cadquery-freecad-module/CadQuery/Libs/jedi/evaluate/__init__.py

383 lines
16 KiB
Python

"""
Evaluation of Python code in |jedi| is based on three assumptions:
* Code is recursive (to weaken this assumption, the
:mod:`jedi.evaluate.dynamic` module exists).
* No magic is being used:
- metaclasses
- ``setattr()`` / ``__import__()``
- writing to ``globals()``, ``locals()``, ``object.__dict__``
* The programmer is not a total dick, e.g. like `this
<https://github.com/davidhalter/jedi/issues/24>`_ :-)
That said, there's mainly one entry point in this script: ``eval_statement``.
This is where autocompletion starts. Everything you want to complete is either
a ``Statement`` or some special name like ``class``, which is easy to complete.
Therefore you need to understand what follows after ``eval_statement``. Let's
make an example::
import datetime
datetime.date.toda# <-- cursor here
First of all, this module doesn't care about completion. It really just cares
about ``datetime.date``. At the end of the procedure ``eval_statement`` will
return the ``datetime`` class.
To *visualize* this (simplified):
- ``eval_statement`` - ``<Statement: datetime.date>``
- Unpacking of the statement into ``[[<Call: datetime.date>]]``
- ``eval_expression_list``, calls ``eval_call`` with ``<Call: datetime.date>``
- ``eval_call`` - searches the ``datetime`` name within the module.
This is exactly where it starts to get complicated. Now recursions start to
kick in. The statement has not been resolved fully, but now we need to resolve
the datetime import. So it continues
- follow import, which happens in the :mod:`jedi.evaluate.imports` module.
- now the same ``eval_call`` as above calls ``follow_path`` to follow the
second part of the statement ``date``.
- After ``follow_path`` returns with the desired ``datetime.date`` class, the
result is being returned and the recursion finishes.
Now what would happen if we wanted ``datetime.date.foo.bar``? Just two more
calls to ``follow_path`` (which calls itself with a recursion). What if the
import would contain another Statement like this::
from foo import bar
Date = bar.baz
Well... You get it. Just another ``eval_statement`` recursion. It's really
easy. Just that Python is not that easy sometimes. To understand tuple
assignments and different class scopes, a lot more code had to be written. Yet
we're still not talking about Descriptors and Nested List Comprehensions, just
the simple stuff.
So if you want to change something, write a test and then just change what you
want. This module has been tested by about 600 tests. Don't be afraid to break
something. The tests are good enough.
I need to mention now that this recursive approach is really good because it
only *evaluates* what needs to be *evaluated*. All the statements and modules
that are not used are just being ignored. It's a little bit similar to the
backtracking algorithm.
.. todo:: nonlocal statement, needed or can be ignored? (py3k)
"""
import itertools
from jedi._compatibility import next, hasattr, unicode
from jedi.parser import representation as pr
from jedi.parser.tokenize import Token
from jedi.parser import fast
from jedi import debug
from jedi.evaluate import representation as er
from jedi.evaluate import imports
from jedi.evaluate import recursion
from jedi.evaluate import iterable
from jedi.evaluate.cache import memoize_default
from jedi.evaluate import stdlib
from jedi.evaluate import finder
from jedi.evaluate import compiled
from jedi.evaluate import precedence
from jedi.evaluate.helpers import FakeStatement
class Evaluator(object):
def __init__(self):
self.memoize_cache = {} # for memoize decorators
self.import_cache = {} # like `sys.modules`.
self.compiled_cache = {} # see `compiled.create()`
self.recursion_detector = recursion.RecursionDetector()
self.execution_recursion_detector = recursion.ExecutionRecursionDetector()
self.analysis = []
def find_types(self, scope, name_str, position=None, search_global=False,
is_goto=False, resolve_decorator=True):
"""
This is the search function. The most important part to debug.
`remove_statements` and `filter_statements` really are the core part of
this completion.
:param position: Position of the last statement -> tuple of line, column
:return: List of Names. Their parents are the types.
"""
f = finder.NameFinder(self, scope, name_str, position)
scopes = f.scopes(search_global)
if is_goto:
return f.filter_name(scopes)
return f.find(scopes, resolve_decorator, search_global)
@memoize_default(default=[], evaluator_is_first_arg=True)
@recursion.recursion_decorator
@debug.increase_indent
def eval_statement(self, stmt, seek_name=None):
"""
The starting point of the completion. A statement always owns a call
list, which are the calls, that a statement does. In case multiple
names are defined in the statement, `seek_name` returns the result for
this name.
:param stmt: A `pr.Statement`.
"""
debug.dbg('eval_statement %s (%s)', stmt, seek_name)
expression_list = stmt.expression_list()
if isinstance(stmt, FakeStatement):
return expression_list # Already contains the results.
result = self.eval_expression_list(expression_list)
ass_details = stmt.assignment_details
if ass_details and ass_details[0][1] != '=' and not isinstance(stmt, er.InstanceElement): # TODO don't check for this.
expr_list, operator = ass_details[0]
# `=` is always the last character in aug assignments -> -1
operator = operator[:-1]
name = str(expr_list[0].name)
parent = stmt.parent
if isinstance(parent, (pr.SubModule, fast.Module)):
parent = er.ModuleWrapper(self, parent)
left = self.find_types(parent, name, stmt.start_pos)
if isinstance(stmt.parent, pr.ForFlow):
# iterate through result and add the values, that's possible
# only in for loops without clutter, because they are
# predictable.
for r in result:
left = precedence.calculate(self, left, operator, [r])
result = left
else:
result = precedence.calculate(self, left, operator, result)
elif len(stmt.get_defined_names()) > 1 and seek_name and ass_details:
# Assignment checking is only important if the statement defines
# multiple variables.
new_result = []
for ass_expression_list, op in ass_details:
new_result += finder.find_assignments(ass_expression_list[0], result, seek_name)
result = new_result
return result
def eval_expression_list(self, expression_list):
"""
`expression_list` can be either `pr.Array` or `list of list`.
It is used to evaluate a two dimensional object, that has calls, arrays and
operators in it.
"""
debug.dbg('eval_expression_list: %s', expression_list)
p = precedence.create_precedence(expression_list)
return self.process_precedence_element(p) or []
def process_precedence_element(self, el):
if el is None:
return None
else:
if isinstance(el, precedence.Precedence):
return self._eval_precedence(el)
else:
# normal element, no operators
return self.eval_statement_element(el)
def _eval_precedence(self, _precedence):
left = self.process_precedence_element(_precedence.left)
right = self.process_precedence_element(_precedence.right)
return precedence.calculate(self, left, _precedence.operator, right)
def eval_statement_element(self, element):
if pr.Array.is_type(element, pr.Array.NOARRAY):
try:
lst_cmp = element[0].expression_list()[0]
if not isinstance(lst_cmp, pr.ListComprehension):
raise IndexError
except IndexError:
r = list(itertools.chain.from_iterable(self.eval_statement(s)
for s in element))
else:
r = [iterable.GeneratorComprehension(self, lst_cmp)]
call_path = element.generate_call_path()
next(call_path, None) # the first one has been used already
return self.follow_path(call_path, r, element.parent)
elif isinstance(element, pr.ListComprehension):
return self.eval_statement(element.stmt)
elif isinstance(element, pr.Lambda):
return [er.Function(self, element)]
# With things like params, these can also be functions...
elif isinstance(element, pr.Base) and element.isinstance(
er.Function, er.Class, er.Instance, iterable.ArrayInstance):
return [element]
# The string tokens are just operations (+, -, etc.)
elif isinstance(element, compiled.CompiledObject):
return [element]
elif isinstance(element, Token):
return []
else:
return self.eval_call(element)
def eval_call(self, call):
"""Follow a call is following a function, variable, string, etc."""
path = call.generate_call_path()
# find the statement of the Scope
s = call
while not s.parent.isinstance(pr.IsScope):
s = s.parent
par = s.parent
return self.eval_call_path(path, par, s.start_pos)
def eval_call_path(self, path, scope, position):
"""
Follows a path generated by `pr.StatementElement.generate_call_path()`.
"""
current = next(path)
if isinstance(current, pr.Array):
types = [iterable.Array(self, current)]
else:
if isinstance(current, pr.NamePart):
# This is the first global lookup.
types = self.find_types(scope, current, position=position,
search_global=True)
else:
# for pr.Literal
types = [compiled.create(self, current.value)]
types = imports.follow_imports(self, types)
return self.follow_path(path, types, scope)
def follow_path(self, path, types, call_scope):
"""
Follows a path like::
self.follow_path(iter(['Foo', 'bar']), [a_type], from_somewhere)
to follow a call like ``module.a_type.Foo.bar`` (in ``from_somewhere``).
"""
results_new = []
iter_paths = itertools.tee(path, len(types))
for i, typ in enumerate(types):
fp = self._follow_path(iter_paths[i], typ, call_scope)
if fp is not None:
results_new += fp
else:
# This means stop iteration.
return types
return results_new
def _follow_path(self, path, typ, scope):
"""
Uses a generator and tries to complete the path, e.g.::
foo.bar.baz
`_follow_path` is only responsible for completing `.bar.baz`, the rest
is done in the `follow_call` function.
"""
# current is either an Array or a Scope.
try:
current = next(path)
except StopIteration:
return None
debug.dbg('_follow_path: %s in scope %s', current, typ)
result = []
if isinstance(current, pr.Array):
# This must be an execution, either () or [].
if current.type == pr.Array.LIST:
if hasattr(typ, 'get_index_types'):
if isinstance(typ, compiled.CompiledObject):
# CompiledObject doesn't contain an evaluator instance.
result = typ.get_index_types(self, current)
else:
result = typ.get_index_types(current)
elif current.type not in [pr.Array.DICT]:
# Scope must be a class or func - make an instance or execution.
result = self.execute(typ, current)
else:
# Curly braces are not allowed, because they make no sense.
debug.warning('strange function call with {} %s %s', current, typ)
else:
# The function must not be decorated with something else.
if typ.isinstance(er.Function):
typ = typ.get_magic_function_scope()
else:
# This is the typical lookup while chaining things.
if filter_private_variable(typ, scope, current):
return []
types = self.find_types(typ, current)
result = imports.follow_imports(self, types)
return self.follow_path(path, result, scope)
@debug.increase_indent
def execute(self, obj, params=(), evaluate_generator=False):
if obj.isinstance(er.Function):
obj = obj.get_decorated_func()
debug.dbg('execute: %s %s', obj, params)
try:
return stdlib.execute(self, obj, params)
except stdlib.NotInStdLib:
pass
if isinstance(obj, iterable.GeneratorMethod):
return obj.execute()
elif obj.isinstance(compiled.CompiledObject):
if obj.is_executable_class():
return [er.Instance(self, obj, params)]
else:
return list(obj.execute_function(self, params))
elif obj.isinstance(er.Class):
# There maybe executions of executions.
return [er.Instance(self, obj, params)]
else:
stmts = []
if obj.isinstance(er.Function):
stmts = er.FunctionExecution(self, obj, params).get_return_types(evaluate_generator)
else:
if hasattr(obj, 'execute_subscope_by_name'):
try:
stmts = obj.execute_subscope_by_name('__call__', params)
except KeyError:
debug.warning("no __call__ func available %s", obj)
else:
debug.warning("no execution possible %s", obj)
debug.dbg('execute result: %s in %s', stmts, obj)
return imports.follow_imports(self, stmts)
def goto(self, stmt, call_path):
scope = stmt.get_parent_until(pr.IsScope)
pos = stmt.start_pos
call_path, search_name_part = call_path[:-1], call_path[-1]
if call_path:
scopes = self.eval_call_path(iter(call_path), scope, pos)
search_global = False
pos = None
else:
# TODO does this exist? i don't think so
scopes = [scope]
search_global = True
follow_res = []
for s in scopes:
follow_res += self.find_types(s, search_name_part, pos,
search_global=search_global, is_goto=True)
return follow_res, search_name_part
def filter_private_variable(scope, call_scope, var_name):
"""private variables begin with a double underline `__`"""
var_name = str(var_name) # var_name could be a NamePart
if isinstance(var_name, (str, unicode)) and isinstance(scope, er.Instance)\
and var_name.startswith('__') and not var_name.endswith('__'):
s = call_scope.get_parent_until((pr.Class, er.Instance, compiled.CompiledObject))
if s != scope:
if isinstance(scope.base, compiled.CompiledObject):
if s != scope.base:
return True
else:
if s != scope.base.base:
return True
return False