|
||||
module Test1 = Test (Partition1.Make(Int))
|
||||
let () = print_newline ()
|
||||
|
||||
module Test2 = Test (Partition2.Make(Int))
|
||||
let () = print_newline ()
|
||||
|
||||
module Test3 = Test (Partition3.Make(Int))
|
40
README.md
Normal file
40
README.md
Normal file
|
@ -0,0 +1,40 @@
|
|||
# Some implementations in OCaml of the Union/Find algorithm
|
||||
|
||||
All modules implementing Union/Find can be coerced by the same
|
||||
signature `Partition.S`.
|
||||
|
||||
Note the function `alias` which is equivalent to `equiv`, but not
|
||||
symmetric: `alias x y` means that `x` is an alias of `y`, which
|
||||
translates in the present context as `x` not being the representative
|
||||
of the equivalence class containing the equivalence between `x` and
|
||||
`y`. The function `alias` is useful when managing aliases during the
|
||||
static analyses of programmning languages, so the representatives of
|
||||
the classes are always the original object.
|
||||
|
||||
The module `PartitionMain` tests each with the same equivalence
|
||||
relations.
|
||||
|
||||
# `Partition0.ml`
|
||||
|
||||
This is a naive, persistent implementation of Union/Find featuring an
|
||||
asymptotic worst case cost of O(n^2).
|
||||
|
||||
# `Partition1.ml`
|
||||
|
||||
This is a persistent implementation of Union/Find with height-balanced
|
||||
forests and without path compression, featuring an asymptotic worst
|
||||
case cost of O(n*log(n)).
|
||||
|
||||
# `Partition2.ml`
|
||||
|
||||
This is an alternate version of `Partition1.ml`, using a different
|
||||
data type.
|
||||
|
||||
# `Partition3.ml`
|
||||
|
||||
This is a destructive implementation of Union/Find with
|
||||
height-balanced forests but without path compression, featuring an
|
||||
asymptotic worst case of O(n*log(n)). In practice, though, this
|
||||
implementation should be faster than the previous ones, due to a
|
||||
smaller multiplicative constant term.
|
||||
|
15
build.sh
Executable file
15
build.sh
Executable file
|
@ -0,0 +1,15 @@
|
|||
#!/bin/sh
|
||||
set -x
|
||||
ocamlfind ocamlc -strict-sequence -w +A-48-4 -c Item.mli
|
||||
ocamlfind ocamlc -strict-sequence -w +A-48-4 -c Partition.mli
|
||||
ocamlfind ocamlopt -strict-sequence -w +A-48-4 -c Partition0.ml
|
||||
ocamlfind ocamlopt -strict-sequence -w +A-48-4 -c Partition2.ml
|
||||
ocamlfind ocamlopt -strict-sequence -w +A-48-4 -c Partition1.ml
|
||||
ocamlfind ocamlopt -strict-sequence -w +A-48-4 -c Partition3.ml
|
||||
ocamlfind ocamlopt -strict-sequence -w +A-48-4 -c Partition1.ml
|
||||
ocamlfind ocamlopt -strict-sequence -w +A-48-4 -c Partition3.ml
|
||||
ocamlfind ocamlopt -strict-sequence -w +A-48-4 -c Partition0.ml
|
||||
ocamlfind ocamlopt -strict-sequence -w +A-48-4 -c Partition2.ml
|
||||
ocamlfind ocamlopt -strict-sequence -w +A-48-4 -c PartitionMain.ml
|
||||
ocamlfind ocamlopt -strict-sequence -w +A-48-4 -c PartitionMain.ml
|
||||
ocamlfind ocamlopt -o PartitionMain.opt Partition0.cmx Partition1.cmx Partition2.cmx Partition3.cmx PartitionMain.cmx
|
Loading…
Reference in New Issue
Block a user