""" If you know what an abstract syntax tree (ast) is, you'll see that this module is pretty much that. The classes represent syntax elements: ``Import``, ``Function``. A very central class is ``Scope``. It is not used directly by the parser, but inherited. It's used by ``Function``, ``Class``, ``Flow``, etc. A ``Scope`` may have ``subscopes``, ``imports`` and ``statements``. The entire parser is based on scopes, because they also stand for indentation. One special thing: ``Array`` values are statements. But if you think about it, this makes sense. ``[1, 2+33]`` for example would be an Array with two ``Statement`` inside. This is the easiest way to write a parser. The same behaviour applies to ``Param``, which is being used in a function definition. The easiest way to play with this module is to use :class:`parsing.Parser`. :attr:`parsing.Parser.module` holds an instance of :class:`SubModule`: >>> from jedi._compatibility import u >>> from jedi.parser import Parser >>> parser = Parser(u('import os'), 'example.py') >>> submodule = parser.module >>> submodule Any subclasses of :class:`Scope`, including :class:`SubModule` has attribute :attr:`imports `. This attribute has import statements in this scope. Check this out: >>> submodule.imports [] See also :attr:`Scope.subscopes` and :attr:`Scope.statements`. """ import os import re from inspect import cleandoc from jedi._compatibility import (next, Python3Method, encoding, unicode, is_py3, u, literal_eval) from jedi import common from jedi import debug from jedi import cache from jedi.parser import tokenize SCOPE_CONTENTS = 'asserts', 'subscopes', 'imports', 'statements', 'returns' def filter_after_position(names, position): """ Removes all names after a certain position. If position is None, just returns the names list. """ if position is None: return names names_new = [] for n in names: if n.start_pos[0] is not None and n.start_pos < position: names_new.append(n) return names_new class GetCodeState(object): """A helper class for passing the state of get_code in a thread-safe manner.""" __slots__ = ("last_pos",) def __init__(self): self.last_pos = (0, 0) class DocstringMixin(object): __slots__ = () def add_docstr(self, token): """ Clean up a docstring """ self._doc_token = token @property def raw_doc(self): """ Returns a cleaned version of the docstring token. """ try: # Returns a literal cleaned version of the ``Token``. cleaned = cleandoc(literal_eval(self._doc_token.string)) # Since we want the docstr output to be always unicode, just force # it. if is_py3 or isinstance(cleaned, unicode): return cleaned else: return unicode(cleaned, 'UTF-8', 'replace') except AttributeError: return u('') class Base(object): """ This is just here to have an isinstance check, which is also used on evaluate classes. But since they have sometimes a special type of delegation, it is important for those classes to override this method. I know that there is a chance to do such things with __instancecheck__, but since Python 2.5 doesn't support it, I decided to do it this way. """ __slots__ = () def isinstance(self, *cls): return isinstance(self, cls) @property def newline(self): """Returns the newline type for the current code.""" #TODO: we need newline detection return "\n" @property def whitespace(self): """Returns the whitespace type for the current code: tab or space.""" #TODO: we need tab detection return " " @Python3Method def get_parent_until(self, classes=(), reverse=False, include_current=True): """ Searches the parent "chain" until the object is an instance of classes. If classes is empty return the last parent in the chain (is without a parent). """ if type(classes) not in (tuple, list): classes = (classes,) scope = self if include_current else self.parent while scope.parent is not None: if classes and reverse != scope.isinstance(*classes): break scope = scope.parent return scope def is_callable(self): """ By default parser objects are not callable, we make them callable by the ``evaluate.representation`` objects. """ return False def space(self, from_pos, to_pos): """Return the space between two tokens""" linecount = to_pos[0] - from_pos[0] if linecount == 0: return self.whitespace * (to_pos[1] - from_pos[1]) else: return "%s%s" % ( self.newline * linecount, self.whitespace * to_pos[1], ) class Simple(Base): """ The super class for Scope, Import, Name and Statement. Every object in the parser tree inherits from this class. """ __slots__ = ('parent', '_sub_module', '_start_pos', 'use_as_parent', '_end_pos') def __init__(self, module, start_pos, end_pos=(None, None)): """ Initialize :class:`Simple`. :type module: :class:`SubModule` :param module: The module in which this Python object locates. :type start_pos: 2-tuple of int :param start_pos: Position (line, column) of the Statement. :type end_pos: 2-tuple of int :param end_pos: Same as `start_pos`. """ self._sub_module = module self._start_pos = start_pos self._end_pos = end_pos self.parent = None # use this attribute if parent should be something else than self. self.use_as_parent = self @property def start_pos(self): return self._sub_module.line_offset + self._start_pos[0], \ self._start_pos[1] @start_pos.setter def start_pos(self, value): self._start_pos = value @property def end_pos(self): if None in self._end_pos: return self._end_pos return self._sub_module.line_offset + self._end_pos[0], \ self._end_pos[1] @end_pos.setter def end_pos(self, value): self._end_pos = value def __repr__(self): code = self.get_code().replace('\n', ' ') if not is_py3: code = code.encode(encoding, 'replace') return "<%s: %s@%s,%s>" % \ (type(self).__name__, code, self.start_pos[0], self.start_pos[1]) def is_scope(self): return False class IsScope(Base): __slots__ = () def is_scope(self): return True class Scope(IsScope, Simple, DocstringMixin): """ Super class for the parser tree, which represents the state of a python text file. A Scope manages and owns its subscopes, which are classes and functions, as well as variables and imports. It is used to access the structure of python files. :param start_pos: The position (line and column) of the scope. :type start_pos: tuple(int, int) """ __slots__ = ('subscopes', 'imports', 'statements', '_doc_token', 'asserts', 'returns', 'is_generator') def __init__(self, module, start_pos): super(Scope, self).__init__(module, start_pos) self.subscopes = [] self.imports = [] self.statements = [] self._doc_token = None self.asserts = [] # Needed here for fast_parser, because the fast_parser splits and # returns will be in "normal" modules. self.returns = [] self.is_generator = False def add_scope(self, sub, decorators): sub.parent = self.use_as_parent sub.decorators = decorators for d in decorators: # the parent is the same, because the decorator has not the scope # of the function d.parent = self.use_as_parent self.subscopes.append(sub) return sub def add_statement(self, stmt): """ Used to add a Statement or a Scope. A statement would be a normal command (Statement) or a Scope (Flow). """ stmt.parent = self.use_as_parent self.statements.append(stmt) return stmt def add_import(self, imp): self.imports.append(imp) imp.parent = self.use_as_parent def get_imports(self): """ Gets also the imports within flow statements """ i = [] + self.imports for s in self.statements: if isinstance(s, Scope): i += s.get_imports() return i def get_code2(self, state=GetCodeState()): string = [] return "".join(string) def get_code(self, first_indent=False, indention=' '): """ :return: Returns the code of the current scope. :rtype: str """ string = "" if self._doc_token is not None: string += '"""' + self.raw_doc + '"""\n' objs = self.subscopes + self.imports + self.statements + self.returns for obj in sorted(objs, key=lambda x: x.start_pos): if isinstance(obj, Scope): string += obj.get_code(first_indent=True, indention=indention) else: if obj in self.returns and not isinstance(self, Lambda): string += 'yield ' if self.is_generator else 'return ' string += obj.get_code() if first_indent: string = common.indent_block(string, indention=indention) return string @Python3Method def get_defined_names(self): """ Get all defined names in this scope. >>> from jedi._compatibility import u >>> from jedi.parser import Parser >>> parser = Parser(u(''' ... a = x ... b = y ... b.c = z ... ''')) >>> parser.module.get_defined_names() [, , ] """ n = [] for stmt in self.statements: try: n += stmt.get_defined_names(True) except TypeError: n += stmt.get_defined_names() # function and class names n += [s.name for s in self.subscopes] for i in self.imports: if not i.star: n += i.get_defined_names() return n @Python3Method def get_statement_for_position(self, pos, include_imports=False): checks = self.statements + self.asserts if include_imports: checks += self.imports if self.isinstance(Function): checks += self.params + self.decorators checks += [r for r in self.returns if r is not None] if self.isinstance(Flow): checks += self.inputs if self.isinstance(ForFlow) and self.set_stmt is not None: checks.append(self.set_stmt) for s in checks: if isinstance(s, Flow): p = s.get_statement_for_position(pos, include_imports) while s.next and not p: s = s.next p = s.get_statement_for_position(pos, include_imports) if p: return p elif s.start_pos <= pos <= s.end_pos: return s for s in self.subscopes: if s.start_pos <= pos <= s.end_pos: p = s.get_statement_for_position(pos, include_imports) if p: return p def __repr__(self): try: name = self.path except AttributeError: try: name = self.name except AttributeError: name = self.command return "<%s: %s@%s-%s>" % (type(self).__name__, name, self.start_pos[0], self.end_pos[0]) def walk(self): yield self for s in self.subscopes: for scope in s.walk(): yield scope for r in self.statements: while isinstance(r, Flow): for scope in r.walk(): yield scope r = r.next class Module(IsScope): """ For isinstance checks. fast_parser.Module also inherits from this. """ class SubModule(Scope, Module): """ The top scope, which is always a module. Depending on the underlying parser this may be a full module or just a part of a module. """ __slots__ = ('path', 'global_vars', 'used_names', 'temp_used_names', 'line_offset', 'use_as_parent') def __init__(self, path, start_pos=(1, 0), top_module=None): """ Initialize :class:`SubModule`. :type path: str :arg path: File path to this module. .. todo:: Document `top_module`. """ super(SubModule, self).__init__(self, start_pos) self.path = path self.global_vars = [] self.used_names = {} self.temp_used_names = [] # this may be changed depending on fast_parser self.line_offset = 0 self.use_as_parent = top_module or self def add_global(self, name): """ Global means in these context a function (subscope) which has a global statement. This is only relevant for the top scope. :param name: The name of the global. :type name: Name """ # set no parent here, because globals are not defined in this scope. self.global_vars.append(name) def get_defined_names(self): n = super(SubModule, self).get_defined_names() n += self.global_vars return n @property @cache.underscore_memoization def name(self): """ This is used for the goto functions. """ if self.path is None: string = '' # no path -> empty name else: sep = (re.escape(os.path.sep),) * 2 r = re.search(r'([^%s]*?)(%s__init__)?(\.py|\.so)?$' % sep, self.path) # remove PEP 3149 names string = re.sub('\.[a-z]+-\d{2}[mud]{0,3}$', '', r.group(1)) # positions are not real therefore choose (0, 0) names = [(string, (0, 0))] return Name(self, names, (0, 0), (0, 0), self.use_as_parent) @property def has_explicit_absolute_import(self): """ Checks if imports in this module are explicitly absolute, i.e. there is a ``__future__`` import. """ for imp in self.imports: if imp.from_ns is None or imp.namespace is None: continue namespace, feature = imp.from_ns.names[0], imp.namespace.names[0] if unicode(namespace) == "__future__" and unicode(feature) == "absolute_import": return True return False class Class(Scope): """ Used to store the parsed contents of a python class. :param name: The Class name. :type name: str :param supers: The super classes of a Class. :type supers: list :param start_pos: The start position (line, column) of the class. :type start_pos: tuple(int, int) """ __slots__ = ('name', 'supers', 'decorators') def __init__(self, module, name, supers, start_pos): super(Class, self).__init__(module, start_pos) self.name = name name.parent = self.use_as_parent self.supers = supers for s in self.supers: s.parent = self.use_as_parent self.decorators = [] def get_code(self, first_indent=False, indention=' '): string = "\n".join('@' + stmt.get_code() for stmt in self.decorators) string += 'class %s' % (self.name) if len(self.supers) > 0: sup = ', '.join(stmt.get_code(False) for stmt in self.supers) string += '(%s)' % sup string += ':\n' string += super(Class, self).get_code(True, indention) return string @property def doc(self): """ Return a document string including call signature of __init__. """ docstr = "" if self._doc_token is not None: docstr = self.raw_doc for sub in self.subscopes: if unicode(sub.name.names[-1]) == '__init__': return '%s\n\n%s' % ( sub.get_call_signature(funcname=self.name.names[-1]), docstr) return docstr def scope_names_generator(self, position=None): yield self, filter_after_position(self.get_defined_names(), position) class Function(Scope): """ Used to store the parsed contents of a python function. :param name: The Function name. :type name: str :param params: The parameters (Statement) of a Function. :type params: list :param start_pos: The start position (line, column) the Function. :type start_pos: tuple(int, int) """ __slots__ = ('name', 'params', 'decorators', 'listeners', 'annotation') def __init__(self, module, name, params, start_pos, annotation): super(Function, self).__init__(module, start_pos) self.name = name if name is not None: name.parent = self.use_as_parent self.params = params for p in params: p.parent = self.use_as_parent p.parent_function = self.use_as_parent self.decorators = [] self.listeners = set() # not used here, but in evaluation. if annotation is not None: annotation.parent = self.use_as_parent self.annotation = annotation def get_code(self, first_indent=False, indention=' '): string = "\n".join('@' + stmt.get_code() for stmt in self.decorators) params = ', '.join([stmt.get_code(False) for stmt in self.params]) string += "def %s(%s):\n" % (self.name, params) string += super(Function, self).get_code(True, indention) return string def get_defined_names(self): n = super(Function, self).get_defined_names() for p in self.params: try: n.append(p.get_name()) except IndexError: debug.warning("multiple names in param %s", n) return n def scope_names_generator(self, position=None): yield self, filter_after_position(self.get_defined_names(), position) def get_call_signature(self, width=72, funcname=None): """ Generate call signature of this function. :param width: Fold lines if a line is longer than this value. :type width: int :arg funcname: Override function name when given. :type funcname: str :rtype: str """ l = unicode(funcname or self.name.names[-1]) + '(' lines = [] for (i, p) in enumerate(self.params): code = p.get_code(False) if i != len(self.params) - 1: code += ', ' if len(l + code) > width: lines.append(l[:-1] if l[-1] == ' ' else l) l = code else: l += code if l: lines.append(l) lines[-1] += ')' return '\n'.join(lines) @property def doc(self): """ Return a document string including call signature. """ docstr = "" if self._doc_token is not None: docstr = self.raw_doc return '%s\n\n%s' % (self.get_call_signature(), docstr) class Lambda(Function): def __init__(self, module, params, start_pos, parent): super(Lambda, self).__init__(module, None, params, start_pos, None) self.parent = parent def get_code(self, first_indent=False, indention=' '): params = ','.join([stmt.get_code() for stmt in self.params]) string = "lambda %s: " % params return string + super(Function, self).get_code(indention=indention) def __repr__(self): return "<%s @%s (%s-%s)>" % (type(self).__name__, self.start_pos[0], self.start_pos[1], self.end_pos[1]) class Flow(Scope): """ Used to describe programming structure - flow statements, which indent code, but are not classes or functions: - for - while - if - try - with Therefore statements like else, except and finally are also here, they are now saved in the root flow elements, but in the next variable. :param command: The flow command, if, while, else, etc. :type command: str :param inputs: The initializations of a flow -> while 'statement'. :type inputs: list(Statement) :param start_pos: Position (line, column) of the Flow statement. :type start_pos: tuple(int, int) """ __slots__ = ('next', 'command', '_parent', 'inputs', 'set_vars') def __init__(self, module, command, inputs, start_pos): self.next = None self.command = command super(Flow, self).__init__(module, start_pos) self._parent = None # These have to be statements, because of with, which takes multiple. self.inputs = inputs for s in inputs: s.parent = self.use_as_parent self.set_vars = [] @property def parent(self): return self._parent @parent.setter def parent(self, value): self._parent = value try: self.next.parent = value except AttributeError: return def get_code(self, first_indent=False, indention=' '): stmts = [] for s in self.inputs: stmts.append(s.get_code(new_line=False)) stmt = ', '.join(stmts) string = "%s %s:\n" % (self.command, stmt) string += super(Flow, self).get_code(True, indention) if self.next: string += self.next.get_code() return string def get_defined_names(self, is_internal_call=False): """ Get the names for the flow. This includes also a call to the super class. :param is_internal_call: defines an option for internal files to crawl through this class. Normally it will just call its superiors, to generate the output. """ if is_internal_call: n = list(self.set_vars) for s in self.inputs: n += s.get_defined_names() if self.next: n += self.next.get_defined_names(is_internal_call) n += super(Flow, self).get_defined_names() return n else: return self.get_parent_until((Class, Function)).get_defined_names() def get_imports(self): i = super(Flow, self).get_imports() if self.next: i += self.next.get_imports() return i def set_next(self, next): """Set the next element in the flow, those are else, except, etc.""" if self.next: return self.next.set_next(next) else: self.next = next self.next.parent = self.parent return next def scope_names_generator(self, position=None): # For `with` and `for`. yield self, filter_after_position(self.get_defined_names(), position) class ForFlow(Flow): """ Used for the for loop, because there are two statement parts. """ def __init__(self, module, inputs, start_pos, set_stmt): super(ForFlow, self).__init__(module, 'for', inputs, start_pos) self.set_stmt = set_stmt if set_stmt is not None: set_stmt.parent = self.use_as_parent self.set_vars = set_stmt.get_defined_names() for s in self.set_vars: s.parent.parent = self.use_as_parent s.parent = self.use_as_parent def get_code(self, first_indent=False, indention=" " * 4): vars = ",".join(x.get_code() for x in self.set_vars) stmts = [] for s in self.inputs: stmts.append(s.get_code(new_line=False)) stmt = ', '.join(stmts) s = "for %s in %s:\n" % (vars, stmt) return s + super(Flow, self).get_code(True, indention) class Import(Simple): """ Stores the imports of any Scopes. :param start_pos: Position (line, column) of the Import. :type start_pos: tuple(int, int) :param namespace: The import, can be empty if a star is given :type namespace: Name :param alias: The alias of a namespace(valid in the current namespace). :type alias: Name :param from_ns: Like the namespace, can be equally used. :type from_ns: Name :param star: If a star is used -> from time import *. :type star: bool :param defunct: An Import is valid or not. :type defunct: bool """ def __init__(self, module, start_pos, end_pos, namespace, alias=None, from_ns=None, star=False, relative_count=0, defunct=False): super(Import, self).__init__(module, start_pos, end_pos) self.namespace = namespace self.alias = alias self.from_ns = from_ns for n in namespace, alias, from_ns: if n: n.parent = self.use_as_parent self.star = star self.relative_count = relative_count self.defunct = defunct def get_code(self, new_line=True): # in case one of the names is None alias = self.alias or '' namespace = self.namespace or '' from_ns = self.from_ns or '' if self.alias: ns_str = "%s as %s" % (namespace, alias) else: ns_str = unicode(namespace) nl = '\n' if new_line else '' if self.from_ns or self.relative_count: if self.star: ns_str = '*' dots = '.' * self.relative_count return "from %s%s import %s%s" % (dots, from_ns, ns_str, nl) else: return "import %s%s" % (ns_str, nl) def get_defined_names(self): if self.defunct: return [] if self.star: return [self] if self.alias: return [self.alias] if len(self.namespace) > 1: o = self.namespace n = Name(self._sub_module, [(unicode(o.names[0]), o.start_pos)], o.start_pos, o.end_pos, parent=o.parent) return [n] else: return [self.namespace] def get_all_import_names(self): n = [] if self.from_ns: n.append(self.from_ns) if self.namespace: n.append(self.namespace) if self.alias: n.append(self.alias) return n def is_nested(self): """ This checks for the special case of nested imports, without aliases and from statement:: import foo.bar """ return not self.alias and not self.from_ns and self.namespace is not None \ and len(self.namespace.names) > 1 class KeywordStatement(Base): """ For the following statements: `assert`, `del`, `global`, `nonlocal`, `raise`, `return`, `yield`, `pass`, `continue`, `break`, `return`, `yield`. """ __slots__ = ('name', 'start_pos', 'stmt', 'parent') def __init__(self, name, start_pos, parent, stmt=None): self.name = name self.start_pos = start_pos self.stmt = stmt self.parent = parent if stmt is not None: stmt.parent = self def is_scope(self): return False def __repr__(self): return "<%s(%s): %s>" % (type(self).__name__, self.name, self.stmt) def get_code(self): if self.stmt is None: return "%s\n" % self.name else: return '%s %s\n' % (self.name, self.stmt) def get_defined_names(self): return [] @property def end_pos(self): try: return self.stmt.end_pos except AttributeError: return self.start_pos[0], self.start_pos[1] + len(self.name) class Statement(Simple, DocstringMixin): """ This is the class for all the possible statements. Which means, this class stores pretty much all the Python code, except functions, classes, imports, and flow functions like if, for, etc. :type token_list: list :param token_list: List of tokens or names. Each element is either an instance of :class:`Name` or a tuple of token type value (e.g., :data:`tokenize.NUMBER`), token string (e.g., ``'='``), and start position (e.g., ``(1, 0)``). :type start_pos: 2-tuple of int :param start_pos: Position (line, column) of the Statement. """ __slots__ = ('_token_list', '_set_vars', 'as_names', '_expression_list', '_assignment_details', '_names_are_set_vars', '_doc_token') def __init__(self, module, token_list, start_pos, end_pos, parent=None, as_names=(), names_are_set_vars=False, set_name_parents=True): super(Statement, self).__init__(module, start_pos, end_pos) self._token_list = token_list self._names_are_set_vars = names_are_set_vars if set_name_parents: for t in token_list: if isinstance(t, Name): t.parent = self.use_as_parent for n in as_names: n.parent = self.use_as_parent self.parent = parent self._doc_token = None self._set_vars = None self.as_names = list(as_names) # cache self._assignment_details = [] @property def end_pos(self): return self._token_list[-1].end_pos def get_code(self, new_line=True): def assemble(command_list, assignment=None): pieces = [c.get_code() if isinstance(c, Simple) else c.string if isinstance(c, tokenize.Token) else unicode(c) for c in command_list] if assignment is None: return ''.join(pieces) return '%s %s ' % (''.join(pieces), assignment) code = ''.join(assemble(*a) for a in self.assignment_details) code += assemble(self.expression_list()) if self._doc_token: code += '\n"""%s"""' % self.raw_doc if new_line: return code + '\n' else: return code def get_defined_names(self): """ Get the names for the statement. """ if self._set_vars is None: def search_calls(calls): for call in calls: if isinstance(call, Array) and call.type != Array.DICT: for stmt in call: search_calls(stmt.expression_list()) elif isinstance(call, Call): c = call # Check if there's an execution in it, if so this is # not a set_var. is_execution = False while c: if Array.is_type(c.execution, Array.TUPLE): is_execution = True c = c.next if is_execution: continue self._set_vars.append(call.name) self._set_vars = [] for calls, operation in self.assignment_details: search_calls(calls) if not self.assignment_details and self._names_are_set_vars: # In the case of Param, it's also a defining name without ``=`` search_calls(self.expression_list()) return self._set_vars + self.as_names def is_global(self): p = self.parent return isinstance(p, KeywordStatement) and p.name == 'global' @property def assignment_details(self): """ Returns an array of tuples of the elements before the assignment. For example the following code:: x = (y, z) = 2, '' would result in ``[(Name(x), '='), (Array([Name(y), Name(z)]), '=')]``. """ # parse statement which creates the assignment details. self.expression_list() return self._assignment_details @cache.underscore_memoization def expression_list(self): """ Parse a statement. This is not done in the main parser, because it might be slow and most of the statements won't need this data anyway. This is something 'like' a lazy execution. This is not really nice written, sorry for that. If you plan to replace it and make it nicer, that would be cool :-) """ def is_assignment(tok): return isinstance(tok, Operator) and tok.string.endswith('=') \ and not tok.string in ('>=', '<=', '==', '!=') def parse_array(token_iterator, array_type, start_pos, add_el=None): arr = Array(self._sub_module, start_pos, array_type, self) if add_el is not None: arr.add_statement(add_el) old_stmt = add_el maybe_dict = array_type == Array.SET break_tok = None is_array = None while True: stmt, break_tok = parse_stmt(token_iterator, maybe_dict, break_on_assignment=bool(add_el)) if stmt is None: break else: if break_tok == ',': is_array = True arr.add_statement(stmt, is_key=maybe_dict and break_tok == ':') if break_tok in closing_brackets \ or is_assignment(break_tok): break old_stmt = stmt if arr.type == Array.TUPLE and len(arr) == 1 and not is_array: arr.type = Array.NOARRAY if not arr.values and maybe_dict: # this is a really special case - empty brackets {} are # always dictionaries and not sets. arr.type = Array.DICT try: arr.end_pos = (break_tok or stmt or old_stmt).end_pos except UnboundLocalError: # In case of something like `(def` arr.end_pos = start_pos[0], start_pos[1] + 1 return arr, break_tok def parse_stmt(token_iterator, maybe_dict=False, added_breaks=(), break_on_assignment=False, stmt_class=Statement, allow_comma=False): token_list = [] level = 0 first = True end_pos = None, None tok = None for tok in token_iterator: end_pos = tok.end_pos if first: start_pos = tok.start_pos first = False if isinstance(tok, Base): # the token is a Name, which has already been parsed if not level: if isinstance(tok, ListComprehension): # it's not possible to set it earlier tok.parent = self elif tok == 'lambda': lambd, tok = parse_lambda(token_iterator) if lambd is not None: token_list.append(lambd) elif tok == 'for': list_comp, tok = parse_list_comp(token_iterator, token_list, start_pos, tok.end_pos) if list_comp is not None: token_list = [list_comp] if tok in closing_brackets: level -= 1 elif tok in brackets.keys(): level += 1 if level == -1 or level == 0 and ( tok == ',' and not allow_comma or tok in added_breaks or maybe_dict and tok == ':' or is_assignment(tok) and break_on_assignment): end_pos = end_pos[0], end_pos[1] - 1 break if tok is not None: # Can be None, because of lambda/for. token_list.append(tok) if not token_list: return None, tok statement = stmt_class(self._sub_module, token_list, start_pos, end_pos, self.parent, set_name_parents=False) return statement, tok def parse_lambda(token_iterator): params = [] start_pos = self.start_pos while True: param, tok = parse_stmt(token_iterator, added_breaks=[':'], stmt_class=Param) if param is None: break params.append(param) if tok == ':': break if tok != ':': return None, tok # Since Lambda is a Function scope, it needs Scope parents. parent = self.get_parent_until(IsScope) lambd = Lambda(self._sub_module, params, start_pos, parent) ret, tok = parse_stmt(token_iterator) if ret is not None: ret.parent = lambd lambd.returns.append(ret) lambd.end_pos = self.end_pos return lambd, tok def parse_list_comp(token_iterator, token_list, start_pos, end_pos): def parse_stmt_or_arr(token_iterator, added_breaks=(), names_are_set_vars=False): stmt, tok = parse_stmt(token_iterator, allow_comma=True, added_breaks=added_breaks) if stmt is not None: for t in stmt._token_list: if isinstance(t, Name): t.parent = stmt stmt._names_are_set_vars = names_are_set_vars return stmt, tok st = Statement(self._sub_module, token_list, start_pos, end_pos, set_name_parents=False) middle, tok = parse_stmt_or_arr(token_iterator, ['in'], True) if tok != 'in' or middle is None: debug.warning('list comprehension middle %s@%s', tok, start_pos) return None, tok in_clause, tok = parse_stmt_or_arr(token_iterator) if in_clause is None: debug.warning('list comprehension in @%s', start_pos) return None, tok return ListComprehension(self._sub_module, st, middle, in_clause, self), tok # initializations result = [] is_chain = False brackets = {'(': Array.TUPLE, '[': Array.LIST, '{': Array.SET} closing_brackets = ')', '}', ']' token_iterator = iter(self._token_list) for tok in token_iterator: if isinstance(tok, tokenize.Token): token_type = tok.type tok_str = tok.string if tok_str == 'as': # just ignore as, because it sets values next(token_iterator, None) continue else: # the token is a Name, which has already been parsed tok_str = tok token_type = None if is_assignment(tok): # This means, there is an assignment here. # Add assignments, which can be more than one self._assignment_details.append((result, tok.string)) result = [] is_chain = False continue if tok_str == 'lambda': lambd, tok_str = parse_lambda(token_iterator) if lambd is not None: result.append(lambd) if tok_str not in (')', ','): continue is_literal = token_type in (tokenize.STRING, tokenize.NUMBER) if isinstance(tok_str, Name) or is_literal: cls = Literal if is_literal else Call call = cls(self._sub_module, tok_str, tok.start_pos, tok.end_pos, self) if is_chain: result[-1].set_next(call) else: result.append(call) is_chain = False elif tok_str in brackets.keys(): arr, is_ass = parse_array( token_iterator, brackets[tok.string], tok.start_pos ) if result and isinstance(result[-1], StatementElement): result[-1].set_execution(arr) else: arr.parent = self result.append(arr) elif tok_str == '.': if result and isinstance(result[-1], StatementElement): is_chain = True elif tok_str == ',' and result: # implies a tuple # expression is now an array not a statement anymore stmt = Statement(self._sub_module, result, result[0].start_pos, tok.end_pos, self.parent, set_name_parents=False) stmt._expression_list = result arr, break_tok = parse_array(token_iterator, Array.TUPLE, stmt.start_pos, stmt) result = [arr] if is_assignment(break_tok): self._assignment_details.append((result, break_tok)) result = [] is_chain = False else: # comments, strange tokens (like */**), error tokens to # reproduce the string correctly. is_chain = False result.append(tok) return result def set_expression_list(self, lst): """It's necessary for some "hacks" to change the expression_list.""" self._expression_list = lst class Param(Statement): """ The class which shows definitions of params of classes and functions. But this is not to define function calls. """ __slots__ = ('position_nr', 'is_generated', 'annotation_stmt', 'parent_function') def __init__(self, *args, **kwargs): kwargs.pop('names_are_set_vars', None) super(Param, self).__init__(*args, names_are_set_vars=True, **kwargs) # this is defined by the parser later on, not at the initialization # it is the position in the call (first argument, second...) self.position_nr = None self.is_generated = False self.annotation_stmt = None self.parent_function = None def add_annotation(self, annotation_stmt): annotation_stmt.parent = self.use_as_parent self.annotation_stmt = annotation_stmt def get_name(self): """ get the name of the param """ n = self.get_defined_names() if len(n) > 1: debug.warning("Multiple param names (%s).", n) return n[0] @property def stars(self): exp = self.expression_list() if exp and isinstance(exp[0], Operator): return exp[0].string.count('*') return 0 class StatementElement(Simple): __slots__ = ('parent', 'next', 'execution') def __init__(self, module, start_pos, end_pos, parent): super(StatementElement, self).__init__(module, start_pos, end_pos) # parent is not the oposite of next. The parent of c: a = [b.c] would # be an array. self.parent = parent self.next = None self.execution = None def set_next(self, call): """ Adds another part of the statement""" call.parent = self if self.next is not None: self.next.set_next(call) else: self.next = call def set_execution(self, call): """ An execution is nothing else than brackets, with params in them, which shows access on the internals of this name. """ call.parent = self if self.next is not None: self.next.set_execution(call) elif self.execution is not None: self.execution.set_execution(call) else: self.execution = call def generate_call_path(self): """ Helps to get the order in which statements are executed. """ try: for name_part in self.name.names: yield name_part except AttributeError: yield self if self.execution is not None: for y in self.execution.generate_call_path(): yield y if self.next is not None: for y in self.next.generate_call_path(): yield y def get_code(self): s = '' if self.execution is not None: s += self.execution.get_code() if self.next is not None: s += '.' + self.next.get_code() return s class Call(StatementElement): __slots__ = ('name',) def __init__(self, module, name, start_pos, end_pos, parent=None): super(Call, self).__init__(module, start_pos, end_pos, parent) self.name = name def get_code(self): return self.name.get_code() + super(Call, self).get_code() def __repr__(self): return "<%s: %s>" % (type(self).__name__, self.name) class Literal(StatementElement): __slots__ = ('literal', 'value') def __init__(self, module, literal, start_pos, end_pos, parent=None): super(Literal, self).__init__(module, start_pos, end_pos, parent) self.literal = literal self.value = literal_eval(literal) def get_code(self): return self.literal + super(Literal, self).get_code() def __repr__(self): if is_py3: s = self.literal else: s = self.literal.encode('ascii', 'replace') return "<%s: %s>" % (type(self).__name__, s) class Array(StatementElement): """ Describes the different python types for an array, but also empty statements. In the Python syntax definitions this type is named 'atom'. http://docs.python.org/py3k/reference/grammar.html Array saves sub-arrays as well as normal operators and calls to methods. :param array_type: The type of an array, which can be one of the constants below. :type array_type: int """ __slots__ = ('type', 'end_pos', 'values', 'keys') NOARRAY = None # just brackets, like `1 * (3 + 2)` TUPLE = 'tuple' LIST = 'list' DICT = 'dict' SET = 'set' def __init__(self, module, start_pos, arr_type=NOARRAY, parent=None): super(Array, self).__init__(module, start_pos, (None, None), parent) self.end_pos = None, None self.type = arr_type self.values = [] self.keys = [] def add_statement(self, statement, is_key=False): """Just add a new statement""" statement.parent = self if is_key: self.type = self.DICT self.keys.append(statement) else: self.values.append(statement) @staticmethod def is_type(instance, *types): """ This is not only used for calls on the actual object, but for ducktyping, to invoke this function with anything as `self`. """ try: if instance.type in types: return True except AttributeError: pass return False def __len__(self): return len(self.values) def __getitem__(self, key): if self.type == self.DICT: raise TypeError('no dicts allowed') return self.values[key] def __iter__(self): if self.type == self.DICT: raise TypeError('no dicts allowed') return iter(self.values) def items(self): if self.type != self.DICT: raise TypeError('only dicts allowed') return zip(self.keys, self.values) def get_code(self): map = { self.NOARRAY: '(%s)', self.TUPLE: '(%s)', self.LIST: '[%s]', self.DICT: '{%s}', self.SET: '{%s}' } inner = [] for i, stmt in enumerate(self.values): s = '' with common.ignored(IndexError): key = self.keys[i] s += key.get_code(new_line=False) + ': ' s += stmt.get_code(new_line=False) inner.append(s) add = ',' if self.type == self.TUPLE and len(self) == 1 else '' s = map[self.type] % (', '.join(inner) + add) return s + super(Array, self).get_code() def __repr__(self): if self.type == self.NOARRAY: typ = 'noarray' else: typ = self.type return "<%s: %s%s>" % (type(self).__name__, typ, self.values) class NamePart(object): """ A string. Sometimes it is important to know if the string belongs to a name or not. """ # Unfortunately there's no way to use slots for str (non-zero __itemsize__) # -> http://utcc.utoronto.ca/~cks/space/blog/python/IntSlotsPython3k # Therefore don't subclass `str`. __slots__ = ('parent', '_string', '_line', '_column') def __init__(self, string, parent, start_pos): self._string = string self.parent = parent self._line = start_pos[0] self._column = start_pos[1] def __str__(self): return self._string def __unicode__(self): return self._string def __repr__(self): return "<%s: %s>" % (type(self).__name__, self._string) def get_code(self): return self._string def get_parent_until(self, *args, **kwargs): return self.parent.get_parent_until(*args, **kwargs) def isinstance(self, *cls): return isinstance(self, cls) @property def start_pos(self): offset = self.parent._sub_module.line_offset return offset + self._line, self._column @property def end_pos(self): return self.start_pos[0], self.start_pos[1] + len(self._string) class Name(Simple): """ Used to define names in python. Which means the whole namespace/class/function stuff. So a name like "module.class.function" would result in an array of [module, class, function] """ __slots__ = ('names', '_get_code') def __init__(self, module, names, start_pos, end_pos, parent=None): super(Name, self).__init__(module, start_pos, end_pos) # Cache get_code, because it's used quite often for comparisons # (seen by using the profiler). self._get_code = ".".join(n[0] for n in names) names = tuple(NamePart(n[0], self, n[1]) for n in names) self.names = names if parent is not None: self.parent = parent def get_code(self): """ Returns the names in a full string format """ return self._get_code @property def end_pos(self): return self.names[-1].end_pos @property def docstr(self): """Return attribute docstring (PEP 257) if exists.""" return self.parent.docstr def __str__(self): return self.get_code() def __len__(self): return len(self.names) class ListComprehension(ForFlow): """ Helper class for list comprehensions """ def __init__(self, module, stmt, middle, input, parent): self.input = input nested_lc = input.expression_list()[0] if isinstance(nested_lc, ListComprehension): # is nested LC input = nested_lc.stmt nested_lc.parent = self super(ListComprehension, self).__init__(module, [input], stmt.start_pos, middle) self.parent = parent self.stmt = stmt self.middle = middle for s in middle, input: s.parent = self # The stmt always refers to the most inner list comprehension. stmt.parent = self._get_most_inner_lc() def _get_most_inner_lc(self): nested_lc = self.input.expression_list()[0] if isinstance(nested_lc, ListComprehension): return nested_lc._get_most_inner_lc() return self @property def end_pos(self): return self.stmt.end_pos def __repr__(self): return "<%s: %s>" % (type(self).__name__, self.get_code()) def get_code(self): statements = self.stmt, self.middle, self.input code = [s.get_code().replace('\n', '') for s in statements] return "%s for %s in %s" % tuple(code) class Operator(Simple): __slots__ = ('string',) def __init__(self, module, string, parent, start_pos): end_pos = start_pos[0], start_pos[1] + len(string) super(Operator, self).__init__(module, start_pos, end_pos) self.string = string self.parent = parent def get_code(self): return self.string def __repr__(self): return "<%s: `%s`>" % (type(self).__name__, self.string) def __eq__(self, other): """Make comparisons easy. Improves the readability of the parser.""" return self.string == other def __ne__(self, other): """Python 2 compatibility.""" return self.string != other def __hash__(self): return hash(self.string)