cadquery-freecad-module/CadQuery/Libs/jedi/parser/representation.py

1593 lines
53 KiB
Python

"""
If you know what an abstract syntax tree (ast) is, you'll see that this module
is pretty much that. The classes represent syntax elements: ``Import``,
``Function``.
A very central class is ``Scope``. It is not used directly by the parser, but
inherited. It's used by ``Function``, ``Class``, ``Flow``, etc. A ``Scope`` may
have ``subscopes``, ``imports`` and ``statements``. The entire parser is based
on scopes, because they also stand for indentation.
One special thing:
``Array`` values are statements. But if you think about it, this makes sense.
``[1, 2+33]`` for example would be an Array with two ``Statement`` inside. This
is the easiest way to write a parser. The same behaviour applies to ``Param``,
which is being used in a function definition.
The easiest way to play with this module is to use :class:`parsing.Parser`.
:attr:`parsing.Parser.module` holds an instance of :class:`SubModule`:
>>> from jedi._compatibility import u
>>> from jedi.parser import Parser
>>> parser = Parser(u('import os'), 'example.py')
>>> submodule = parser.module
>>> submodule
<SubModule: example.py@1-1>
Any subclasses of :class:`Scope`, including :class:`SubModule` has
attribute :attr:`imports <Scope.imports>`. This attribute has import
statements in this scope. Check this out:
>>> submodule.imports
[<Import: import os @1,0>]
See also :attr:`Scope.subscopes` and :attr:`Scope.statements`.
"""
import os
import re
from inspect import cleandoc
from jedi._compatibility import (next, Python3Method, encoding, unicode,
is_py3, u, literal_eval)
from jedi import common
from jedi import debug
from jedi import cache
from jedi.parser import tokenize
SCOPE_CONTENTS = 'asserts', 'subscopes', 'imports', 'statements', 'returns'
def filter_after_position(names, position):
"""
Removes all names after a certain position. If position is None, just
returns the names list.
"""
if position is None:
return names
names_new = []
for n in names:
if n.start_pos[0] is not None and n.start_pos < position:
names_new.append(n)
return names_new
class GetCodeState(object):
"""A helper class for passing the state of get_code in a thread-safe
manner."""
__slots__ = ("last_pos",)
def __init__(self):
self.last_pos = (0, 0)
class DocstringMixin(object):
__slots__ = ()
def add_docstr(self, token):
""" Clean up a docstring """
self._doc_token = token
@property
def raw_doc(self):
""" Returns a cleaned version of the docstring token. """
try:
# Returns a literal cleaned version of the ``Token``.
cleaned = cleandoc(literal_eval(self._doc_token.string))
# Since we want the docstr output to be always unicode, just force
# it.
if is_py3 or isinstance(cleaned, unicode):
return cleaned
else:
return unicode(cleaned, 'UTF-8', 'replace')
except AttributeError:
return u('')
class Base(object):
"""
This is just here to have an isinstance check, which is also used on
evaluate classes. But since they have sometimes a special type of
delegation, it is important for those classes to override this method.
I know that there is a chance to do such things with __instancecheck__, but
since Python 2.5 doesn't support it, I decided to do it this way.
"""
__slots__ = ()
def isinstance(self, *cls):
return isinstance(self, cls)
@property
def newline(self):
"""Returns the newline type for the current code."""
#TODO: we need newline detection
return "\n"
@property
def whitespace(self):
"""Returns the whitespace type for the current code: tab or space."""
#TODO: we need tab detection
return " "
@Python3Method
def get_parent_until(self, classes=(), reverse=False,
include_current=True):
"""
Searches the parent "chain" until the object is an instance of
classes. If classes is empty return the last parent in the chain
(is without a parent).
"""
if type(classes) not in (tuple, list):
classes = (classes,)
scope = self if include_current else self.parent
while scope.parent is not None:
if classes and reverse != scope.isinstance(*classes):
break
scope = scope.parent
return scope
def is_callable(self):
"""
By default parser objects are not callable, we make them callable by
the ``evaluate.representation`` objects.
"""
return False
def space(self, from_pos, to_pos):
"""Return the space between two tokens"""
linecount = to_pos[0] - from_pos[0]
if linecount == 0:
return self.whitespace * (to_pos[1] - from_pos[1])
else:
return "%s%s" % (
self.newline * linecount,
self.whitespace * to_pos[1],
)
class Simple(Base):
"""
The super class for Scope, Import, Name and Statement. Every object in
the parser tree inherits from this class.
"""
__slots__ = ('parent', '_sub_module', '_start_pos', 'use_as_parent',
'_end_pos')
def __init__(self, module, start_pos, end_pos=(None, None)):
"""
Initialize :class:`Simple`.
:type module: :class:`SubModule`
:param module: The module in which this Python object locates.
:type start_pos: 2-tuple of int
:param start_pos: Position (line, column) of the Statement.
:type end_pos: 2-tuple of int
:param end_pos: Same as `start_pos`.
"""
self._sub_module = module
self._start_pos = start_pos
self._end_pos = end_pos
self.parent = None
# use this attribute if parent should be something else than self.
self.use_as_parent = self
@property
def start_pos(self):
return self._sub_module.line_offset + self._start_pos[0], \
self._start_pos[1]
@start_pos.setter
def start_pos(self, value):
self._start_pos = value
@property
def end_pos(self):
if None in self._end_pos:
return self._end_pos
return self._sub_module.line_offset + self._end_pos[0], \
self._end_pos[1]
@end_pos.setter
def end_pos(self, value):
self._end_pos = value
def __repr__(self):
code = self.get_code().replace('\n', ' ')
if not is_py3:
code = code.encode(encoding, 'replace')
return "<%s: %s@%s,%s>" % \
(type(self).__name__, code, self.start_pos[0], self.start_pos[1])
def is_scope(self):
return False
class IsScope(Base):
__slots__ = ()
def is_scope(self):
return True
class Scope(IsScope, Simple, DocstringMixin):
"""
Super class for the parser tree, which represents the state of a python
text file.
A Scope manages and owns its subscopes, which are classes and functions, as
well as variables and imports. It is used to access the structure of python
files.
:param start_pos: The position (line and column) of the scope.
:type start_pos: tuple(int, int)
"""
__slots__ = ('subscopes', 'imports', 'statements', '_doc_token', 'asserts',
'returns', 'is_generator')
def __init__(self, module, start_pos):
super(Scope, self).__init__(module, start_pos)
self.subscopes = []
self.imports = []
self.statements = []
self._doc_token = None
self.asserts = []
# Needed here for fast_parser, because the fast_parser splits and
# returns will be in "normal" modules.
self.returns = []
self.is_generator = False
def add_scope(self, sub, decorators):
sub.parent = self.use_as_parent
sub.decorators = decorators
for d in decorators:
# the parent is the same, because the decorator has not the scope
# of the function
d.parent = self.use_as_parent
self.subscopes.append(sub)
return sub
def add_statement(self, stmt):
"""
Used to add a Statement or a Scope.
A statement would be a normal command (Statement) or a Scope (Flow).
"""
stmt.parent = self.use_as_parent
self.statements.append(stmt)
return stmt
def add_import(self, imp):
self.imports.append(imp)
imp.parent = self.use_as_parent
def get_imports(self):
""" Gets also the imports within flow statements """
i = [] + self.imports
for s in self.statements:
if isinstance(s, Scope):
i += s.get_imports()
return i
def get_code2(self, state=GetCodeState()):
string = []
return "".join(string)
def get_code(self, first_indent=False, indention=' '):
"""
:return: Returns the code of the current scope.
:rtype: str
"""
string = ""
if self._doc_token is not None:
string += '"""' + self.raw_doc + '"""\n'
objs = self.subscopes + self.imports + self.statements + self.returns
for obj in sorted(objs, key=lambda x: x.start_pos):
if isinstance(obj, Scope):
string += obj.get_code(first_indent=True, indention=indention)
else:
if obj in self.returns and not isinstance(self, Lambda):
string += 'yield ' if self.is_generator else 'return '
string += obj.get_code()
if first_indent:
string = common.indent_block(string, indention=indention)
return string
@Python3Method
def get_defined_names(self):
"""
Get all defined names in this scope.
>>> from jedi._compatibility import u
>>> from jedi.parser import Parser
>>> parser = Parser(u('''
... a = x
... b = y
... b.c = z
... '''))
>>> parser.module.get_defined_names()
[<Name: a@2,0>, <Name: b@3,0>, <Name: b.c@4,0>]
"""
n = []
for stmt in self.statements:
try:
n += stmt.get_defined_names(True)
except TypeError:
n += stmt.get_defined_names()
# function and class names
n += [s.name for s in self.subscopes]
for i in self.imports:
if not i.star:
n += i.get_defined_names()
return n
@Python3Method
def get_statement_for_position(self, pos, include_imports=False):
checks = self.statements + self.asserts
if include_imports:
checks += self.imports
if self.isinstance(Function):
checks += self.params + self.decorators
checks += [r for r in self.returns if r is not None]
if self.isinstance(Flow):
checks += self.inputs
if self.isinstance(ForFlow) and self.set_stmt is not None:
checks.append(self.set_stmt)
for s in checks:
if isinstance(s, Flow):
p = s.get_statement_for_position(pos, include_imports)
while s.next and not p:
s = s.next
p = s.get_statement_for_position(pos, include_imports)
if p:
return p
elif s.start_pos <= pos <= s.end_pos:
return s
for s in self.subscopes:
if s.start_pos <= pos <= s.end_pos:
p = s.get_statement_for_position(pos, include_imports)
if p:
return p
def __repr__(self):
try:
name = self.path
except AttributeError:
try:
name = self.name
except AttributeError:
name = self.command
return "<%s: %s@%s-%s>" % (type(self).__name__, name,
self.start_pos[0], self.end_pos[0])
def walk(self):
yield self
for s in self.subscopes:
for scope in s.walk():
yield scope
for r in self.statements:
while isinstance(r, Flow):
for scope in r.walk():
yield scope
r = r.next
class Module(IsScope):
"""
For isinstance checks. fast_parser.Module also inherits from this.
"""
class SubModule(Scope, Module):
"""
The top scope, which is always a module.
Depending on the underlying parser this may be a full module or just a part
of a module.
"""
__slots__ = ('path', 'global_vars', 'used_names', 'temp_used_names',
'line_offset', 'use_as_parent')
def __init__(self, path, start_pos=(1, 0), top_module=None):
"""
Initialize :class:`SubModule`.
:type path: str
:arg path: File path to this module.
.. todo:: Document `top_module`.
"""
super(SubModule, self).__init__(self, start_pos)
self.path = path
self.global_vars = []
self.used_names = {}
self.temp_used_names = []
# this may be changed depending on fast_parser
self.line_offset = 0
self.use_as_parent = top_module or self
def add_global(self, name):
"""
Global means in these context a function (subscope) which has a global
statement.
This is only relevant for the top scope.
:param name: The name of the global.
:type name: Name
"""
# set no parent here, because globals are not defined in this scope.
self.global_vars.append(name)
def get_defined_names(self):
n = super(SubModule, self).get_defined_names()
n += self.global_vars
return n
@property
@cache.underscore_memoization
def name(self):
""" This is used for the goto functions. """
if self.path is None:
string = '' # no path -> empty name
else:
sep = (re.escape(os.path.sep),) * 2
r = re.search(r'([^%s]*?)(%s__init__)?(\.py|\.so)?$' % sep, self.path)
# remove PEP 3149 names
string = re.sub('\.[a-z]+-\d{2}[mud]{0,3}$', '', r.group(1))
# positions are not real therefore choose (0, 0)
names = [(string, (0, 0))]
return Name(self, names, (0, 0), (0, 0), self.use_as_parent)
@property
def has_explicit_absolute_import(self):
"""
Checks if imports in this module are explicitly absolute, i.e. there
is a ``__future__`` import.
"""
for imp in self.imports:
if imp.from_ns is None or imp.namespace is None:
continue
namespace, feature = imp.from_ns.names[0], imp.namespace.names[0]
if unicode(namespace) == "__future__" and unicode(feature) == "absolute_import":
return True
return False
class Class(Scope):
"""
Used to store the parsed contents of a python class.
:param name: The Class name.
:type name: str
:param supers: The super classes of a Class.
:type supers: list
:param start_pos: The start position (line, column) of the class.
:type start_pos: tuple(int, int)
"""
__slots__ = ('name', 'supers', 'decorators')
def __init__(self, module, name, supers, start_pos):
super(Class, self).__init__(module, start_pos)
self.name = name
name.parent = self.use_as_parent
self.supers = supers
for s in self.supers:
s.parent = self.use_as_parent
self.decorators = []
def get_code(self, first_indent=False, indention=' '):
string = "\n".join('@' + stmt.get_code() for stmt in self.decorators)
string += 'class %s' % (self.name)
if len(self.supers) > 0:
sup = ', '.join(stmt.get_code(False) for stmt in self.supers)
string += '(%s)' % sup
string += ':\n'
string += super(Class, self).get_code(True, indention)
return string
@property
def doc(self):
"""
Return a document string including call signature of __init__.
"""
docstr = ""
if self._doc_token is not None:
docstr = self.raw_doc
for sub in self.subscopes:
if unicode(sub.name.names[-1]) == '__init__':
return '%s\n\n%s' % (
sub.get_call_signature(funcname=self.name.names[-1]), docstr)
return docstr
def scope_names_generator(self, position=None):
yield self, filter_after_position(self.get_defined_names(), position)
class Function(Scope):
"""
Used to store the parsed contents of a python function.
:param name: The Function name.
:type name: str
:param params: The parameters (Statement) of a Function.
:type params: list
:param start_pos: The start position (line, column) the Function.
:type start_pos: tuple(int, int)
"""
__slots__ = ('name', 'params', 'decorators', 'listeners', 'annotation')
def __init__(self, module, name, params, start_pos, annotation):
super(Function, self).__init__(module, start_pos)
self.name = name
if name is not None:
name.parent = self.use_as_parent
self.params = params
for p in params:
p.parent = self.use_as_parent
p.parent_function = self.use_as_parent
self.decorators = []
self.listeners = set() # not used here, but in evaluation.
if annotation is not None:
annotation.parent = self.use_as_parent
self.annotation = annotation
def get_code(self, first_indent=False, indention=' '):
string = "\n".join('@' + stmt.get_code() for stmt in self.decorators)
params = ', '.join([stmt.get_code(False) for stmt in self.params])
string += "def %s(%s):\n" % (self.name, params)
string += super(Function, self).get_code(True, indention)
return string
def get_defined_names(self):
n = super(Function, self).get_defined_names()
for p in self.params:
try:
n.append(p.get_name())
except IndexError:
debug.warning("multiple names in param %s", n)
return n
def scope_names_generator(self, position=None):
yield self, filter_after_position(self.get_defined_names(), position)
def get_call_signature(self, width=72, funcname=None):
"""
Generate call signature of this function.
:param width: Fold lines if a line is longer than this value.
:type width: int
:arg funcname: Override function name when given.
:type funcname: str
:rtype: str
"""
l = unicode(funcname or self.name.names[-1]) + '('
lines = []
for (i, p) in enumerate(self.params):
code = p.get_code(False)
if i != len(self.params) - 1:
code += ', '
if len(l + code) > width:
lines.append(l[:-1] if l[-1] == ' ' else l)
l = code
else:
l += code
if l:
lines.append(l)
lines[-1] += ')'
return '\n'.join(lines)
@property
def doc(self):
""" Return a document string including call signature. """
docstr = ""
if self._doc_token is not None:
docstr = self.raw_doc
return '%s\n\n%s' % (self.get_call_signature(), docstr)
class Lambda(Function):
def __init__(self, module, params, start_pos, parent):
super(Lambda, self).__init__(module, None, params, start_pos, None)
self.parent = parent
def get_code(self, first_indent=False, indention=' '):
params = ','.join([stmt.get_code() for stmt in self.params])
string = "lambda %s: " % params
return string + super(Function, self).get_code(indention=indention)
def __repr__(self):
return "<%s @%s (%s-%s)>" % (type(self).__name__, self.start_pos[0],
self.start_pos[1], self.end_pos[1])
class Flow(Scope):
"""
Used to describe programming structure - flow statements,
which indent code, but are not classes or functions:
- for
- while
- if
- try
- with
Therefore statements like else, except and finally are also here,
they are now saved in the root flow elements, but in the next variable.
:param command: The flow command, if, while, else, etc.
:type command: str
:param inputs: The initializations of a flow -> while 'statement'.
:type inputs: list(Statement)
:param start_pos: Position (line, column) of the Flow statement.
:type start_pos: tuple(int, int)
"""
__slots__ = ('next', 'command', '_parent', 'inputs', 'set_vars')
def __init__(self, module, command, inputs, start_pos):
self.next = None
self.command = command
super(Flow, self).__init__(module, start_pos)
self._parent = None
# These have to be statements, because of with, which takes multiple.
self.inputs = inputs
for s in inputs:
s.parent = self.use_as_parent
self.set_vars = []
@property
def parent(self):
return self._parent
@parent.setter
def parent(self, value):
self._parent = value
try:
self.next.parent = value
except AttributeError:
return
def get_code(self, first_indent=False, indention=' '):
stmts = []
for s in self.inputs:
stmts.append(s.get_code(new_line=False))
stmt = ', '.join(stmts)
string = "%s %s:\n" % (self.command, stmt)
string += super(Flow, self).get_code(True, indention)
if self.next:
string += self.next.get_code()
return string
def get_defined_names(self, is_internal_call=False):
"""
Get the names for the flow. This includes also a call to the super
class.
:param is_internal_call: defines an option for internal files to crawl
through this class. Normally it will just call its superiors, to
generate the output.
"""
if is_internal_call:
n = list(self.set_vars)
for s in self.inputs:
n += s.get_defined_names()
if self.next:
n += self.next.get_defined_names(is_internal_call)
n += super(Flow, self).get_defined_names()
return n
else:
return self.get_parent_until((Class, Function)).get_defined_names()
def get_imports(self):
i = super(Flow, self).get_imports()
if self.next:
i += self.next.get_imports()
return i
def set_next(self, next):
"""Set the next element in the flow, those are else, except, etc."""
if self.next:
return self.next.set_next(next)
else:
self.next = next
self.next.parent = self.parent
return next
def scope_names_generator(self, position=None):
# For `with` and `for`.
yield self, filter_after_position(self.get_defined_names(), position)
class ForFlow(Flow):
"""
Used for the for loop, because there are two statement parts.
"""
def __init__(self, module, inputs, start_pos, set_stmt):
super(ForFlow, self).__init__(module, 'for', inputs, start_pos)
self.set_stmt = set_stmt
if set_stmt is not None:
set_stmt.parent = self.use_as_parent
self.set_vars = set_stmt.get_defined_names()
for s in self.set_vars:
s.parent.parent = self.use_as_parent
s.parent = self.use_as_parent
def get_code(self, first_indent=False, indention=" " * 4):
vars = ",".join(x.get_code() for x in self.set_vars)
stmts = []
for s in self.inputs:
stmts.append(s.get_code(new_line=False))
stmt = ', '.join(stmts)
s = "for %s in %s:\n" % (vars, stmt)
return s + super(Flow, self).get_code(True, indention)
class Import(Simple):
"""
Stores the imports of any Scopes.
:param start_pos: Position (line, column) of the Import.
:type start_pos: tuple(int, int)
:param namespace: The import, can be empty if a star is given
:type namespace: Name
:param alias: The alias of a namespace(valid in the current namespace).
:type alias: Name
:param from_ns: Like the namespace, can be equally used.
:type from_ns: Name
:param star: If a star is used -> from time import *.
:type star: bool
:param defunct: An Import is valid or not.
:type defunct: bool
"""
def __init__(self, module, start_pos, end_pos, namespace, alias=None,
from_ns=None, star=False, relative_count=0, defunct=False):
super(Import, self).__init__(module, start_pos, end_pos)
self.namespace = namespace
self.alias = alias
self.from_ns = from_ns
for n in namespace, alias, from_ns:
if n:
n.parent = self.use_as_parent
self.star = star
self.relative_count = relative_count
self.defunct = defunct
def get_code(self, new_line=True):
# in case one of the names is None
alias = self.alias or ''
namespace = self.namespace or ''
from_ns = self.from_ns or ''
if self.alias:
ns_str = "%s as %s" % (namespace, alias)
else:
ns_str = unicode(namespace)
nl = '\n' if new_line else ''
if self.from_ns or self.relative_count:
if self.star:
ns_str = '*'
dots = '.' * self.relative_count
return "from %s%s import %s%s" % (dots, from_ns, ns_str, nl)
else:
return "import %s%s" % (ns_str, nl)
def get_defined_names(self):
if self.defunct:
return []
if self.star:
return [self]
if self.alias:
return [self.alias]
if len(self.namespace) > 1:
o = self.namespace
n = Name(self._sub_module, [(unicode(o.names[0]), o.start_pos)],
o.start_pos, o.end_pos, parent=o.parent)
return [n]
else:
return [self.namespace]
def get_all_import_names(self):
n = []
if self.from_ns:
n.append(self.from_ns)
if self.namespace:
n.append(self.namespace)
if self.alias:
n.append(self.alias)
return n
def is_nested(self):
"""
This checks for the special case of nested imports, without aliases and
from statement::
import foo.bar
"""
return not self.alias and not self.from_ns and self.namespace is not None \
and len(self.namespace.names) > 1
class KeywordStatement(Base):
"""
For the following statements: `assert`, `del`, `global`, `nonlocal`,
`raise`, `return`, `yield`, `pass`, `continue`, `break`, `return`, `yield`.
"""
__slots__ = ('name', 'start_pos', 'stmt', 'parent')
def __init__(self, name, start_pos, parent, stmt=None):
self.name = name
self.start_pos = start_pos
self.stmt = stmt
self.parent = parent
if stmt is not None:
stmt.parent = self
def is_scope(self):
return False
def __repr__(self):
return "<%s(%s): %s>" % (type(self).__name__, self.name, self.stmt)
def get_code(self):
if self.stmt is None:
return "%s\n" % self.name
else:
return '%s %s\n' % (self.name, self.stmt)
def get_defined_names(self):
return []
@property
def end_pos(self):
try:
return self.stmt.end_pos
except AttributeError:
return self.start_pos[0], self.start_pos[1] + len(self.name)
class Statement(Simple, DocstringMixin):
"""
This is the class for all the possible statements. Which means, this class
stores pretty much all the Python code, except functions, classes, imports,
and flow functions like if, for, etc.
:type token_list: list
:param token_list:
List of tokens or names. Each element is either an instance
of :class:`Name` or a tuple of token type value (e.g.,
:data:`tokenize.NUMBER`), token string (e.g., ``'='``), and
start position (e.g., ``(1, 0)``).
:type start_pos: 2-tuple of int
:param start_pos: Position (line, column) of the Statement.
"""
__slots__ = ('_token_list', '_set_vars', 'as_names', '_expression_list',
'_assignment_details', '_names_are_set_vars', '_doc_token')
def __init__(self, module, token_list, start_pos, end_pos, parent=None,
as_names=(), names_are_set_vars=False, set_name_parents=True):
super(Statement, self).__init__(module, start_pos, end_pos)
self._token_list = token_list
self._names_are_set_vars = names_are_set_vars
if set_name_parents:
for t in token_list:
if isinstance(t, Name):
t.parent = self.use_as_parent
for n in as_names:
n.parent = self.use_as_parent
self.parent = parent
self._doc_token = None
self._set_vars = None
self.as_names = list(as_names)
# cache
self._assignment_details = []
@property
def end_pos(self):
return self._token_list[-1].end_pos
def get_code(self, new_line=True):
def assemble(command_list, assignment=None):
pieces = [c.get_code() if isinstance(c, Simple) else c.string if
isinstance(c, tokenize.Token) else unicode(c)
for c in command_list]
if assignment is None:
return ''.join(pieces)
return '%s %s ' % (''.join(pieces), assignment)
code = ''.join(assemble(*a) for a in self.assignment_details)
code += assemble(self.expression_list())
if self._doc_token:
code += '\n"""%s"""' % self.raw_doc
if new_line:
return code + '\n'
else:
return code
def get_defined_names(self):
""" Get the names for the statement. """
if self._set_vars is None:
def search_calls(calls):
for call in calls:
if isinstance(call, Array) and call.type != Array.DICT:
for stmt in call:
search_calls(stmt.expression_list())
elif isinstance(call, Call):
c = call
# Check if there's an execution in it, if so this is
# not a set_var.
is_execution = False
while c:
if Array.is_type(c.execution, Array.TUPLE):
is_execution = True
c = c.next
if is_execution:
continue
self._set_vars.append(call.name)
self._set_vars = []
for calls, operation in self.assignment_details:
search_calls(calls)
if not self.assignment_details and self._names_are_set_vars:
# In the case of Param, it's also a defining name without ``=``
search_calls(self.expression_list())
return self._set_vars + self.as_names
def is_global(self):
p = self.parent
return isinstance(p, KeywordStatement) and p.name == 'global'
@property
def assignment_details(self):
"""
Returns an array of tuples of the elements before the assignment.
For example the following code::
x = (y, z) = 2, ''
would result in ``[(Name(x), '='), (Array([Name(y), Name(z)]), '=')]``.
"""
# parse statement which creates the assignment details.
self.expression_list()
return self._assignment_details
@cache.underscore_memoization
def expression_list(self):
"""
Parse a statement.
This is not done in the main parser, because it might be slow and
most of the statements won't need this data anyway. This is something
'like' a lazy execution.
This is not really nice written, sorry for that. If you plan to replace
it and make it nicer, that would be cool :-)
"""
def is_assignment(tok):
return isinstance(tok, Operator) and tok.string.endswith('=') \
and not tok.string in ('>=', '<=', '==', '!=')
def parse_array(token_iterator, array_type, start_pos, add_el=None):
arr = Array(self._sub_module, start_pos, array_type, self)
if add_el is not None:
arr.add_statement(add_el)
old_stmt = add_el
maybe_dict = array_type == Array.SET
break_tok = None
is_array = None
while True:
stmt, break_tok = parse_stmt(token_iterator, maybe_dict,
break_on_assignment=bool(add_el))
if stmt is None:
break
else:
if break_tok == ',':
is_array = True
arr.add_statement(stmt, is_key=maybe_dict and break_tok == ':')
if break_tok in closing_brackets \
or is_assignment(break_tok):
break
old_stmt = stmt
if arr.type == Array.TUPLE and len(arr) == 1 and not is_array:
arr.type = Array.NOARRAY
if not arr.values and maybe_dict:
# this is a really special case - empty brackets {} are
# always dictionaries and not sets.
arr.type = Array.DICT
try:
arr.end_pos = (break_tok or stmt or old_stmt).end_pos
except UnboundLocalError:
# In case of something like `(def`
arr.end_pos = start_pos[0], start_pos[1] + 1
return arr, break_tok
def parse_stmt(token_iterator, maybe_dict=False, added_breaks=(),
break_on_assignment=False, stmt_class=Statement,
allow_comma=False):
token_list = []
level = 0
first = True
end_pos = None, None
tok = None
for tok in token_iterator:
end_pos = tok.end_pos
if first:
start_pos = tok.start_pos
first = False
if isinstance(tok, Base):
# the token is a Name, which has already been parsed
if not level:
if isinstance(tok, ListComprehension):
# it's not possible to set it earlier
tok.parent = self
elif tok == 'lambda':
lambd, tok = parse_lambda(token_iterator)
if lambd is not None:
token_list.append(lambd)
elif tok == 'for':
list_comp, tok = parse_list_comp(token_iterator, token_list,
start_pos, tok.end_pos)
if list_comp is not None:
token_list = [list_comp]
if tok in closing_brackets:
level -= 1
elif tok in brackets.keys():
level += 1
if level == -1 or level == 0 and (
tok == ',' and not allow_comma
or tok in added_breaks
or maybe_dict and tok == ':'
or is_assignment(tok) and break_on_assignment):
end_pos = end_pos[0], end_pos[1] - 1
break
if tok is not None: # Can be None, because of lambda/for.
token_list.append(tok)
if not token_list:
return None, tok
statement = stmt_class(self._sub_module, token_list, start_pos,
end_pos, self.parent, set_name_parents=False)
return statement, tok
def parse_lambda(token_iterator):
params = []
start_pos = self.start_pos
while True:
param, tok = parse_stmt(token_iterator, added_breaks=[':'],
stmt_class=Param)
if param is None:
break
params.append(param)
if tok == ':':
break
if tok != ':':
return None, tok
# Since Lambda is a Function scope, it needs Scope parents.
parent = self.get_parent_until(IsScope)
lambd = Lambda(self._sub_module, params, start_pos, parent)
ret, tok = parse_stmt(token_iterator)
if ret is not None:
ret.parent = lambd
lambd.returns.append(ret)
lambd.end_pos = self.end_pos
return lambd, tok
def parse_list_comp(token_iterator, token_list, start_pos, end_pos):
def parse_stmt_or_arr(token_iterator, added_breaks=(),
names_are_set_vars=False):
stmt, tok = parse_stmt(token_iterator, allow_comma=True,
added_breaks=added_breaks)
if stmt is not None:
for t in stmt._token_list:
if isinstance(t, Name):
t.parent = stmt
stmt._names_are_set_vars = names_are_set_vars
return stmt, tok
st = Statement(self._sub_module, token_list, start_pos,
end_pos, set_name_parents=False)
middle, tok = parse_stmt_or_arr(token_iterator, ['in'], True)
if tok != 'in' or middle is None:
debug.warning('list comprehension middle %s@%s', tok, start_pos)
return None, tok
in_clause, tok = parse_stmt_or_arr(token_iterator)
if in_clause is None:
debug.warning('list comprehension in @%s', start_pos)
return None, tok
return ListComprehension(self._sub_module, st, middle, in_clause, self), tok
# initializations
result = []
is_chain = False
brackets = {'(': Array.TUPLE, '[': Array.LIST, '{': Array.SET}
closing_brackets = ')', '}', ']'
token_iterator = iter(self._token_list)
for tok in token_iterator:
if isinstance(tok, tokenize.Token):
token_type = tok.type
tok_str = tok.string
if tok_str == 'as': # just ignore as, because it sets values
next(token_iterator, None)
continue
else:
# the token is a Name, which has already been parsed
tok_str = tok
token_type = None
if is_assignment(tok):
# This means, there is an assignment here.
# Add assignments, which can be more than one
self._assignment_details.append((result, tok.string))
result = []
is_chain = False
continue
if tok_str == 'lambda':
lambd, tok_str = parse_lambda(token_iterator)
if lambd is not None:
result.append(lambd)
if tok_str not in (')', ','):
continue
is_literal = token_type in (tokenize.STRING, tokenize.NUMBER)
if isinstance(tok_str, Name) or is_literal:
cls = Literal if is_literal else Call
call = cls(self._sub_module, tok_str, tok.start_pos, tok.end_pos, self)
if is_chain:
result[-1].set_next(call)
else:
result.append(call)
is_chain = False
elif tok_str in brackets.keys():
arr, is_ass = parse_array(
token_iterator, brackets[tok.string], tok.start_pos
)
if result and isinstance(result[-1], StatementElement):
result[-1].set_execution(arr)
else:
arr.parent = self
result.append(arr)
elif tok_str == '.':
if result and isinstance(result[-1], StatementElement):
is_chain = True
elif tok_str == ',' and result: # implies a tuple
# expression is now an array not a statement anymore
stmt = Statement(self._sub_module, result, result[0].start_pos,
tok.end_pos, self.parent, set_name_parents=False)
stmt._expression_list = result
arr, break_tok = parse_array(token_iterator, Array.TUPLE,
stmt.start_pos, stmt)
result = [arr]
if is_assignment(break_tok):
self._assignment_details.append((result, break_tok))
result = []
is_chain = False
else:
# comments, strange tokens (like */**), error tokens to
# reproduce the string correctly.
is_chain = False
result.append(tok)
return result
def set_expression_list(self, lst):
"""It's necessary for some "hacks" to change the expression_list."""
self._expression_list = lst
class Param(Statement):
"""
The class which shows definitions of params of classes and functions.
But this is not to define function calls.
"""
__slots__ = ('position_nr', 'is_generated', 'annotation_stmt',
'parent_function')
def __init__(self, *args, **kwargs):
kwargs.pop('names_are_set_vars', None)
super(Param, self).__init__(*args, names_are_set_vars=True, **kwargs)
# this is defined by the parser later on, not at the initialization
# it is the position in the call (first argument, second...)
self.position_nr = None
self.is_generated = False
self.annotation_stmt = None
self.parent_function = None
def add_annotation(self, annotation_stmt):
annotation_stmt.parent = self.use_as_parent
self.annotation_stmt = annotation_stmt
def get_name(self):
""" get the name of the param """
n = self.get_defined_names()
if len(n) > 1:
debug.warning("Multiple param names (%s).", n)
return n[0]
@property
def stars(self):
exp = self.expression_list()
if exp and isinstance(exp[0], Operator):
return exp[0].string.count('*')
return 0
class StatementElement(Simple):
__slots__ = ('parent', 'next', 'execution')
def __init__(self, module, start_pos, end_pos, parent):
super(StatementElement, self).__init__(module, start_pos, end_pos)
# parent is not the oposite of next. The parent of c: a = [b.c] would
# be an array.
self.parent = parent
self.next = None
self.execution = None
def set_next(self, call):
""" Adds another part of the statement"""
call.parent = self
if self.next is not None:
self.next.set_next(call)
else:
self.next = call
def set_execution(self, call):
"""
An execution is nothing else than brackets, with params in them, which
shows access on the internals of this name.
"""
call.parent = self
if self.next is not None:
self.next.set_execution(call)
elif self.execution is not None:
self.execution.set_execution(call)
else:
self.execution = call
def generate_call_path(self):
""" Helps to get the order in which statements are executed. """
try:
for name_part in self.name.names:
yield name_part
except AttributeError:
yield self
if self.execution is not None:
for y in self.execution.generate_call_path():
yield y
if self.next is not None:
for y in self.next.generate_call_path():
yield y
def get_code(self):
s = ''
if self.execution is not None:
s += self.execution.get_code()
if self.next is not None:
s += '.' + self.next.get_code()
return s
class Call(StatementElement):
__slots__ = ('name',)
def __init__(self, module, name, start_pos, end_pos, parent=None):
super(Call, self).__init__(module, start_pos, end_pos, parent)
self.name = name
def get_code(self):
return self.name.get_code() + super(Call, self).get_code()
def __repr__(self):
return "<%s: %s>" % (type(self).__name__, self.name)
class Literal(StatementElement):
__slots__ = ('literal', 'value')
def __init__(self, module, literal, start_pos, end_pos, parent=None):
super(Literal, self).__init__(module, start_pos, end_pos, parent)
self.literal = literal
self.value = literal_eval(literal)
def get_code(self):
return self.literal + super(Literal, self).get_code()
def __repr__(self):
if is_py3:
s = self.literal
else:
s = self.literal.encode('ascii', 'replace')
return "<%s: %s>" % (type(self).__name__, s)
class Array(StatementElement):
"""
Describes the different python types for an array, but also empty
statements. In the Python syntax definitions this type is named 'atom'.
http://docs.python.org/py3k/reference/grammar.html
Array saves sub-arrays as well as normal operators and calls to methods.
:param array_type: The type of an array, which can be one of the constants
below.
:type array_type: int
"""
__slots__ = ('type', 'end_pos', 'values', 'keys')
NOARRAY = None # just brackets, like `1 * (3 + 2)`
TUPLE = 'tuple'
LIST = 'list'
DICT = 'dict'
SET = 'set'
def __init__(self, module, start_pos, arr_type=NOARRAY, parent=None):
super(Array, self).__init__(module, start_pos, (None, None), parent)
self.end_pos = None, None
self.type = arr_type
self.values = []
self.keys = []
def add_statement(self, statement, is_key=False):
"""Just add a new statement"""
statement.parent = self
if is_key:
self.type = self.DICT
self.keys.append(statement)
else:
self.values.append(statement)
@staticmethod
def is_type(instance, *types):
"""
This is not only used for calls on the actual object, but for
ducktyping, to invoke this function with anything as `self`.
"""
try:
if instance.type in types:
return True
except AttributeError:
pass
return False
def __len__(self):
return len(self.values)
def __getitem__(self, key):
if self.type == self.DICT:
raise TypeError('no dicts allowed')
return self.values[key]
def __iter__(self):
if self.type == self.DICT:
raise TypeError('no dicts allowed')
return iter(self.values)
def items(self):
if self.type != self.DICT:
raise TypeError('only dicts allowed')
return zip(self.keys, self.values)
def get_code(self):
map = {
self.NOARRAY: '(%s)',
self.TUPLE: '(%s)',
self.LIST: '[%s]',
self.DICT: '{%s}',
self.SET: '{%s}'
}
inner = []
for i, stmt in enumerate(self.values):
s = ''
with common.ignored(IndexError):
key = self.keys[i]
s += key.get_code(new_line=False) + ': '
s += stmt.get_code(new_line=False)
inner.append(s)
add = ',' if self.type == self.TUPLE and len(self) == 1 else ''
s = map[self.type] % (', '.join(inner) + add)
return s + super(Array, self).get_code()
def __repr__(self):
if self.type == self.NOARRAY:
typ = 'noarray'
else:
typ = self.type
return "<%s: %s%s>" % (type(self).__name__, typ, self.values)
class NamePart(object):
"""
A string. Sometimes it is important to know if the string belongs to a name
or not.
"""
# Unfortunately there's no way to use slots for str (non-zero __itemsize__)
# -> http://utcc.utoronto.ca/~cks/space/blog/python/IntSlotsPython3k
# Therefore don't subclass `str`.
__slots__ = ('parent', '_string', '_line', '_column')
def __init__(self, string, parent, start_pos):
self._string = string
self.parent = parent
self._line = start_pos[0]
self._column = start_pos[1]
def __str__(self):
return self._string
def __unicode__(self):
return self._string
def __repr__(self):
return "<%s: %s>" % (type(self).__name__, self._string)
def get_code(self):
return self._string
def get_parent_until(self, *args, **kwargs):
return self.parent.get_parent_until(*args, **kwargs)
def isinstance(self, *cls):
return isinstance(self, cls)
@property
def start_pos(self):
offset = self.parent._sub_module.line_offset
return offset + self._line, self._column
@property
def end_pos(self):
return self.start_pos[0], self.start_pos[1] + len(self._string)
class Name(Simple):
"""
Used to define names in python.
Which means the whole namespace/class/function stuff.
So a name like "module.class.function"
would result in an array of [module, class, function]
"""
__slots__ = ('names', '_get_code')
def __init__(self, module, names, start_pos, end_pos, parent=None):
super(Name, self).__init__(module, start_pos, end_pos)
# Cache get_code, because it's used quite often for comparisons
# (seen by using the profiler).
self._get_code = ".".join(n[0] for n in names)
names = tuple(NamePart(n[0], self, n[1]) for n in names)
self.names = names
if parent is not None:
self.parent = parent
def get_code(self):
""" Returns the names in a full string format """
return self._get_code
@property
def end_pos(self):
return self.names[-1].end_pos
@property
def docstr(self):
"""Return attribute docstring (PEP 257) if exists."""
return self.parent.docstr
def __str__(self):
return self.get_code()
def __len__(self):
return len(self.names)
class ListComprehension(ForFlow):
""" Helper class for list comprehensions """
def __init__(self, module, stmt, middle, input, parent):
self.input = input
nested_lc = input.expression_list()[0]
if isinstance(nested_lc, ListComprehension):
# is nested LC
input = nested_lc.stmt
nested_lc.parent = self
super(ListComprehension, self).__init__(module, [input],
stmt.start_pos, middle)
self.parent = parent
self.stmt = stmt
self.middle = middle
for s in middle, input:
s.parent = self
# The stmt always refers to the most inner list comprehension.
stmt.parent = self._get_most_inner_lc()
def _get_most_inner_lc(self):
nested_lc = self.input.expression_list()[0]
if isinstance(nested_lc, ListComprehension):
return nested_lc._get_most_inner_lc()
return self
@property
def end_pos(self):
return self.stmt.end_pos
def __repr__(self):
return "<%s: %s>" % (type(self).__name__, self.get_code())
def get_code(self):
statements = self.stmt, self.middle, self.input
code = [s.get_code().replace('\n', '') for s in statements]
return "%s for %s in %s" % tuple(code)
class Operator(Simple):
__slots__ = ('string',)
def __init__(self, module, string, parent, start_pos):
end_pos = start_pos[0], start_pos[1] + len(string)
super(Operator, self).__init__(module, start_pos, end_pos)
self.string = string
self.parent = parent
def get_code(self):
return self.string
def __repr__(self):
return "<%s: `%s`>" % (type(self).__name__, self.string)
def __eq__(self, other):
"""Make comparisons easy. Improves the readability of the parser."""
return self.string == other
def __ne__(self, other):
"""Python 2 compatibility."""
return self.string != other
def __hash__(self):
return hash(self.string)