845 lines
32 KiB
Python
845 lines
32 KiB
Python
# -*- coding: utf-8 -*-
|
|
from __future__ import division, absolute_import, print_function
|
|
|
|
import sys, gc
|
|
|
|
import numpy as np
|
|
from numpy.testing import (
|
|
run_module_suite, assert_, assert_equal, assert_raises, assert_warns, dec
|
|
)
|
|
import textwrap
|
|
|
|
class TestArrayRepr(object):
|
|
def test_nan_inf(self):
|
|
x = np.array([np.nan, np.inf])
|
|
assert_equal(repr(x), 'array([nan, inf])')
|
|
|
|
def test_subclass(self):
|
|
class sub(np.ndarray): pass
|
|
|
|
# one dimensional
|
|
x1d = np.array([1, 2]).view(sub)
|
|
assert_equal(repr(x1d), 'sub([1, 2])')
|
|
|
|
# two dimensional
|
|
x2d = np.array([[1, 2], [3, 4]]).view(sub)
|
|
assert_equal(repr(x2d),
|
|
'sub([[1, 2],\n'
|
|
' [3, 4]])')
|
|
|
|
# two dimensional with flexible dtype
|
|
xstruct = np.ones((2,2), dtype=[('a', '<i4')]).view(sub)
|
|
assert_equal(repr(xstruct),
|
|
"sub([[(1,), (1,)],\n"
|
|
" [(1,), (1,)]], dtype=[('a', '<i4')])"
|
|
)
|
|
|
|
@dec.knownfailureif(True, "See gh-10544")
|
|
def test_object_subclass(self):
|
|
class sub(np.ndarray):
|
|
def __new__(cls, inp):
|
|
obj = np.asarray(inp).view(cls)
|
|
return obj
|
|
|
|
def __getitem__(self, ind):
|
|
ret = super(sub, self).__getitem__(ind)
|
|
return sub(ret)
|
|
|
|
# test that object + subclass is OK:
|
|
x = sub([None, None])
|
|
assert_equal(repr(x), 'sub([None, None], dtype=object)')
|
|
assert_equal(str(x), '[None None]')
|
|
|
|
x = sub([None, sub([None, None])])
|
|
assert_equal(repr(x),
|
|
'sub([None, sub([None, None], dtype=object)], dtype=object)')
|
|
assert_equal(str(x), '[None sub([None, None], dtype=object)]')
|
|
|
|
def test_0d_object_subclass(self):
|
|
# make sure that subclasses which return 0ds instead
|
|
# of scalars don't cause infinite recursion in str
|
|
class sub(np.ndarray):
|
|
def __new__(cls, inp):
|
|
obj = np.asarray(inp).view(cls)
|
|
return obj
|
|
|
|
def __getitem__(self, ind):
|
|
ret = super(sub, self).__getitem__(ind)
|
|
return sub(ret)
|
|
|
|
x = sub(1)
|
|
assert_equal(repr(x), 'sub(1)')
|
|
assert_equal(str(x), '1')
|
|
|
|
x = sub([1, 1])
|
|
assert_equal(repr(x), 'sub([1, 1])')
|
|
assert_equal(str(x), '[1 1]')
|
|
|
|
# check it works properly with object arrays too
|
|
x = sub(None)
|
|
assert_equal(repr(x), 'sub(None, dtype=object)')
|
|
assert_equal(str(x), 'None')
|
|
|
|
# plus recursive object arrays (even depth > 1)
|
|
y = sub(None)
|
|
x[()] = y
|
|
y[()] = x
|
|
assert_equal(repr(x),
|
|
'sub(sub(sub(..., dtype=object), dtype=object), dtype=object)')
|
|
assert_equal(str(x), '...')
|
|
|
|
# nested 0d-subclass-object
|
|
x = sub(None)
|
|
x[()] = sub(None)
|
|
assert_equal(repr(x), 'sub(sub(None, dtype=object), dtype=object)')
|
|
assert_equal(str(x), 'None')
|
|
|
|
# gh-10663
|
|
class DuckCounter(np.ndarray):
|
|
def __getitem__(self, item):
|
|
result = super(DuckCounter, self).__getitem__(item)
|
|
if not isinstance(result, DuckCounter):
|
|
result = result[...].view(DuckCounter)
|
|
return result
|
|
|
|
def to_string(self):
|
|
return {0: 'zero', 1: 'one', 2: 'two'}.get(self.item(), 'many')
|
|
|
|
def __str__(self):
|
|
if self.shape == ():
|
|
return self.to_string()
|
|
else:
|
|
fmt = {'all': lambda x: x.to_string()}
|
|
return np.array2string(self, formatter=fmt)
|
|
|
|
dc = np.arange(5).view(DuckCounter)
|
|
assert_equal(str(dc), "[zero one two many many]")
|
|
assert_equal(str(dc[0]), "zero")
|
|
|
|
def test_self_containing(self):
|
|
arr0d = np.array(None)
|
|
arr0d[()] = arr0d
|
|
assert_equal(repr(arr0d),
|
|
'array(array(..., dtype=object), dtype=object)')
|
|
|
|
arr1d = np.array([None, None])
|
|
arr1d[1] = arr1d
|
|
assert_equal(repr(arr1d),
|
|
'array([None, array(..., dtype=object)], dtype=object)')
|
|
|
|
first = np.array(None)
|
|
second = np.array(None)
|
|
first[()] = second
|
|
second[()] = first
|
|
assert_equal(repr(first),
|
|
'array(array(array(..., dtype=object), dtype=object), dtype=object)')
|
|
|
|
def test_containing_list(self):
|
|
# printing square brackets directly would be ambiguuous
|
|
arr1d = np.array([None, None])
|
|
arr1d[0] = [1, 2]
|
|
arr1d[1] = [3]
|
|
assert_equal(repr(arr1d),
|
|
'array([list([1, 2]), list([3])], dtype=object)')
|
|
|
|
def test_void_scalar_recursion(self):
|
|
# gh-9345
|
|
repr(np.void(b'test')) # RecursionError ?
|
|
|
|
def test_fieldless_structured(self):
|
|
# gh-10366
|
|
no_fields = np.dtype([])
|
|
arr_no_fields = np.empty(4, dtype=no_fields)
|
|
assert_equal(repr(arr_no_fields), 'array([(), (), (), ()], dtype=[])')
|
|
|
|
|
|
class TestComplexArray(object):
|
|
def test_str(self):
|
|
rvals = [0, 1, -1, np.inf, -np.inf, np.nan]
|
|
cvals = [complex(rp, ip) for rp in rvals for ip in rvals]
|
|
dtypes = [np.complex64, np.cdouble, np.clongdouble]
|
|
actual = [str(np.array([c], dt)) for c in cvals for dt in dtypes]
|
|
wanted = [
|
|
'[0.+0.j]', '[0.+0.j]', '[0.+0.j]',
|
|
'[0.+1.j]', '[0.+1.j]', '[0.+1.j]',
|
|
'[0.-1.j]', '[0.-1.j]', '[0.-1.j]',
|
|
'[0.+infj]', '[0.+infj]', '[0.+infj]',
|
|
'[0.-infj]', '[0.-infj]', '[0.-infj]',
|
|
'[0.+nanj]', '[0.+nanj]', '[0.+nanj]',
|
|
'[1.+0.j]', '[1.+0.j]', '[1.+0.j]',
|
|
'[1.+1.j]', '[1.+1.j]', '[1.+1.j]',
|
|
'[1.-1.j]', '[1.-1.j]', '[1.-1.j]',
|
|
'[1.+infj]', '[1.+infj]', '[1.+infj]',
|
|
'[1.-infj]', '[1.-infj]', '[1.-infj]',
|
|
'[1.+nanj]', '[1.+nanj]', '[1.+nanj]',
|
|
'[-1.+0.j]', '[-1.+0.j]', '[-1.+0.j]',
|
|
'[-1.+1.j]', '[-1.+1.j]', '[-1.+1.j]',
|
|
'[-1.-1.j]', '[-1.-1.j]', '[-1.-1.j]',
|
|
'[-1.+infj]', '[-1.+infj]', '[-1.+infj]',
|
|
'[-1.-infj]', '[-1.-infj]', '[-1.-infj]',
|
|
'[-1.+nanj]', '[-1.+nanj]', '[-1.+nanj]',
|
|
'[inf+0.j]', '[inf+0.j]', '[inf+0.j]',
|
|
'[inf+1.j]', '[inf+1.j]', '[inf+1.j]',
|
|
'[inf-1.j]', '[inf-1.j]', '[inf-1.j]',
|
|
'[inf+infj]', '[inf+infj]', '[inf+infj]',
|
|
'[inf-infj]', '[inf-infj]', '[inf-infj]',
|
|
'[inf+nanj]', '[inf+nanj]', '[inf+nanj]',
|
|
'[-inf+0.j]', '[-inf+0.j]', '[-inf+0.j]',
|
|
'[-inf+1.j]', '[-inf+1.j]', '[-inf+1.j]',
|
|
'[-inf-1.j]', '[-inf-1.j]', '[-inf-1.j]',
|
|
'[-inf+infj]', '[-inf+infj]', '[-inf+infj]',
|
|
'[-inf-infj]', '[-inf-infj]', '[-inf-infj]',
|
|
'[-inf+nanj]', '[-inf+nanj]', '[-inf+nanj]',
|
|
'[nan+0.j]', '[nan+0.j]', '[nan+0.j]',
|
|
'[nan+1.j]', '[nan+1.j]', '[nan+1.j]',
|
|
'[nan-1.j]', '[nan-1.j]', '[nan-1.j]',
|
|
'[nan+infj]', '[nan+infj]', '[nan+infj]',
|
|
'[nan-infj]', '[nan-infj]', '[nan-infj]',
|
|
'[nan+nanj]', '[nan+nanj]', '[nan+nanj]']
|
|
|
|
for res, val in zip(actual, wanted):
|
|
assert_equal(res, val)
|
|
|
|
class TestArray2String(object):
|
|
def test_basic(self):
|
|
"""Basic test of array2string."""
|
|
a = np.arange(3)
|
|
assert_(np.array2string(a) == '[0 1 2]')
|
|
assert_(np.array2string(a, max_line_width=4, legacy='1.13') == '[0 1\n 2]')
|
|
assert_(np.array2string(a, max_line_width=4) == '[0\n 1\n 2]')
|
|
|
|
def test_format_function(self):
|
|
"""Test custom format function for each element in array."""
|
|
def _format_function(x):
|
|
if np.abs(x) < 1:
|
|
return '.'
|
|
elif np.abs(x) < 2:
|
|
return 'o'
|
|
else:
|
|
return 'O'
|
|
|
|
x = np.arange(3)
|
|
if sys.version_info[0] >= 3:
|
|
x_hex = "[0x0 0x1 0x2]"
|
|
x_oct = "[0o0 0o1 0o2]"
|
|
else:
|
|
x_hex = "[0x0L 0x1L 0x2L]"
|
|
x_oct = "[0L 01L 02L]"
|
|
assert_(np.array2string(x, formatter={'all':_format_function}) ==
|
|
"[. o O]")
|
|
assert_(np.array2string(x, formatter={'int_kind':_format_function}) ==
|
|
"[. o O]")
|
|
assert_(np.array2string(x, formatter={'all':lambda x: "%.4f" % x}) ==
|
|
"[0.0000 1.0000 2.0000]")
|
|
assert_equal(np.array2string(x, formatter={'int':lambda x: hex(x)}),
|
|
x_hex)
|
|
assert_equal(np.array2string(x, formatter={'int':lambda x: oct(x)}),
|
|
x_oct)
|
|
|
|
x = np.arange(3.)
|
|
assert_(np.array2string(x, formatter={'float_kind':lambda x: "%.2f" % x}) ==
|
|
"[0.00 1.00 2.00]")
|
|
assert_(np.array2string(x, formatter={'float':lambda x: "%.2f" % x}) ==
|
|
"[0.00 1.00 2.00]")
|
|
|
|
s = np.array(['abc', 'def'])
|
|
assert_(np.array2string(s, formatter={'numpystr':lambda s: s*2}) ==
|
|
'[abcabc defdef]')
|
|
|
|
# check for backcompat that using FloatFormat works and emits warning
|
|
with assert_warns(DeprecationWarning):
|
|
fmt = np.core.arrayprint.FloatFormat(x, 9, 'maxprec', False)
|
|
assert_equal(np.array2string(x, formatter={'float_kind': fmt}),
|
|
'[0. 1. 2.]')
|
|
|
|
def test_structure_format(self):
|
|
dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
|
|
x = np.array([('Sarah', (8.0, 7.0)), ('John', (6.0, 7.0))], dtype=dt)
|
|
assert_equal(np.array2string(x),
|
|
"[('Sarah', [8., 7.]) ('John', [6., 7.])]")
|
|
|
|
np.set_printoptions(legacy='1.13')
|
|
try:
|
|
# for issue #5692
|
|
A = np.zeros(shape=10, dtype=[("A", "M8[s]")])
|
|
A[5:].fill(np.datetime64('NaT'))
|
|
assert_equal(
|
|
np.array2string(A),
|
|
textwrap.dedent("""\
|
|
[('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',)
|
|
('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) ('NaT',) ('NaT',)
|
|
('NaT',) ('NaT',) ('NaT',)]""")
|
|
)
|
|
finally:
|
|
np.set_printoptions(legacy=False)
|
|
|
|
# same again, but with non-legacy behavior
|
|
assert_equal(
|
|
np.array2string(A),
|
|
textwrap.dedent("""\
|
|
[('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',)
|
|
('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',)
|
|
('1970-01-01T00:00:00',) ( 'NaT',)
|
|
( 'NaT',) ( 'NaT',)
|
|
( 'NaT',) ( 'NaT',)]""")
|
|
)
|
|
|
|
# and again, with timedeltas
|
|
A = np.full(10, 123456, dtype=[("A", "m8[s]")])
|
|
A[5:].fill(np.datetime64('NaT'))
|
|
assert_equal(
|
|
np.array2string(A),
|
|
textwrap.dedent("""\
|
|
[(123456,) (123456,) (123456,) (123456,) (123456,) ( 'NaT',) ( 'NaT',)
|
|
( 'NaT',) ( 'NaT',) ( 'NaT',)]""")
|
|
)
|
|
|
|
# See #8160
|
|
struct_int = np.array([([1, -1],), ([123, 1],)], dtype=[('B', 'i4', 2)])
|
|
assert_equal(np.array2string(struct_int),
|
|
"[([ 1, -1],) ([123, 1],)]")
|
|
struct_2dint = np.array([([[0, 1], [2, 3]],), ([[12, 0], [0, 0]],)],
|
|
dtype=[('B', 'i4', (2, 2))])
|
|
assert_equal(np.array2string(struct_2dint),
|
|
"[([[ 0, 1], [ 2, 3]],) ([[12, 0], [ 0, 0]],)]")
|
|
|
|
# See #8172
|
|
array_scalar = np.array(
|
|
(1., 2.1234567890123456789, 3.), dtype=('f8,f8,f8'))
|
|
assert_equal(np.array2string(array_scalar), "(1., 2.12345679, 3.)")
|
|
|
|
def test_unstructured_void_repr(self):
|
|
a = np.array([27, 91, 50, 75, 7, 65, 10, 8,
|
|
27, 91, 51, 49,109, 82,101,100], dtype='u1').view('V8')
|
|
assert_equal(repr(a[0]), r"void(b'\x1B\x5B\x32\x4B\x07\x41\x0A\x08')")
|
|
assert_equal(str(a[0]), r"b'\x1B\x5B\x32\x4B\x07\x41\x0A\x08'")
|
|
assert_equal(repr(a),
|
|
r"array([b'\x1B\x5B\x32\x4B\x07\x41\x0A\x08'," "\n"
|
|
r" b'\x1B\x5B\x33\x31\x6D\x52\x65\x64'], dtype='|V8')")
|
|
|
|
assert_equal(eval(repr(a), vars(np)), a)
|
|
assert_equal(eval(repr(a[0]), vars(np)), a[0])
|
|
|
|
def test_edgeitems_kwarg(self):
|
|
# previously the global print options would be taken over the kwarg
|
|
arr = np.zeros(3, int)
|
|
assert_equal(
|
|
np.array2string(arr, edgeitems=1, threshold=0),
|
|
"[0 ... 0]"
|
|
)
|
|
|
|
def test_summarize_1d(self):
|
|
A = np.arange(1001)
|
|
strA = '[ 0 1 2 ... 998 999 1000]'
|
|
assert_equal(str(A), strA)
|
|
|
|
reprA = 'array([ 0, 1, 2, ..., 998, 999, 1000])'
|
|
assert_equal(repr(A), reprA)
|
|
|
|
def test_summarize_2d(self):
|
|
A = np.arange(1002).reshape(2, 501)
|
|
strA = '[[ 0 1 2 ... 498 499 500]\n' \
|
|
' [ 501 502 503 ... 999 1000 1001]]'
|
|
assert_equal(str(A), strA)
|
|
|
|
reprA = 'array([[ 0, 1, 2, ..., 498, 499, 500],\n' \
|
|
' [ 501, 502, 503, ..., 999, 1000, 1001]])'
|
|
assert_equal(repr(A), reprA)
|
|
|
|
def test_linewidth(self):
|
|
a = np.full(6, 1)
|
|
|
|
def make_str(a, width, **kw):
|
|
return np.array2string(a, separator="", max_line_width=width, **kw)
|
|
|
|
assert_equal(make_str(a, 8, legacy='1.13'), '[111111]')
|
|
assert_equal(make_str(a, 7, legacy='1.13'), '[111111]')
|
|
assert_equal(make_str(a, 5, legacy='1.13'), '[1111\n'
|
|
' 11]')
|
|
|
|
assert_equal(make_str(a, 8), '[111111]')
|
|
assert_equal(make_str(a, 7), '[11111\n'
|
|
' 1]')
|
|
assert_equal(make_str(a, 5), '[111\n'
|
|
' 111]')
|
|
|
|
b = a[None,None,:]
|
|
|
|
assert_equal(make_str(b, 12, legacy='1.13'), '[[[111111]]]')
|
|
assert_equal(make_str(b, 9, legacy='1.13'), '[[[111111]]]')
|
|
assert_equal(make_str(b, 8, legacy='1.13'), '[[[11111\n'
|
|
' 1]]]')
|
|
|
|
assert_equal(make_str(b, 12), '[[[111111]]]')
|
|
assert_equal(make_str(b, 9), '[[[111\n'
|
|
' 111]]]')
|
|
assert_equal(make_str(b, 8), '[[[11\n'
|
|
' 11\n'
|
|
' 11]]]')
|
|
|
|
def test_wide_element(self):
|
|
a = np.array(['xxxxx'])
|
|
assert_equal(
|
|
np.array2string(a, max_line_width=5),
|
|
"['xxxxx']"
|
|
)
|
|
assert_equal(
|
|
np.array2string(a, max_line_width=5, legacy='1.13'),
|
|
"[ 'xxxxx']"
|
|
)
|
|
|
|
def test_refcount(self):
|
|
# make sure we do not hold references to the array due to a recursive
|
|
# closure (gh-10620)
|
|
gc.disable()
|
|
a = np.arange(2)
|
|
r1 = sys.getrefcount(a)
|
|
np.array2string(a)
|
|
np.array2string(a)
|
|
r2 = sys.getrefcount(a)
|
|
gc.collect()
|
|
gc.enable()
|
|
assert_(r1 == r2)
|
|
|
|
class TestPrintOptions(object):
|
|
"""Test getting and setting global print options."""
|
|
|
|
def setup(self):
|
|
self.oldopts = np.get_printoptions()
|
|
|
|
def teardown(self):
|
|
np.set_printoptions(**self.oldopts)
|
|
|
|
def test_basic(self):
|
|
x = np.array([1.5, 0, 1.234567890])
|
|
assert_equal(repr(x), "array([1.5 , 0. , 1.23456789])")
|
|
np.set_printoptions(precision=4)
|
|
assert_equal(repr(x), "array([1.5 , 0. , 1.2346])")
|
|
|
|
def test_precision_zero(self):
|
|
np.set_printoptions(precision=0)
|
|
for values, string in (
|
|
([0.], "0."), ([.3], "0."), ([-.3], "-0."), ([.7], "1."),
|
|
([1.5], "2."), ([-1.5], "-2."), ([-15.34], "-15."),
|
|
([100.], "100."), ([.2, -1, 122.51], " 0., -1., 123."),
|
|
([0], "0"), ([-12], "-12"), ([complex(.3, -.7)], "0.-1.j")):
|
|
x = np.array(values)
|
|
assert_equal(repr(x), "array([%s])" % string)
|
|
|
|
def test_formatter(self):
|
|
x = np.arange(3)
|
|
np.set_printoptions(formatter={'all':lambda x: str(x-1)})
|
|
assert_equal(repr(x), "array([-1, 0, 1])")
|
|
|
|
def test_formatter_reset(self):
|
|
x = np.arange(3)
|
|
np.set_printoptions(formatter={'all':lambda x: str(x-1)})
|
|
assert_equal(repr(x), "array([-1, 0, 1])")
|
|
np.set_printoptions(formatter={'int':None})
|
|
assert_equal(repr(x), "array([0, 1, 2])")
|
|
|
|
np.set_printoptions(formatter={'all':lambda x: str(x-1)})
|
|
assert_equal(repr(x), "array([-1, 0, 1])")
|
|
np.set_printoptions(formatter={'all':None})
|
|
assert_equal(repr(x), "array([0, 1, 2])")
|
|
|
|
np.set_printoptions(formatter={'int':lambda x: str(x-1)})
|
|
assert_equal(repr(x), "array([-1, 0, 1])")
|
|
np.set_printoptions(formatter={'int_kind':None})
|
|
assert_equal(repr(x), "array([0, 1, 2])")
|
|
|
|
x = np.arange(3.)
|
|
np.set_printoptions(formatter={'float':lambda x: str(x-1)})
|
|
assert_equal(repr(x), "array([-1.0, 0.0, 1.0])")
|
|
np.set_printoptions(formatter={'float_kind':None})
|
|
assert_equal(repr(x), "array([0., 1., 2.])")
|
|
|
|
def test_0d_arrays(self):
|
|
unicode = type(u'')
|
|
|
|
assert_equal(unicode(np.array(u'café', '<U4')), u'café')
|
|
|
|
if sys.version_info[0] >= 3:
|
|
assert_equal(repr(np.array('café', '<U4')),
|
|
"array('café', dtype='<U4')")
|
|
else:
|
|
assert_equal(repr(np.array(u'café', '<U4')),
|
|
"array(u'caf\\xe9', dtype='<U4')")
|
|
assert_equal(str(np.array('test', np.str_)), 'test')
|
|
|
|
a = np.zeros(1, dtype=[('a', '<i4', (3,))])
|
|
assert_equal(str(a[0]), '([0, 0, 0],)')
|
|
|
|
assert_equal(repr(np.datetime64('2005-02-25')[...]),
|
|
"array('2005-02-25', dtype='datetime64[D]')")
|
|
|
|
assert_equal(repr(np.timedelta64('10', 'Y')[...]),
|
|
"array(10, dtype='timedelta64[Y]')")
|
|
|
|
# repr of 0d arrays is affected by printoptions
|
|
x = np.array(1)
|
|
np.set_printoptions(formatter={'all':lambda x: "test"})
|
|
assert_equal(repr(x), "array(test)")
|
|
# str is unaffected
|
|
assert_equal(str(x), "1")
|
|
|
|
# check `style` arg raises
|
|
assert_warns(DeprecationWarning, np.array2string,
|
|
np.array(1.), style=repr)
|
|
# but not in legacy mode
|
|
np.array2string(np.array(1.), style=repr, legacy='1.13')
|
|
# gh-10934 style was broken in legacy mode, check it works
|
|
np.array2string(np.array(1.), legacy='1.13')
|
|
|
|
def test_float_spacing(self):
|
|
x = np.array([1., 2., 3.])
|
|
y = np.array([1., 2., -10.])
|
|
z = np.array([100., 2., -1.])
|
|
w = np.array([-100., 2., 1.])
|
|
|
|
assert_equal(repr(x), 'array([1., 2., 3.])')
|
|
assert_equal(repr(y), 'array([ 1., 2., -10.])')
|
|
assert_equal(repr(np.array(y[0])), 'array(1.)')
|
|
assert_equal(repr(np.array(y[-1])), 'array(-10.)')
|
|
assert_equal(repr(z), 'array([100., 2., -1.])')
|
|
assert_equal(repr(w), 'array([-100., 2., 1.])')
|
|
|
|
assert_equal(repr(np.array([np.nan, np.inf])), 'array([nan, inf])')
|
|
assert_equal(repr(np.array([np.nan, -np.inf])), 'array([ nan, -inf])')
|
|
|
|
x = np.array([np.inf, 100000, 1.1234])
|
|
y = np.array([np.inf, 100000, -1.1234])
|
|
z = np.array([np.inf, 1.1234, -1e120])
|
|
np.set_printoptions(precision=2)
|
|
assert_equal(repr(x), 'array([ inf, 1.00e+05, 1.12e+00])')
|
|
assert_equal(repr(y), 'array([ inf, 1.00e+05, -1.12e+00])')
|
|
assert_equal(repr(z), 'array([ inf, 1.12e+000, -1.00e+120])')
|
|
|
|
def test_bool_spacing(self):
|
|
assert_equal(repr(np.array([True, True])),
|
|
'array([ True, True])')
|
|
assert_equal(repr(np.array([True, False])),
|
|
'array([ True, False])')
|
|
assert_equal(repr(np.array([True])),
|
|
'array([ True])')
|
|
assert_equal(repr(np.array(True)),
|
|
'array(True)')
|
|
assert_equal(repr(np.array(False)),
|
|
'array(False)')
|
|
|
|
def test_sign_spacing(self):
|
|
a = np.arange(4.)
|
|
b = np.array([1.234e9])
|
|
c = np.array([1.0 + 1.0j, 1.123456789 + 1.123456789j], dtype='c16')
|
|
|
|
assert_equal(repr(a), 'array([0., 1., 2., 3.])')
|
|
assert_equal(repr(np.array(1.)), 'array(1.)')
|
|
assert_equal(repr(b), 'array([1.234e+09])')
|
|
assert_equal(repr(np.array([0.])), 'array([0.])')
|
|
assert_equal(repr(c),
|
|
"array([1. +1.j , 1.12345679+1.12345679j])")
|
|
assert_equal(repr(np.array([0., -0.])), 'array([ 0., -0.])')
|
|
|
|
np.set_printoptions(sign=' ')
|
|
assert_equal(repr(a), 'array([ 0., 1., 2., 3.])')
|
|
assert_equal(repr(np.array(1.)), 'array( 1.)')
|
|
assert_equal(repr(b), 'array([ 1.234e+09])')
|
|
assert_equal(repr(c),
|
|
"array([ 1. +1.j , 1.12345679+1.12345679j])")
|
|
assert_equal(repr(np.array([0., -0.])), 'array([ 0., -0.])')
|
|
|
|
np.set_printoptions(sign='+')
|
|
assert_equal(repr(a), 'array([+0., +1., +2., +3.])')
|
|
assert_equal(repr(np.array(1.)), 'array(+1.)')
|
|
assert_equal(repr(b), 'array([+1.234e+09])')
|
|
assert_equal(repr(c),
|
|
"array([+1. +1.j , +1.12345679+1.12345679j])")
|
|
|
|
np.set_printoptions(legacy='1.13')
|
|
assert_equal(repr(a), 'array([ 0., 1., 2., 3.])')
|
|
assert_equal(repr(b), 'array([ 1.23400000e+09])')
|
|
assert_equal(repr(-b), 'array([ -1.23400000e+09])')
|
|
assert_equal(repr(np.array(1.)), 'array(1.0)')
|
|
assert_equal(repr(np.array([0.])), 'array([ 0.])')
|
|
assert_equal(repr(c),
|
|
"array([ 1.00000000+1.j , 1.12345679+1.12345679j])")
|
|
# gh-10383
|
|
assert_equal(str(np.array([-1., 10])), "[ -1. 10.]")
|
|
|
|
assert_raises(TypeError, np.set_printoptions, wrongarg=True)
|
|
|
|
def test_float_overflow_nowarn(self):
|
|
# make sure internal computations in FloatingFormat don't
|
|
# warn about overflow
|
|
repr(np.array([1e4, 0.1], dtype='f2'))
|
|
|
|
def test_sign_spacing_structured(self):
|
|
a = np.ones(2, dtype='<f,<f')
|
|
assert_equal(repr(a),
|
|
"array([(1., 1.), (1., 1.)], dtype=[('f0', '<f4'), ('f1', '<f4')])")
|
|
assert_equal(repr(a[0]), "(1., 1.)")
|
|
|
|
def test_floatmode(self):
|
|
x = np.array([0.6104, 0.922, 0.457, 0.0906, 0.3733, 0.007244,
|
|
0.5933, 0.947, 0.2383, 0.4226], dtype=np.float16)
|
|
y = np.array([0.2918820979355541, 0.5064172631089138,
|
|
0.2848750619642916, 0.4342965294660567,
|
|
0.7326538397312751, 0.3459503329096204,
|
|
0.0862072768214508, 0.39112753029631175],
|
|
dtype=np.float64)
|
|
z = np.arange(6, dtype=np.float16)/10
|
|
c = np.array([1.0 + 1.0j, 1.123456789 + 1.123456789j], dtype='c16')
|
|
|
|
# also make sure 1e23 is right (is between two fp numbers)
|
|
w = np.array(['1e{}'.format(i) for i in range(25)], dtype=np.float64)
|
|
# note: we construct w from the strings `1eXX` instead of doing
|
|
# `10.**arange(24)` because it turns out the two are not equivalent in
|
|
# python. On some architectures `1e23 != 10.**23`.
|
|
wp = np.array([1.234e1, 1e2, 1e123])
|
|
|
|
# unique mode
|
|
np.set_printoptions(floatmode='unique')
|
|
assert_equal(repr(x),
|
|
"array([0.6104 , 0.922 , 0.457 , 0.0906 , 0.3733 , 0.007244,\n"
|
|
" 0.5933 , 0.947 , 0.2383 , 0.4226 ], dtype=float16)")
|
|
assert_equal(repr(y),
|
|
"array([0.2918820979355541 , 0.5064172631089138 , 0.2848750619642916 ,\n"
|
|
" 0.4342965294660567 , 0.7326538397312751 , 0.3459503329096204 ,\n"
|
|
" 0.0862072768214508 , 0.39112753029631175])")
|
|
assert_equal(repr(z),
|
|
"array([0. , 0.1, 0.2, 0.3, 0.4, 0.5], dtype=float16)")
|
|
assert_equal(repr(w),
|
|
"array([1.e+00, 1.e+01, 1.e+02, 1.e+03, 1.e+04, 1.e+05, 1.e+06, 1.e+07,\n"
|
|
" 1.e+08, 1.e+09, 1.e+10, 1.e+11, 1.e+12, 1.e+13, 1.e+14, 1.e+15,\n"
|
|
" 1.e+16, 1.e+17, 1.e+18, 1.e+19, 1.e+20, 1.e+21, 1.e+22, 1.e+23,\n"
|
|
" 1.e+24])")
|
|
assert_equal(repr(wp), "array([1.234e+001, 1.000e+002, 1.000e+123])")
|
|
assert_equal(repr(c),
|
|
"array([1. +1.j , 1.123456789+1.123456789j])")
|
|
|
|
# maxprec mode, precision=8
|
|
np.set_printoptions(floatmode='maxprec', precision=8)
|
|
assert_equal(repr(x),
|
|
"array([0.6104 , 0.922 , 0.457 , 0.0906 , 0.3733 , 0.007244,\n"
|
|
" 0.5933 , 0.947 , 0.2383 , 0.4226 ], dtype=float16)")
|
|
assert_equal(repr(y),
|
|
"array([0.2918821 , 0.50641726, 0.28487506, 0.43429653, 0.73265384,\n"
|
|
" 0.34595033, 0.08620728, 0.39112753])")
|
|
assert_equal(repr(z),
|
|
"array([0. , 0.1, 0.2, 0.3, 0.4, 0.5], dtype=float16)")
|
|
assert_equal(repr(w[::5]),
|
|
"array([1.e+00, 1.e+05, 1.e+10, 1.e+15, 1.e+20])")
|
|
assert_equal(repr(wp), "array([1.234e+001, 1.000e+002, 1.000e+123])")
|
|
assert_equal(repr(c),
|
|
"array([1. +1.j , 1.12345679+1.12345679j])")
|
|
|
|
# fixed mode, precision=4
|
|
np.set_printoptions(floatmode='fixed', precision=4)
|
|
assert_equal(repr(x),
|
|
"array([0.6104, 0.9219, 0.4570, 0.0906, 0.3733, 0.0072, 0.5933, 0.9468,\n"
|
|
" 0.2383, 0.4226], dtype=float16)")
|
|
assert_equal(repr(y),
|
|
"array([0.2919, 0.5064, 0.2849, 0.4343, 0.7327, 0.3460, 0.0862, 0.3911])")
|
|
assert_equal(repr(z),
|
|
"array([0.0000, 0.1000, 0.2000, 0.3000, 0.3999, 0.5000], dtype=float16)")
|
|
assert_equal(repr(w[::5]),
|
|
"array([1.0000e+00, 1.0000e+05, 1.0000e+10, 1.0000e+15, 1.0000e+20])")
|
|
assert_equal(repr(wp), "array([1.2340e+001, 1.0000e+002, 1.0000e+123])")
|
|
assert_equal(repr(np.zeros(3)), "array([0.0000, 0.0000, 0.0000])")
|
|
assert_equal(repr(c),
|
|
"array([1.0000+1.0000j, 1.1235+1.1235j])")
|
|
# for larger precision, representation error becomes more apparent:
|
|
np.set_printoptions(floatmode='fixed', precision=8)
|
|
assert_equal(repr(z),
|
|
"array([0.00000000, 0.09997559, 0.19995117, 0.30004883, 0.39990234,\n"
|
|
" 0.50000000], dtype=float16)")
|
|
|
|
# maxprec_equal mode, precision=8
|
|
np.set_printoptions(floatmode='maxprec_equal', precision=8)
|
|
assert_equal(repr(x),
|
|
"array([0.610352, 0.921875, 0.457031, 0.090576, 0.373291, 0.007244,\n"
|
|
" 0.593262, 0.946777, 0.238281, 0.422607], dtype=float16)")
|
|
assert_equal(repr(y),
|
|
"array([0.29188210, 0.50641726, 0.28487506, 0.43429653, 0.73265384,\n"
|
|
" 0.34595033, 0.08620728, 0.39112753])")
|
|
assert_equal(repr(z),
|
|
"array([0.0, 0.1, 0.2, 0.3, 0.4, 0.5], dtype=float16)")
|
|
assert_equal(repr(w[::5]),
|
|
"array([1.e+00, 1.e+05, 1.e+10, 1.e+15, 1.e+20])")
|
|
assert_equal(repr(wp), "array([1.234e+001, 1.000e+002, 1.000e+123])")
|
|
assert_equal(repr(c),
|
|
"array([1.00000000+1.00000000j, 1.12345679+1.12345679j])")
|
|
|
|
def test_legacy_mode_scalars(self):
|
|
# in legacy mode, str of floats get truncated, and complex scalars
|
|
# use * for non-finite imaginary part
|
|
np.set_printoptions(legacy='1.13')
|
|
assert_equal(str(np.float64(1.123456789123456789)), '1.12345678912')
|
|
assert_equal(str(np.complex128(complex(1, np.nan))), '(1+nan*j)')
|
|
|
|
np.set_printoptions(legacy=False)
|
|
assert_equal(str(np.float64(1.123456789123456789)),
|
|
'1.1234567891234568')
|
|
assert_equal(str(np.complex128(complex(1, np.nan))), '(1+nanj)')
|
|
|
|
def test_legacy_stray_comma(self):
|
|
np.set_printoptions(legacy='1.13')
|
|
assert_equal(str(np.arange(10000)), '[ 0 1 2 ..., 9997 9998 9999]')
|
|
|
|
np.set_printoptions(legacy=False)
|
|
assert_equal(str(np.arange(10000)), '[ 0 1 2 ... 9997 9998 9999]')
|
|
|
|
def test_dtype_linewidth_wrapping(self):
|
|
np.set_printoptions(linewidth=75)
|
|
assert_equal(repr(np.arange(10,20., dtype='f4')),
|
|
"array([10., 11., 12., 13., 14., 15., 16., 17., 18., 19.], dtype=float32)")
|
|
assert_equal(repr(np.arange(10,23., dtype='f4')), textwrap.dedent("""\
|
|
array([10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22.],
|
|
dtype=float32)"""))
|
|
|
|
styp = '<U4' if sys.version_info[0] >= 3 else '|S4'
|
|
assert_equal(repr(np.ones(3, dtype=styp)),
|
|
"array(['1', '1', '1'], dtype='{}')".format(styp))
|
|
assert_equal(repr(np.ones(12, dtype=styp)), textwrap.dedent("""\
|
|
array(['1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1'],
|
|
dtype='{}')""".format(styp)))
|
|
|
|
def test_linewidth_repr(self):
|
|
a = np.full(7, fill_value=2)
|
|
np.set_printoptions(linewidth=17)
|
|
assert_equal(
|
|
repr(a),
|
|
textwrap.dedent("""\
|
|
array([2, 2, 2,
|
|
2, 2, 2,
|
|
2])""")
|
|
)
|
|
np.set_printoptions(linewidth=17, legacy='1.13')
|
|
assert_equal(
|
|
repr(a),
|
|
textwrap.dedent("""\
|
|
array([2, 2, 2,
|
|
2, 2, 2, 2])""")
|
|
)
|
|
|
|
a = np.full(8, fill_value=2)
|
|
|
|
np.set_printoptions(linewidth=18, legacy=False)
|
|
assert_equal(
|
|
repr(a),
|
|
textwrap.dedent("""\
|
|
array([2, 2, 2,
|
|
2, 2, 2,
|
|
2, 2])""")
|
|
)
|
|
|
|
np.set_printoptions(linewidth=18, legacy='1.13')
|
|
assert_equal(
|
|
repr(a),
|
|
textwrap.dedent("""\
|
|
array([2, 2, 2, 2,
|
|
2, 2, 2, 2])""")
|
|
)
|
|
|
|
def test_linewidth_str(self):
|
|
a = np.full(18, fill_value=2)
|
|
np.set_printoptions(linewidth=18)
|
|
assert_equal(
|
|
str(a),
|
|
textwrap.dedent("""\
|
|
[2 2 2 2 2 2 2 2
|
|
2 2 2 2 2 2 2 2
|
|
2 2]""")
|
|
)
|
|
np.set_printoptions(linewidth=18, legacy='1.13')
|
|
assert_equal(
|
|
str(a),
|
|
textwrap.dedent("""\
|
|
[2 2 2 2 2 2 2 2 2
|
|
2 2 2 2 2 2 2 2 2]""")
|
|
)
|
|
|
|
def test_edgeitems(self):
|
|
np.set_printoptions(edgeitems=1, threshold=1)
|
|
a = np.arange(27).reshape((3, 3, 3))
|
|
assert_equal(
|
|
repr(a),
|
|
textwrap.dedent("""\
|
|
array([[[ 0, ..., 2],
|
|
...,
|
|
[ 6, ..., 8]],
|
|
|
|
...,
|
|
|
|
[[18, ..., 20],
|
|
...,
|
|
[24, ..., 26]]])""")
|
|
)
|
|
|
|
b = np.zeros((3, 3, 1, 1))
|
|
assert_equal(
|
|
repr(b),
|
|
textwrap.dedent("""\
|
|
array([[[[0.]],
|
|
|
|
...,
|
|
|
|
[[0.]]],
|
|
|
|
|
|
...,
|
|
|
|
|
|
[[[0.]],
|
|
|
|
...,
|
|
|
|
[[0.]]]])""")
|
|
)
|
|
|
|
# 1.13 had extra trailing spaces, and was missing newlines
|
|
np.set_printoptions(legacy='1.13')
|
|
|
|
assert_equal(
|
|
repr(a),
|
|
textwrap.dedent("""\
|
|
array([[[ 0, ..., 2],
|
|
...,
|
|
[ 6, ..., 8]],
|
|
|
|
...,
|
|
[[18, ..., 20],
|
|
...,
|
|
[24, ..., 26]]])""")
|
|
)
|
|
|
|
assert_equal(
|
|
repr(b),
|
|
textwrap.dedent("""\
|
|
array([[[[ 0.]],
|
|
|
|
...,
|
|
[[ 0.]]],
|
|
|
|
|
|
...,
|
|
[[[ 0.]],
|
|
|
|
...,
|
|
[[ 0.]]]])""")
|
|
)
|
|
|
|
|
|
def test_unicode_object_array():
|
|
import sys
|
|
if sys.version_info[0] >= 3:
|
|
expected = "array(['é'], dtype=object)"
|
|
else:
|
|
expected = "array([u'\\xe9'], dtype=object)"
|
|
x = np.array([u'\xe9'], dtype=object)
|
|
assert_equal(repr(x), expected)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
run_module_suite()
|