""" Like described in the :mod:`jedi.evaluate.parsing_representation` module, there's a need for an ast like module to represent the states of parsed modules. But now there are also structures in Python that need a little bit more than that. An ``Instance`` for example is only a ``Class`` before it is instantiated. This class represents these cases. So, why is there also a ``Class`` class here? Well, there are decorators and they change classes in Python 3. """ import copy import os import pkgutil from jedi._compatibility import use_metaclass, unicode from jedi.parser import representation as pr from jedi.parser.tokenize import Token from jedi import debug from jedi import common from jedi.evaluate.cache import memoize_default, CachedMetaClass from jedi.evaluate import compiled from jedi.evaluate import recursion from jedi.evaluate import iterable from jedi.evaluate import docstrings from jedi.evaluate import helpers from jedi.evaluate import param class Executable(pr.IsScope): """ An instance is also an executable - because __init__ is called :param var_args: The param input array, consist of `pr.Array` or list. """ def __init__(self, evaluator, base, var_args=()): self._evaluator = evaluator self.base = base self.var_args = var_args def get_parent_until(self, *args, **kwargs): return self.base.get_parent_until(*args, **kwargs) @common.safe_property def parent(self): return self.base.parent class Instance(use_metaclass(CachedMetaClass, Executable)): """ This class is used to evaluate instances. """ def __init__(self, evaluator, base, var_args=()): super(Instance, self).__init__(evaluator, base, var_args) if str(base.name) in ['list', 'set'] \ and compiled.builtin == base.get_parent_until(): # compare the module path with the builtin name. self.var_args = iterable.check_array_instances(evaluator, self) else: # need to execute the __init__ function, because the dynamic param # searching needs it. with common.ignored(KeyError): self.execute_subscope_by_name('__init__', self.var_args) # Generated instances are classes that are just generated by self # (No var_args) used. self.is_generated = False @memoize_default() def _get_method_execution(self, func): func = InstanceElement(self._evaluator, self, func, True) return FunctionExecution(self._evaluator, func, self.var_args) def _get_func_self_name(self, func): """ Returns the name of the first param in a class method (which is normally self. """ try: return str(func.params[0].get_name()) except IndexError: return None @memoize_default([]) def get_self_attributes(self): def add_self_dot_name(name): """ Need to copy and rewrite the name, because names are now ``instance_usage.variable`` instead of ``self.variable``. """ n = copy.copy(name) n.names = n.names[1:] n._get_code = unicode(n.names[-1]) names.append(InstanceElement(self._evaluator, self, n)) names = [] # This loop adds the names of the self object, copies them and removes # the self. for sub in self.base.subscopes: if isinstance(sub, pr.Class): continue # Get the self name, if there's one. self_name = self._get_func_self_name(sub) if not self_name: continue if sub.name.get_code() == '__init__': # ``__init__`` is special because the params need are injected # this way. Therefore an execution is necessary. if not sub.decorators: # __init__ decorators should generally just be ignored, # because to follow them and their self variables is too # complicated. sub = self._get_method_execution(sub) for n in sub.get_defined_names(): # Only names with the selfname are being added. # It is also important, that they have a len() of 2, # because otherwise, they are just something else if unicode(n.names[0]) == self_name and len(n.names) == 2: add_self_dot_name(n) if not isinstance(self.base, compiled.CompiledObject): for s in self.base.get_super_classes(): for inst in self._evaluator.execute(s): names += inst.get_self_attributes() return names def get_subscope_by_name(self, name): sub = self.base.get_subscope_by_name(name) return InstanceElement(self._evaluator, self, sub, True) def execute_subscope_by_name(self, name, args=()): method = self.get_subscope_by_name(name) return self._evaluator.execute(method, args) def get_descriptor_return(self, obj): """ Throws a KeyError if there's no method. """ # Arguments in __get__ descriptors are obj, class. # `method` is the new parent of the array, don't know if that's good. args = [obj, obj.base] if isinstance(obj, Instance) else [None, obj] return self.execute_subscope_by_name('__get__', args) def scope_names_generator(self, position=None): """ An Instance has two scopes: The scope with self names and the class scope. Instance variables have priority over the class scope. """ yield self, self.get_self_attributes() names = [] for var in self.base.instance_names(): names.append(InstanceElement(self._evaluator, self, var, True)) yield self, names def is_callable(self): try: self.get_subscope_by_name('__call__') return True except KeyError: return False def get_index_types(self, index_array): indexes = iterable.create_indexes_or_slices(self._evaluator, index_array) if any([isinstance(i, iterable.Slice) for i in indexes]): # Slice support in Jedi is very marginal, at the moment, so just # ignore them in case of __getitem__. # TODO support slices in a more general way. indexes = [] index = helpers.FakeStatement(indexes, parent=compiled.builtin) try: return self.execute_subscope_by_name('__getitem__', [index]) except KeyError: debug.warning('No __getitem__, cannot access the array.') return [] def __getattr__(self, name): if name not in ['start_pos', 'end_pos', 'name', 'get_imports', 'doc', 'raw_doc', 'asserts']: raise AttributeError("Instance %s: Don't touch this (%s)!" % (self, name)) return getattr(self.base, name) def __repr__(self): return "" % \ (type(self).__name__, self.base, len(self.var_args or [])) class InstanceElement(use_metaclass(CachedMetaClass, pr.Base)): """ InstanceElement is a wrapper for any object, that is used as an instance variable (e.g. self.variable or class methods). """ def __init__(self, evaluator, instance, var, is_class_var=False): self._evaluator = evaluator if isinstance(var, pr.Function): var = Function(evaluator, var) elif isinstance(var, pr.Class): var = Class(evaluator, var) self.instance = instance self.var = var self.is_class_var = is_class_var @common.safe_property @memoize_default() def parent(self): par = self.var.parent if isinstance(par, Class) and par == self.instance.base \ or isinstance(par, pr.Class) \ and par == self.instance.base.base: par = self.instance elif not isinstance(par, (pr.Module, compiled.CompiledObject)): par = InstanceElement(self.instance._evaluator, self.instance, par, self.is_class_var) return par def get_parent_until(self, *args, **kwargs): return pr.Simple.get_parent_until(self, *args, **kwargs) def get_decorated_func(self): """ Needed because the InstanceElement should not be stripped """ func = self.var.get_decorated_func() func = InstanceElement(self._evaluator, self.instance, func) return func def expression_list(self): # Copy and modify the array. return [InstanceElement(self._evaluator, self.instance, command, self.is_class_var) if not isinstance(command, (pr.Operator, Token)) else command for command in self.var.expression_list()] def __iter__(self): for el in self.var.__iter__(): yield InstanceElement(self.instance._evaluator, self.instance, el, self.is_class_var) def __getitem__(self, index): return InstanceElement(self._evaluator, self.instance, self.var[index], self.is_class_var) def __getattr__(self, name): return getattr(self.var, name) def isinstance(self, *cls): return isinstance(self.var, cls) def is_callable(self): return self.var.is_callable() def __repr__(self): return "<%s of %s>" % (type(self).__name__, self.var) class Class(use_metaclass(CachedMetaClass, pr.IsScope)): """ This class is not only important to extend `pr.Class`, it is also a important for descriptors (if the descriptor methods are evaluated or not). """ def __init__(self, evaluator, base): self._evaluator = evaluator self.base = base @memoize_default(default=()) def get_super_classes(self): supers = [] # TODO care for mro stuff (multiple super classes). for s in self.base.supers: # Super classes are statements. for cls in self._evaluator.eval_statement(s): if not isinstance(cls, (Class, compiled.CompiledObject)): debug.warning('Received non class as a super class.') continue # Just ignore other stuff (user input error). supers.append(cls) if not supers and self.base.parent != compiled.builtin: # add `object` to classes supers += self._evaluator.find_types(compiled.builtin, 'object') return supers @memoize_default(default=()) def instance_names(self): def in_iterable(name, iterable): """ checks if the name is in the variable 'iterable'. """ for i in iterable: # Only the last name is important, because these names have a # maximal length of 2, with the first one being `self`. if unicode(i.names[-1]) == unicode(name.names[-1]): return True return False result = self.base.get_defined_names() super_result = [] # TODO mro! for cls in self.get_super_classes(): # Get the inherited names. for i in cls.instance_names(): if not in_iterable(i, result): super_result.append(i) result += super_result return result def scope_names_generator(self, position=None): yield self, self.instance_names() yield self, compiled.type_names def get_subscope_by_name(self, name): for s in [self] + self.get_super_classes(): for sub in reversed(s.subscopes): if sub.name.get_code() == name: return sub raise KeyError("Couldn't find subscope.") def is_callable(self): return True @common.safe_property def name(self): return self.base.name def __getattr__(self, name): if name not in ['start_pos', 'end_pos', 'parent', 'asserts', 'raw_doc', 'doc', 'get_imports', 'get_parent_until', 'get_code', 'subscopes']: raise AttributeError("Don't touch this: %s of %s !" % (name, self)) return getattr(self.base, name) def __repr__(self): return "" % (type(self).__name__, self.base) class Function(use_metaclass(CachedMetaClass, pr.IsScope)): """ Needed because of decorators. Decorators are evaluated here. """ def __init__(self, evaluator, func, is_decorated=False): """ This should not be called directly """ self._evaluator = evaluator self.base_func = func self.is_decorated = is_decorated @memoize_default() def _decorated_func(self): """ Returns the function, that is to be executed in the end. This is also the places where the decorators are processed. """ f = self.base_func # Only enter it, if has not already been processed. if not self.is_decorated: for dec in reversed(self.base_func.decorators): debug.dbg('decorator: %s %s', dec, f) dec_results = self._evaluator.eval_statement(dec) if not len(dec_results): debug.warning('decorator not found: %s on %s', dec, self.base_func) return None decorator = dec_results.pop() if dec_results: debug.warning('multiple decorators found %s %s', self.base_func, dec_results) # Create param array. old_func = Function(self._evaluator, f, is_decorated=True) wrappers = self._evaluator.execute(decorator, (old_func,)) if not len(wrappers): debug.warning('no wrappers found %s', self.base_func) return None if len(wrappers) > 1: # TODO resolve issue with multiple wrappers -> multiple types debug.warning('multiple wrappers found %s %s', self.base_func, wrappers) f = wrappers[0] debug.dbg('decorator end %s', f) if isinstance(f, pr.Function): f = Function(self._evaluator, f, True) return f def get_decorated_func(self): """ This function exists for the sole purpose of returning itself if the decorator doesn't turn out to "work". We just ignore the decorator here, because sometimes decorators are just really complicated and Jedi cannot understand them. """ return self._decorated_func() \ or Function(self._evaluator, self.base_func, True) def get_magic_function_names(self): return compiled.magic_function_class.get_defined_names() def get_magic_function_scope(self): return compiled.magic_function_class def is_callable(self): return True def __getattr__(self, name): return getattr(self.base_func, name) def __repr__(self): dec_func = self._decorated_func() dec = '' if not self.is_decorated and self.base_func.decorators: dec = " is " + repr(dec_func) return "" % (type(self).__name__, self.base_func, dec) class FunctionExecution(Executable): """ This class is used to evaluate functions and their returns. This is the most complicated class, because it contains the logic to transfer parameters. It is even more complicated, because there may be multiple calls to functions and recursion has to be avoided. But this is responsibility of the decorators. """ @memoize_default(default=()) @recursion.execution_recursion_decorator def get_return_types(self, evaluate_generator=False): func = self.base # Feed the listeners, with the params. for listener in func.listeners: listener.execute(self._get_params()) if func.listeners: # If we do have listeners, that means that there's not a regular # execution ongoing. In this case Jedi is interested in the # inserted params, not in the actual execution of the function. return [] if func.is_generator and not evaluate_generator: return [iterable.Generator(self._evaluator, func, self.var_args)] else: stmts = list(docstrings.find_return_types(self._evaluator, func)) for r in self.returns: if r is not None: stmts += self._evaluator.eval_statement(r) return stmts @memoize_default(default=()) def _get_params(self): """ This returns the params for an TODO and is injected as a 'hack' into the pr.Function class. This needs to be here, because Instance can have __init__ functions, which act the same way as normal functions. """ return param.get_params(self._evaluator, self.base, self.var_args) def get_defined_names(self): """ Call the default method with the own instance (self implements all the necessary functions). Add also the params. """ return self._get_params() + pr.Scope.get_defined_names(self) def scope_names_generator(self, position=None): names = pr.filter_after_position(pr.Scope.get_defined_names(self), position) yield self, self._get_params() + names def _copy_properties(self, prop): """ Literally copies a property of a Function. Copying is very expensive, because it is something like `copy.deepcopy`. However, these copied objects can be used for the executions, as if they were in the execution. """ # Copy all these lists into this local function. attr = getattr(self.base, prop) objects = [] for element in attr: if element is None: copied = element else: copied = helpers.fast_parent_copy(element) copied.parent = self._scope_copy(copied.parent) if isinstance(copied, pr.Function): copied = Function(self._evaluator, copied) objects.append(copied) return objects def __getattr__(self, name): if name not in ['start_pos', 'end_pos', 'imports', '_sub_module']: raise AttributeError('Tried to access %s: %s. Why?' % (name, self)) return getattr(self.base, name) @memoize_default() def _scope_copy(self, scope): """ Copies a scope (e.g. if) in an execution """ # TODO method uses different scopes than the subscopes property. # just check the start_pos, sometimes it's difficult with closures # to compare the scopes directly. if scope.start_pos == self.start_pos: return self else: copied = helpers.fast_parent_copy(scope) copied.parent = self._scope_copy(copied.parent) return copied @common.safe_property @memoize_default([]) def returns(self): return self._copy_properties('returns') @common.safe_property @memoize_default([]) def asserts(self): return self._copy_properties('asserts') @common.safe_property @memoize_default([]) def statements(self): return self._copy_properties('statements') @common.safe_property @memoize_default([]) def subscopes(self): return self._copy_properties('subscopes') def get_statement_for_position(self, pos): return pr.Scope.get_statement_for_position(self, pos) def __repr__(self): return "<%s of %s>" % (type(self).__name__, self.base) class ModuleWrapper(use_metaclass(CachedMetaClass, pr.Module)): def __init__(self, evaluator, module): self._evaluator = evaluator self._module = module def scope_names_generator(self, position=None): yield self, pr.filter_after_position(self._module.get_defined_names(), position) yield self, self._module_attributes() sub_modules = self._sub_modules() if sub_modules: yield self, self._sub_modules() @memoize_default() def _module_attributes(self): names = ['__file__', '__package__', '__doc__', '__name__', '__version__'] # All the additional module attributes are strings. parent = Instance(self._evaluator, compiled.create(self._evaluator, str)) return [helpers.FakeName(n, parent) for n in names] @memoize_default() def _sub_modules(self): """ Lists modules in the directory of this module (if this module is a package). """ path = self._module.path names = [] if path is not None and path.endswith(os.path.sep + '__init__.py'): mods = pkgutil.iter_modules([os.path.dirname(path)]) for module_loader, name, is_pkg in mods: name = helpers.FakeName(name) # It's obviously a relative import to the current module. imp = helpers.FakeImport(name, self, level=1) name.parent = imp names.append(name) return names def __getattr__(self, name): return getattr(self._module, name) def __repr__(self): return "<%s: %s>" % (type(self).__name__, self._module)