1385 lines
54 KiB
Python
1385 lines
54 KiB
Python
from __future__ import division, absolute_import, print_function
|
|
|
|
import warnings
|
|
import itertools
|
|
|
|
import numpy as np
|
|
import numpy.core.umath_tests as umt
|
|
import numpy.core.operand_flag_tests as opflag_tests
|
|
from numpy.core.test_rational import rational, test_add, test_add_rationals
|
|
from numpy.testing import (
|
|
run_module_suite, assert_, assert_equal, assert_raises,
|
|
assert_array_equal, assert_almost_equal, assert_array_almost_equal,
|
|
assert_no_warnings, assert_allclose,
|
|
)
|
|
|
|
|
|
class TestUfuncKwargs(object):
|
|
def test_kwarg_exact(self):
|
|
assert_raises(TypeError, np.add, 1, 2, castingx='safe')
|
|
assert_raises(TypeError, np.add, 1, 2, dtypex=int)
|
|
assert_raises(TypeError, np.add, 1, 2, extobjx=[4096])
|
|
assert_raises(TypeError, np.add, 1, 2, outx=None)
|
|
assert_raises(TypeError, np.add, 1, 2, sigx='ii->i')
|
|
assert_raises(TypeError, np.add, 1, 2, signaturex='ii->i')
|
|
assert_raises(TypeError, np.add, 1, 2, subokx=False)
|
|
assert_raises(TypeError, np.add, 1, 2, wherex=[True])
|
|
|
|
def test_sig_signature(self):
|
|
assert_raises(ValueError, np.add, 1, 2, sig='ii->i',
|
|
signature='ii->i')
|
|
|
|
def test_sig_dtype(self):
|
|
assert_raises(RuntimeError, np.add, 1, 2, sig='ii->i',
|
|
dtype=int)
|
|
assert_raises(RuntimeError, np.add, 1, 2, signature='ii->i',
|
|
dtype=int)
|
|
|
|
|
|
class TestUfunc(object):
|
|
def test_pickle(self):
|
|
import pickle
|
|
assert_(pickle.loads(pickle.dumps(np.sin)) is np.sin)
|
|
|
|
# Check that ufunc not defined in the top level numpy namespace such as
|
|
# numpy.core.test_rational.test_add can also be pickled
|
|
assert_(pickle.loads(pickle.dumps(test_add)) is test_add)
|
|
|
|
def test_pickle_withstring(self):
|
|
import pickle
|
|
astring = (b"cnumpy.core\n_ufunc_reconstruct\np0\n"
|
|
b"(S'numpy.core.umath'\np1\nS'cos'\np2\ntp3\nRp4\n.")
|
|
assert_(pickle.loads(astring) is np.cos)
|
|
|
|
def test_reduceat_shifting_sum(self):
|
|
L = 6
|
|
x = np.arange(L)
|
|
idx = np.array(list(zip(np.arange(L - 2), np.arange(L - 2) + 2))).ravel()
|
|
assert_array_equal(np.add.reduceat(x, idx)[::2], [1, 3, 5, 7])
|
|
|
|
def test_generic_loops(self):
|
|
"""Test generic loops.
|
|
|
|
The loops to be tested are:
|
|
|
|
PyUFunc_ff_f_As_dd_d
|
|
PyUFunc_ff_f
|
|
PyUFunc_dd_d
|
|
PyUFunc_gg_g
|
|
PyUFunc_FF_F_As_DD_D
|
|
PyUFunc_DD_D
|
|
PyUFunc_FF_F
|
|
PyUFunc_GG_G
|
|
PyUFunc_OO_O
|
|
PyUFunc_OO_O_method
|
|
PyUFunc_f_f_As_d_d
|
|
PyUFunc_d_d
|
|
PyUFunc_f_f
|
|
PyUFunc_g_g
|
|
PyUFunc_F_F_As_D_D
|
|
PyUFunc_F_F
|
|
PyUFunc_D_D
|
|
PyUFunc_G_G
|
|
PyUFunc_O_O
|
|
PyUFunc_O_O_method
|
|
PyUFunc_On_Om
|
|
|
|
Where:
|
|
|
|
f -- float
|
|
d -- double
|
|
g -- long double
|
|
F -- complex float
|
|
D -- complex double
|
|
G -- complex long double
|
|
O -- python object
|
|
|
|
It is difficult to assure that each of these loops is entered from the
|
|
Python level as the special cased loops are a moving target and the
|
|
corresponding types are architecture dependent. We probably need to
|
|
define C level testing ufuncs to get at them. For the time being, I've
|
|
just looked at the signatures registered in the build directory to find
|
|
relevant functions.
|
|
|
|
Fixme, currently untested:
|
|
|
|
PyUFunc_ff_f_As_dd_d
|
|
PyUFunc_FF_F_As_DD_D
|
|
PyUFunc_f_f_As_d_d
|
|
PyUFunc_F_F_As_D_D
|
|
PyUFunc_On_Om
|
|
|
|
"""
|
|
fone = np.exp
|
|
ftwo = lambda x, y: x**y
|
|
fone_val = 1
|
|
ftwo_val = 1
|
|
# check unary PyUFunc_f_f.
|
|
msg = "PyUFunc_f_f"
|
|
x = np.zeros(10, dtype=np.single)[0::2]
|
|
assert_almost_equal(fone(x), fone_val, err_msg=msg)
|
|
# check unary PyUFunc_d_d.
|
|
msg = "PyUFunc_d_d"
|
|
x = np.zeros(10, dtype=np.double)[0::2]
|
|
assert_almost_equal(fone(x), fone_val, err_msg=msg)
|
|
# check unary PyUFunc_g_g.
|
|
msg = "PyUFunc_g_g"
|
|
x = np.zeros(10, dtype=np.longdouble)[0::2]
|
|
assert_almost_equal(fone(x), fone_val, err_msg=msg)
|
|
# check unary PyUFunc_F_F.
|
|
msg = "PyUFunc_F_F"
|
|
x = np.zeros(10, dtype=np.csingle)[0::2]
|
|
assert_almost_equal(fone(x), fone_val, err_msg=msg)
|
|
# check unary PyUFunc_D_D.
|
|
msg = "PyUFunc_D_D"
|
|
x = np.zeros(10, dtype=np.cdouble)[0::2]
|
|
assert_almost_equal(fone(x), fone_val, err_msg=msg)
|
|
# check unary PyUFunc_G_G.
|
|
msg = "PyUFunc_G_G"
|
|
x = np.zeros(10, dtype=np.clongdouble)[0::2]
|
|
assert_almost_equal(fone(x), fone_val, err_msg=msg)
|
|
|
|
# check binary PyUFunc_ff_f.
|
|
msg = "PyUFunc_ff_f"
|
|
x = np.ones(10, dtype=np.single)[0::2]
|
|
assert_almost_equal(ftwo(x, x), ftwo_val, err_msg=msg)
|
|
# check binary PyUFunc_dd_d.
|
|
msg = "PyUFunc_dd_d"
|
|
x = np.ones(10, dtype=np.double)[0::2]
|
|
assert_almost_equal(ftwo(x, x), ftwo_val, err_msg=msg)
|
|
# check binary PyUFunc_gg_g.
|
|
msg = "PyUFunc_gg_g"
|
|
x = np.ones(10, dtype=np.longdouble)[0::2]
|
|
assert_almost_equal(ftwo(x, x), ftwo_val, err_msg=msg)
|
|
# check binary PyUFunc_FF_F.
|
|
msg = "PyUFunc_FF_F"
|
|
x = np.ones(10, dtype=np.csingle)[0::2]
|
|
assert_almost_equal(ftwo(x, x), ftwo_val, err_msg=msg)
|
|
# check binary PyUFunc_DD_D.
|
|
msg = "PyUFunc_DD_D"
|
|
x = np.ones(10, dtype=np.cdouble)[0::2]
|
|
assert_almost_equal(ftwo(x, x), ftwo_val, err_msg=msg)
|
|
# check binary PyUFunc_GG_G.
|
|
msg = "PyUFunc_GG_G"
|
|
x = np.ones(10, dtype=np.clongdouble)[0::2]
|
|
assert_almost_equal(ftwo(x, x), ftwo_val, err_msg=msg)
|
|
|
|
# class to use in testing object method loops
|
|
class foo(object):
|
|
def conjugate(self):
|
|
return np.bool_(1)
|
|
|
|
def logical_xor(self, obj):
|
|
return np.bool_(1)
|
|
|
|
# check unary PyUFunc_O_O
|
|
msg = "PyUFunc_O_O"
|
|
x = np.ones(10, dtype=object)[0::2]
|
|
assert_(np.all(np.abs(x) == 1), msg)
|
|
# check unary PyUFunc_O_O_method
|
|
msg = "PyUFunc_O_O_method"
|
|
x = np.zeros(10, dtype=object)[0::2]
|
|
for i in range(len(x)):
|
|
x[i] = foo()
|
|
assert_(np.all(np.conjugate(x) == True), msg)
|
|
|
|
# check binary PyUFunc_OO_O
|
|
msg = "PyUFunc_OO_O"
|
|
x = np.ones(10, dtype=object)[0::2]
|
|
assert_(np.all(np.add(x, x) == 2), msg)
|
|
# check binary PyUFunc_OO_O_method
|
|
msg = "PyUFunc_OO_O_method"
|
|
x = np.zeros(10, dtype=object)[0::2]
|
|
for i in range(len(x)):
|
|
x[i] = foo()
|
|
assert_(np.all(np.logical_xor(x, x)), msg)
|
|
|
|
# check PyUFunc_On_Om
|
|
# fixme -- I don't know how to do this yet
|
|
|
|
def test_all_ufunc(self):
|
|
"""Try to check presence and results of all ufuncs.
|
|
|
|
The list of ufuncs comes from generate_umath.py and is as follows:
|
|
|
|
===== ==== ============= =============== ========================
|
|
done args function types notes
|
|
===== ==== ============= =============== ========================
|
|
n 1 conjugate nums + O
|
|
n 1 absolute nums + O complex -> real
|
|
n 1 negative nums + O
|
|
n 1 sign nums + O -> int
|
|
n 1 invert bool + ints + O flts raise an error
|
|
n 1 degrees real + M cmplx raise an error
|
|
n 1 radians real + M cmplx raise an error
|
|
n 1 arccos flts + M
|
|
n 1 arccosh flts + M
|
|
n 1 arcsin flts + M
|
|
n 1 arcsinh flts + M
|
|
n 1 arctan flts + M
|
|
n 1 arctanh flts + M
|
|
n 1 cos flts + M
|
|
n 1 sin flts + M
|
|
n 1 tan flts + M
|
|
n 1 cosh flts + M
|
|
n 1 sinh flts + M
|
|
n 1 tanh flts + M
|
|
n 1 exp flts + M
|
|
n 1 expm1 flts + M
|
|
n 1 log flts + M
|
|
n 1 log10 flts + M
|
|
n 1 log1p flts + M
|
|
n 1 sqrt flts + M real x < 0 raises error
|
|
n 1 ceil real + M
|
|
n 1 trunc real + M
|
|
n 1 floor real + M
|
|
n 1 fabs real + M
|
|
n 1 rint flts + M
|
|
n 1 isnan flts -> bool
|
|
n 1 isinf flts -> bool
|
|
n 1 isfinite flts -> bool
|
|
n 1 signbit real -> bool
|
|
n 1 modf real -> (frac, int)
|
|
n 1 logical_not bool + nums + M -> bool
|
|
n 2 left_shift ints + O flts raise an error
|
|
n 2 right_shift ints + O flts raise an error
|
|
n 2 add bool + nums + O boolean + is ||
|
|
n 2 subtract bool + nums + O boolean - is ^
|
|
n 2 multiply bool + nums + O boolean * is &
|
|
n 2 divide nums + O
|
|
n 2 floor_divide nums + O
|
|
n 2 true_divide nums + O bBhH -> f, iIlLqQ -> d
|
|
n 2 fmod nums + M
|
|
n 2 power nums + O
|
|
n 2 greater bool + nums + O -> bool
|
|
n 2 greater_equal bool + nums + O -> bool
|
|
n 2 less bool + nums + O -> bool
|
|
n 2 less_equal bool + nums + O -> bool
|
|
n 2 equal bool + nums + O -> bool
|
|
n 2 not_equal bool + nums + O -> bool
|
|
n 2 logical_and bool + nums + M -> bool
|
|
n 2 logical_or bool + nums + M -> bool
|
|
n 2 logical_xor bool + nums + M -> bool
|
|
n 2 maximum bool + nums + O
|
|
n 2 minimum bool + nums + O
|
|
n 2 bitwise_and bool + ints + O flts raise an error
|
|
n 2 bitwise_or bool + ints + O flts raise an error
|
|
n 2 bitwise_xor bool + ints + O flts raise an error
|
|
n 2 arctan2 real + M
|
|
n 2 remainder ints + real + O
|
|
n 2 hypot real + M
|
|
===== ==== ============= =============== ========================
|
|
|
|
Types other than those listed will be accepted, but they are cast to
|
|
the smallest compatible type for which the function is defined. The
|
|
casting rules are:
|
|
|
|
bool -> int8 -> float32
|
|
ints -> double
|
|
|
|
"""
|
|
pass
|
|
|
|
def test_signature(self):
|
|
# the arguments to test_signature are: nin, nout, core_signature
|
|
# pass
|
|
assert_equal(umt.test_signature(2, 1, "(i),(i)->()"), 1)
|
|
|
|
# pass. empty core signature; treat as plain ufunc (with trivial core)
|
|
assert_equal(umt.test_signature(2, 1, "(),()->()"), 0)
|
|
|
|
# in the following calls, a ValueError should be raised because
|
|
# of error in core signature
|
|
# FIXME These should be using assert_raises
|
|
|
|
# error: extra parenthesis
|
|
msg = "core_sig: extra parenthesis"
|
|
try:
|
|
ret = umt.test_signature(2, 1, "((i)),(i)->()")
|
|
assert_equal(ret, None, err_msg=msg)
|
|
except ValueError:
|
|
pass
|
|
|
|
# error: parenthesis matching
|
|
msg = "core_sig: parenthesis matching"
|
|
try:
|
|
ret = umt.test_signature(2, 1, "(i),)i(->()")
|
|
assert_equal(ret, None, err_msg=msg)
|
|
except ValueError:
|
|
pass
|
|
|
|
# error: incomplete signature. letters outside of parenthesis are ignored
|
|
msg = "core_sig: incomplete signature"
|
|
try:
|
|
ret = umt.test_signature(2, 1, "(i),->()")
|
|
assert_equal(ret, None, err_msg=msg)
|
|
except ValueError:
|
|
pass
|
|
|
|
# error: incomplete signature. 2 output arguments are specified
|
|
msg = "core_sig: incomplete signature"
|
|
try:
|
|
ret = umt.test_signature(2, 2, "(i),(i)->()")
|
|
assert_equal(ret, None, err_msg=msg)
|
|
except ValueError:
|
|
pass
|
|
|
|
# more complicated names for variables
|
|
assert_equal(umt.test_signature(2, 1, "(i1,i2),(J_1)->(_kAB)"), 1)
|
|
|
|
def test_get_signature(self):
|
|
assert_equal(umt.inner1d.signature, "(i),(i)->()")
|
|
|
|
def test_forced_sig(self):
|
|
a = 0.5*np.arange(3, dtype='f8')
|
|
assert_equal(np.add(a, 0.5), [0.5, 1, 1.5])
|
|
assert_equal(np.add(a, 0.5, sig='i', casting='unsafe'), [0, 0, 1])
|
|
assert_equal(np.add(a, 0.5, sig='ii->i', casting='unsafe'), [0, 0, 1])
|
|
assert_equal(np.add(a, 0.5, sig=('i4',), casting='unsafe'), [0, 0, 1])
|
|
assert_equal(np.add(a, 0.5, sig=('i4', 'i4', 'i4'),
|
|
casting='unsafe'), [0, 0, 1])
|
|
|
|
b = np.zeros((3,), dtype='f8')
|
|
np.add(a, 0.5, out=b)
|
|
assert_equal(b, [0.5, 1, 1.5])
|
|
b[:] = 0
|
|
np.add(a, 0.5, sig='i', out=b, casting='unsafe')
|
|
assert_equal(b, [0, 0, 1])
|
|
b[:] = 0
|
|
np.add(a, 0.5, sig='ii->i', out=b, casting='unsafe')
|
|
assert_equal(b, [0, 0, 1])
|
|
b[:] = 0
|
|
np.add(a, 0.5, sig=('i4',), out=b, casting='unsafe')
|
|
assert_equal(b, [0, 0, 1])
|
|
b[:] = 0
|
|
np.add(a, 0.5, sig=('i4', 'i4', 'i4'), out=b, casting='unsafe')
|
|
assert_equal(b, [0, 0, 1])
|
|
|
|
def test_true_divide(self):
|
|
a = np.array(10)
|
|
b = np.array(20)
|
|
tgt = np.array(0.5)
|
|
|
|
for tc in 'bhilqBHILQefdgFDG':
|
|
dt = np.dtype(tc)
|
|
aa = a.astype(dt)
|
|
bb = b.astype(dt)
|
|
|
|
# Check result value and dtype.
|
|
for x, y in itertools.product([aa, -aa], [bb, -bb]):
|
|
|
|
# Check with no output type specified
|
|
if tc in 'FDG':
|
|
tgt = complex(x)/complex(y)
|
|
else:
|
|
tgt = float(x)/float(y)
|
|
|
|
res = np.true_divide(x, y)
|
|
rtol = max(np.finfo(res).resolution, 1e-15)
|
|
assert_allclose(res, tgt, rtol=rtol)
|
|
|
|
if tc in 'bhilqBHILQ':
|
|
assert_(res.dtype.name == 'float64')
|
|
else:
|
|
assert_(res.dtype.name == dt.name )
|
|
|
|
# Check with output type specified. This also checks for the
|
|
# incorrect casts in issue gh-3484 because the unary '-' does
|
|
# not change types, even for unsigned types, Hence casts in the
|
|
# ufunc from signed to unsigned and vice versa will lead to
|
|
# errors in the values.
|
|
for tcout in 'bhilqBHILQ':
|
|
dtout = np.dtype(tcout)
|
|
assert_raises(TypeError, np.true_divide, x, y, dtype=dtout)
|
|
|
|
for tcout in 'efdg':
|
|
dtout = np.dtype(tcout)
|
|
if tc in 'FDG':
|
|
# Casting complex to float is not allowed
|
|
assert_raises(TypeError, np.true_divide, x, y, dtype=dtout)
|
|
else:
|
|
tgt = float(x)/float(y)
|
|
rtol = max(np.finfo(dtout).resolution, 1e-15)
|
|
atol = max(np.finfo(dtout).tiny, 3e-308)
|
|
# Some test values result in invalid for float16.
|
|
with np.errstate(invalid='ignore'):
|
|
res = np.true_divide(x, y, dtype=dtout)
|
|
if not np.isfinite(res) and tcout == 'e':
|
|
continue
|
|
assert_allclose(res, tgt, rtol=rtol, atol=atol)
|
|
assert_(res.dtype.name == dtout.name)
|
|
|
|
for tcout in 'FDG':
|
|
dtout = np.dtype(tcout)
|
|
tgt = complex(x)/complex(y)
|
|
rtol = max(np.finfo(dtout).resolution, 1e-15)
|
|
atol = max(np.finfo(dtout).tiny, 3e-308)
|
|
res = np.true_divide(x, y, dtype=dtout)
|
|
if not np.isfinite(res):
|
|
continue
|
|
assert_allclose(res, tgt, rtol=rtol, atol=atol)
|
|
assert_(res.dtype.name == dtout.name)
|
|
|
|
# Check booleans
|
|
a = np.ones((), dtype=np.bool_)
|
|
res = np.true_divide(a, a)
|
|
assert_(res == 1.0)
|
|
assert_(res.dtype.name == 'float64')
|
|
res = np.true_divide(~a, a)
|
|
assert_(res == 0.0)
|
|
assert_(res.dtype.name == 'float64')
|
|
|
|
def test_sum_stability(self):
|
|
a = np.ones(500, dtype=np.float32)
|
|
assert_almost_equal((a / 10.).sum() - a.size / 10., 0, 4)
|
|
|
|
a = np.ones(500, dtype=np.float64)
|
|
assert_almost_equal((a / 10.).sum() - a.size / 10., 0, 13)
|
|
|
|
def test_sum(self):
|
|
for dt in (int, np.float16, np.float32, np.float64, np.longdouble):
|
|
for v in (0, 1, 2, 7, 8, 9, 15, 16, 19, 127,
|
|
128, 1024, 1235):
|
|
tgt = dt(v * (v + 1) / 2)
|
|
d = np.arange(1, v + 1, dtype=dt)
|
|
|
|
# warning if sum overflows, which it does in float16
|
|
overflow = not np.isfinite(tgt)
|
|
|
|
with warnings.catch_warnings(record=True) as w:
|
|
warnings.simplefilter("always")
|
|
assert_almost_equal(np.sum(d), tgt)
|
|
assert_equal(len(w), 1 * overflow)
|
|
|
|
assert_almost_equal(np.sum(d[::-1]), tgt)
|
|
assert_equal(len(w), 2 * overflow)
|
|
|
|
d = np.ones(500, dtype=dt)
|
|
assert_almost_equal(np.sum(d[::2]), 250.)
|
|
assert_almost_equal(np.sum(d[1::2]), 250.)
|
|
assert_almost_equal(np.sum(d[::3]), 167.)
|
|
assert_almost_equal(np.sum(d[1::3]), 167.)
|
|
assert_almost_equal(np.sum(d[::-2]), 250.)
|
|
assert_almost_equal(np.sum(d[-1::-2]), 250.)
|
|
assert_almost_equal(np.sum(d[::-3]), 167.)
|
|
assert_almost_equal(np.sum(d[-1::-3]), 167.)
|
|
# sum with first reduction entry != 0
|
|
d = np.ones((1,), dtype=dt)
|
|
d += d
|
|
assert_almost_equal(d, 2.)
|
|
|
|
def test_sum_complex(self):
|
|
for dt in (np.complex64, np.complex128, np.clongdouble):
|
|
for v in (0, 1, 2, 7, 8, 9, 15, 16, 19, 127,
|
|
128, 1024, 1235):
|
|
tgt = dt(v * (v + 1) / 2) - dt((v * (v + 1) / 2) * 1j)
|
|
d = np.empty(v, dtype=dt)
|
|
d.real = np.arange(1, v + 1)
|
|
d.imag = -np.arange(1, v + 1)
|
|
assert_almost_equal(np.sum(d), tgt)
|
|
assert_almost_equal(np.sum(d[::-1]), tgt)
|
|
|
|
d = np.ones(500, dtype=dt) + 1j
|
|
assert_almost_equal(np.sum(d[::2]), 250. + 250j)
|
|
assert_almost_equal(np.sum(d[1::2]), 250. + 250j)
|
|
assert_almost_equal(np.sum(d[::3]), 167. + 167j)
|
|
assert_almost_equal(np.sum(d[1::3]), 167. + 167j)
|
|
assert_almost_equal(np.sum(d[::-2]), 250. + 250j)
|
|
assert_almost_equal(np.sum(d[-1::-2]), 250. + 250j)
|
|
assert_almost_equal(np.sum(d[::-3]), 167. + 167j)
|
|
assert_almost_equal(np.sum(d[-1::-3]), 167. + 167j)
|
|
# sum with first reduction entry != 0
|
|
d = np.ones((1,), dtype=dt) + 1j
|
|
d += d
|
|
assert_almost_equal(d, 2. + 2j)
|
|
|
|
def test_inner1d(self):
|
|
a = np.arange(6).reshape((2, 3))
|
|
assert_array_equal(umt.inner1d(a, a), np.sum(a*a, axis=-1))
|
|
a = np.arange(6)
|
|
assert_array_equal(umt.inner1d(a, a), np.sum(a*a))
|
|
|
|
def test_broadcast(self):
|
|
msg = "broadcast"
|
|
a = np.arange(4).reshape((2, 1, 2))
|
|
b = np.arange(4).reshape((1, 2, 2))
|
|
assert_array_equal(umt.inner1d(a, b), np.sum(a*b, axis=-1), err_msg=msg)
|
|
msg = "extend & broadcast loop dimensions"
|
|
b = np.arange(4).reshape((2, 2))
|
|
assert_array_equal(umt.inner1d(a, b), np.sum(a*b, axis=-1), err_msg=msg)
|
|
# Broadcast in core dimensions should fail
|
|
a = np.arange(8).reshape((4, 2))
|
|
b = np.arange(4).reshape((4, 1))
|
|
assert_raises(ValueError, umt.inner1d, a, b)
|
|
# Extend core dimensions should fail
|
|
a = np.arange(8).reshape((4, 2))
|
|
b = np.array(7)
|
|
assert_raises(ValueError, umt.inner1d, a, b)
|
|
# Broadcast should fail
|
|
a = np.arange(2).reshape((2, 1, 1))
|
|
b = np.arange(3).reshape((3, 1, 1))
|
|
assert_raises(ValueError, umt.inner1d, a, b)
|
|
|
|
def test_type_cast(self):
|
|
msg = "type cast"
|
|
a = np.arange(6, dtype='short').reshape((2, 3))
|
|
assert_array_equal(umt.inner1d(a, a), np.sum(a*a, axis=-1),
|
|
err_msg=msg)
|
|
msg = "type cast on one argument"
|
|
a = np.arange(6).reshape((2, 3))
|
|
b = a + 0.1
|
|
assert_array_almost_equal(umt.inner1d(a, b), np.sum(a*b, axis=-1),
|
|
err_msg=msg)
|
|
|
|
def test_endian(self):
|
|
msg = "big endian"
|
|
a = np.arange(6, dtype='>i4').reshape((2, 3))
|
|
assert_array_equal(umt.inner1d(a, a), np.sum(a*a, axis=-1),
|
|
err_msg=msg)
|
|
msg = "little endian"
|
|
a = np.arange(6, dtype='<i4').reshape((2, 3))
|
|
assert_array_equal(umt.inner1d(a, a), np.sum(a*a, axis=-1),
|
|
err_msg=msg)
|
|
|
|
# Output should always be native-endian
|
|
Ba = np.arange(1, dtype='>f8')
|
|
La = np.arange(1, dtype='<f8')
|
|
assert_equal((Ba+Ba).dtype, np.dtype('f8'))
|
|
assert_equal((Ba+La).dtype, np.dtype('f8'))
|
|
assert_equal((La+Ba).dtype, np.dtype('f8'))
|
|
assert_equal((La+La).dtype, np.dtype('f8'))
|
|
|
|
assert_equal(np.absolute(La).dtype, np.dtype('f8'))
|
|
assert_equal(np.absolute(Ba).dtype, np.dtype('f8'))
|
|
assert_equal(np.negative(La).dtype, np.dtype('f8'))
|
|
assert_equal(np.negative(Ba).dtype, np.dtype('f8'))
|
|
|
|
def test_incontiguous_array(self):
|
|
msg = "incontiguous memory layout of array"
|
|
x = np.arange(64).reshape((2, 2, 2, 2, 2, 2))
|
|
a = x[:, 0,:, 0,:, 0]
|
|
b = x[:, 1,:, 1,:, 1]
|
|
a[0, 0, 0] = -1
|
|
msg2 = "make sure it references to the original array"
|
|
assert_equal(x[0, 0, 0, 0, 0, 0], -1, err_msg=msg2)
|
|
assert_array_equal(umt.inner1d(a, b), np.sum(a*b, axis=-1), err_msg=msg)
|
|
x = np.arange(24).reshape(2, 3, 4)
|
|
a = x.T
|
|
b = x.T
|
|
a[0, 0, 0] = -1
|
|
assert_equal(x[0, 0, 0], -1, err_msg=msg2)
|
|
assert_array_equal(umt.inner1d(a, b), np.sum(a*b, axis=-1), err_msg=msg)
|
|
|
|
def test_output_argument(self):
|
|
msg = "output argument"
|
|
a = np.arange(12).reshape((2, 3, 2))
|
|
b = np.arange(4).reshape((2, 1, 2)) + 1
|
|
c = np.zeros((2, 3), dtype='int')
|
|
umt.inner1d(a, b, c)
|
|
assert_array_equal(c, np.sum(a*b, axis=-1), err_msg=msg)
|
|
c[:] = -1
|
|
umt.inner1d(a, b, out=c)
|
|
assert_array_equal(c, np.sum(a*b, axis=-1), err_msg=msg)
|
|
|
|
msg = "output argument with type cast"
|
|
c = np.zeros((2, 3), dtype='int16')
|
|
umt.inner1d(a, b, c)
|
|
assert_array_equal(c, np.sum(a*b, axis=-1), err_msg=msg)
|
|
c[:] = -1
|
|
umt.inner1d(a, b, out=c)
|
|
assert_array_equal(c, np.sum(a*b, axis=-1), err_msg=msg)
|
|
|
|
msg = "output argument with incontiguous layout"
|
|
c = np.zeros((2, 3, 4), dtype='int16')
|
|
umt.inner1d(a, b, c[..., 0])
|
|
assert_array_equal(c[..., 0], np.sum(a*b, axis=-1), err_msg=msg)
|
|
c[:] = -1
|
|
umt.inner1d(a, b, out=c[..., 0])
|
|
assert_array_equal(c[..., 0], np.sum(a*b, axis=-1), err_msg=msg)
|
|
|
|
def test_innerwt(self):
|
|
a = np.arange(6).reshape((2, 3))
|
|
b = np.arange(10, 16).reshape((2, 3))
|
|
w = np.arange(20, 26).reshape((2, 3))
|
|
assert_array_equal(umt.innerwt(a, b, w), np.sum(a*b*w, axis=-1))
|
|
a = np.arange(100, 124).reshape((2, 3, 4))
|
|
b = np.arange(200, 224).reshape((2, 3, 4))
|
|
w = np.arange(300, 324).reshape((2, 3, 4))
|
|
assert_array_equal(umt.innerwt(a, b, w), np.sum(a*b*w, axis=-1))
|
|
|
|
def test_innerwt_empty(self):
|
|
"""Test generalized ufunc with zero-sized operands"""
|
|
a = np.array([], dtype='f8')
|
|
b = np.array([], dtype='f8')
|
|
w = np.array([], dtype='f8')
|
|
assert_array_equal(umt.innerwt(a, b, w), np.sum(a*b*w, axis=-1))
|
|
|
|
def test_matrix_multiply(self):
|
|
self.compare_matrix_multiply_results(np.long)
|
|
self.compare_matrix_multiply_results(np.double)
|
|
|
|
def test_matrix_multiply_umath_empty(self):
|
|
res = umt.matrix_multiply(np.ones((0, 10)), np.ones((10, 0)))
|
|
assert_array_equal(res, np.zeros((0, 0)))
|
|
res = umt.matrix_multiply(np.ones((10, 0)), np.ones((0, 10)))
|
|
assert_array_equal(res, np.zeros((10, 10)))
|
|
|
|
def compare_matrix_multiply_results(self, tp):
|
|
d1 = np.array(np.random.rand(2, 3, 4), dtype=tp)
|
|
d2 = np.array(np.random.rand(2, 3, 4), dtype=tp)
|
|
msg = "matrix multiply on type %s" % d1.dtype.name
|
|
|
|
def permute_n(n):
|
|
if n == 1:
|
|
return ([0],)
|
|
ret = ()
|
|
base = permute_n(n-1)
|
|
for perm in base:
|
|
for i in range(n):
|
|
new = perm + [n-1]
|
|
new[n-1] = new[i]
|
|
new[i] = n-1
|
|
ret += (new,)
|
|
return ret
|
|
|
|
def slice_n(n):
|
|
if n == 0:
|
|
return ((),)
|
|
ret = ()
|
|
base = slice_n(n-1)
|
|
for sl in base:
|
|
ret += (sl+(slice(None),),)
|
|
ret += (sl+(slice(0, 1),),)
|
|
return ret
|
|
|
|
def broadcastable(s1, s2):
|
|
return s1 == s2 or s1 == 1 or s2 == 1
|
|
|
|
permute_3 = permute_n(3)
|
|
slice_3 = slice_n(3) + ((slice(None, None, -1),)*3,)
|
|
|
|
ref = True
|
|
for p1 in permute_3:
|
|
for p2 in permute_3:
|
|
for s1 in slice_3:
|
|
for s2 in slice_3:
|
|
a1 = d1.transpose(p1)[s1]
|
|
a2 = d2.transpose(p2)[s2]
|
|
ref = ref and a1.base is not None
|
|
ref = ref and a2.base is not None
|
|
if (a1.shape[-1] == a2.shape[-2] and
|
|
broadcastable(a1.shape[0], a2.shape[0])):
|
|
assert_array_almost_equal(
|
|
umt.matrix_multiply(a1, a2),
|
|
np.sum(a2[..., np.newaxis].swapaxes(-3, -1) *
|
|
a1[..., np.newaxis,:], axis=-1),
|
|
err_msg=msg + ' %s %s' % (str(a1.shape),
|
|
str(a2.shape)))
|
|
|
|
assert_equal(ref, True, err_msg="reference check")
|
|
|
|
def test_euclidean_pdist(self):
|
|
a = np.arange(12, dtype=float).reshape(4, 3)
|
|
out = np.empty((a.shape[0] * (a.shape[0] - 1) // 2,), dtype=a.dtype)
|
|
umt.euclidean_pdist(a, out)
|
|
b = np.sqrt(np.sum((a[:, None] - a)**2, axis=-1))
|
|
b = b[~np.tri(a.shape[0], dtype=bool)]
|
|
assert_almost_equal(out, b)
|
|
# An output array is required to determine p with signature (n,d)->(p)
|
|
assert_raises(ValueError, umt.euclidean_pdist, a)
|
|
|
|
def test_object_logical(self):
|
|
a = np.array([3, None, True, False, "test", ""], dtype=object)
|
|
assert_equal(np.logical_or(a, None),
|
|
np.array([x or None for x in a], dtype=object))
|
|
assert_equal(np.logical_or(a, True),
|
|
np.array([x or True for x in a], dtype=object))
|
|
assert_equal(np.logical_or(a, 12),
|
|
np.array([x or 12 for x in a], dtype=object))
|
|
assert_equal(np.logical_or(a, "blah"),
|
|
np.array([x or "blah" for x in a], dtype=object))
|
|
|
|
assert_equal(np.logical_and(a, None),
|
|
np.array([x and None for x in a], dtype=object))
|
|
assert_equal(np.logical_and(a, True),
|
|
np.array([x and True for x in a], dtype=object))
|
|
assert_equal(np.logical_and(a, 12),
|
|
np.array([x and 12 for x in a], dtype=object))
|
|
assert_equal(np.logical_and(a, "blah"),
|
|
np.array([x and "blah" for x in a], dtype=object))
|
|
|
|
assert_equal(np.logical_not(a),
|
|
np.array([not x for x in a], dtype=object))
|
|
|
|
assert_equal(np.logical_or.reduce(a), 3)
|
|
assert_equal(np.logical_and.reduce(a), None)
|
|
|
|
def test_object_array_reduction(self):
|
|
# Reductions on object arrays
|
|
a = np.array(['a', 'b', 'c'], dtype=object)
|
|
assert_equal(np.sum(a), 'abc')
|
|
assert_equal(np.max(a), 'c')
|
|
assert_equal(np.min(a), 'a')
|
|
a = np.array([True, False, True], dtype=object)
|
|
assert_equal(np.sum(a), 2)
|
|
assert_equal(np.prod(a), 0)
|
|
assert_equal(np.any(a), True)
|
|
assert_equal(np.all(a), False)
|
|
assert_equal(np.max(a), True)
|
|
assert_equal(np.min(a), False)
|
|
assert_equal(np.array([[1]], dtype=object).sum(), 1)
|
|
assert_equal(np.array([[[1, 2]]], dtype=object).sum((0, 1)), [1, 2])
|
|
|
|
def test_object_array_accumulate_inplace(self):
|
|
# Checks that in-place accumulates work, see also gh-7402
|
|
arr = np.ones(4, dtype=object)
|
|
arr[:] = [[1] for i in range(4)]
|
|
# Twice reproduced also for tuples:
|
|
np.add.accumulate(arr, out=arr)
|
|
np.add.accumulate(arr, out=arr)
|
|
assert_array_equal(arr, np.array([[1]*i for i in [1, 3, 6, 10]]))
|
|
|
|
# And the same if the axis argument is used
|
|
arr = np.ones((2, 4), dtype=object)
|
|
arr[0, :] = [[2] for i in range(4)]
|
|
np.add.accumulate(arr, out=arr, axis=-1)
|
|
np.add.accumulate(arr, out=arr, axis=-1)
|
|
assert_array_equal(arr[0, :], np.array([[2]*i for i in [1, 3, 6, 10]]))
|
|
|
|
def test_object_array_reduceat_inplace(self):
|
|
# Checks that in-place reduceats work, see also gh-7465
|
|
arr = np.empty(4, dtype=object)
|
|
arr[:] = [[1] for i in range(4)]
|
|
out = np.empty(4, dtype=object)
|
|
out[:] = [[1] for i in range(4)]
|
|
np.add.reduceat(arr, np.arange(4), out=arr)
|
|
np.add.reduceat(arr, np.arange(4), out=arr)
|
|
assert_array_equal(arr, out)
|
|
|
|
# And the same if the axis argument is used
|
|
arr = np.ones((2, 4), dtype=object)
|
|
arr[0, :] = [[2] for i in range(4)]
|
|
out = np.ones((2, 4), dtype=object)
|
|
out[0, :] = [[2] for i in range(4)]
|
|
np.add.reduceat(arr, np.arange(4), out=arr, axis=-1)
|
|
np.add.reduceat(arr, np.arange(4), out=arr, axis=-1)
|
|
assert_array_equal(arr, out)
|
|
|
|
def test_object_scalar_multiply(self):
|
|
# Tickets #2469 and #4482
|
|
arr = np.matrix([1, 2], dtype=object)
|
|
desired = np.matrix([[3, 6]], dtype=object)
|
|
assert_equal(np.multiply(arr, 3), desired)
|
|
assert_equal(np.multiply(3, arr), desired)
|
|
|
|
def test_zerosize_reduction(self):
|
|
# Test with default dtype and object dtype
|
|
for a in [[], np.array([], dtype=object)]:
|
|
assert_equal(np.sum(a), 0)
|
|
assert_equal(np.prod(a), 1)
|
|
assert_equal(np.any(a), False)
|
|
assert_equal(np.all(a), True)
|
|
assert_raises(ValueError, np.max, a)
|
|
assert_raises(ValueError, np.min, a)
|
|
|
|
def test_axis_out_of_bounds(self):
|
|
a = np.array([False, False])
|
|
assert_raises(np.AxisError, a.all, axis=1)
|
|
a = np.array([False, False])
|
|
assert_raises(np.AxisError, a.all, axis=-2)
|
|
|
|
a = np.array([False, False])
|
|
assert_raises(np.AxisError, a.any, axis=1)
|
|
a = np.array([False, False])
|
|
assert_raises(np.AxisError, a.any, axis=-2)
|
|
|
|
def test_scalar_reduction(self):
|
|
# The functions 'sum', 'prod', etc allow specifying axis=0
|
|
# even for scalars
|
|
assert_equal(np.sum(3, axis=0), 3)
|
|
assert_equal(np.prod(3.5, axis=0), 3.5)
|
|
assert_equal(np.any(True, axis=0), True)
|
|
assert_equal(np.all(False, axis=0), False)
|
|
assert_equal(np.max(3, axis=0), 3)
|
|
assert_equal(np.min(2.5, axis=0), 2.5)
|
|
|
|
# Check scalar behaviour for ufuncs without an identity
|
|
assert_equal(np.power.reduce(3), 3)
|
|
|
|
# Make sure that scalars are coming out from this operation
|
|
assert_(type(np.prod(np.float32(2.5), axis=0)) is np.float32)
|
|
assert_(type(np.sum(np.float32(2.5), axis=0)) is np.float32)
|
|
assert_(type(np.max(np.float32(2.5), axis=0)) is np.float32)
|
|
assert_(type(np.min(np.float32(2.5), axis=0)) is np.float32)
|
|
|
|
# check if scalars/0-d arrays get cast
|
|
assert_(type(np.any(0, axis=0)) is np.bool_)
|
|
|
|
# assert that 0-d arrays get wrapped
|
|
class MyArray(np.ndarray):
|
|
pass
|
|
a = np.array(1).view(MyArray)
|
|
assert_(type(np.any(a)) is MyArray)
|
|
|
|
def test_casting_out_param(self):
|
|
# Test that it's possible to do casts on output
|
|
a = np.ones((200, 100), np.int64)
|
|
b = np.ones((200, 100), np.int64)
|
|
c = np.ones((200, 100), np.float64)
|
|
np.add(a, b, out=c)
|
|
assert_equal(c, 2)
|
|
|
|
a = np.zeros(65536)
|
|
b = np.zeros(65536, dtype=np.float32)
|
|
np.subtract(a, 0, out=b)
|
|
assert_equal(b, 0)
|
|
|
|
def test_where_param(self):
|
|
# Test that the where= ufunc parameter works with regular arrays
|
|
a = np.arange(7)
|
|
b = np.ones(7)
|
|
c = np.zeros(7)
|
|
np.add(a, b, out=c, where=(a % 2 == 1))
|
|
assert_equal(c, [0, 2, 0, 4, 0, 6, 0])
|
|
|
|
a = np.arange(4).reshape(2, 2) + 2
|
|
np.power(a, [2, 3], out=a, where=[[0, 1], [1, 0]])
|
|
assert_equal(a, [[2, 27], [16, 5]])
|
|
# Broadcasting the where= parameter
|
|
np.subtract(a, 2, out=a, where=[True, False])
|
|
assert_equal(a, [[0, 27], [14, 5]])
|
|
|
|
def test_where_param_buffer_output(self):
|
|
# This test is temporarily skipped because it requires
|
|
# adding masking features to the nditer to work properly
|
|
|
|
# With casting on output
|
|
a = np.ones(10, np.int64)
|
|
b = np.ones(10, np.int64)
|
|
c = 1.5 * np.ones(10, np.float64)
|
|
np.add(a, b, out=c, where=[1, 0, 0, 1, 0, 0, 1, 1, 1, 0])
|
|
assert_equal(c, [2, 1.5, 1.5, 2, 1.5, 1.5, 2, 2, 2, 1.5])
|
|
|
|
def test_where_param_alloc(self):
|
|
# With casting and allocated output
|
|
a = np.array([1], dtype=np.int64)
|
|
m = np.array([True], dtype=bool)
|
|
assert_equal(np.sqrt(a, where=m), [1])
|
|
|
|
# No casting and allocated output
|
|
a = np.array([1], dtype=np.float64)
|
|
m = np.array([True], dtype=bool)
|
|
assert_equal(np.sqrt(a, where=m), [1])
|
|
|
|
def check_identityless_reduction(self, a):
|
|
# np.minimum.reduce is a identityless reduction
|
|
|
|
# Verify that it sees the zero at various positions
|
|
a[...] = 1
|
|
a[1, 0, 0] = 0
|
|
assert_equal(np.minimum.reduce(a, axis=None), 0)
|
|
assert_equal(np.minimum.reduce(a, axis=(0, 1)), [0, 1, 1, 1])
|
|
assert_equal(np.minimum.reduce(a, axis=(0, 2)), [0, 1, 1])
|
|
assert_equal(np.minimum.reduce(a, axis=(1, 2)), [1, 0])
|
|
assert_equal(np.minimum.reduce(a, axis=0),
|
|
[[0, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]])
|
|
assert_equal(np.minimum.reduce(a, axis=1),
|
|
[[1, 1, 1, 1], [0, 1, 1, 1]])
|
|
assert_equal(np.minimum.reduce(a, axis=2),
|
|
[[1, 1, 1], [0, 1, 1]])
|
|
assert_equal(np.minimum.reduce(a, axis=()), a)
|
|
|
|
a[...] = 1
|
|
a[0, 1, 0] = 0
|
|
assert_equal(np.minimum.reduce(a, axis=None), 0)
|
|
assert_equal(np.minimum.reduce(a, axis=(0, 1)), [0, 1, 1, 1])
|
|
assert_equal(np.minimum.reduce(a, axis=(0, 2)), [1, 0, 1])
|
|
assert_equal(np.minimum.reduce(a, axis=(1, 2)), [0, 1])
|
|
assert_equal(np.minimum.reduce(a, axis=0),
|
|
[[1, 1, 1, 1], [0, 1, 1, 1], [1, 1, 1, 1]])
|
|
assert_equal(np.minimum.reduce(a, axis=1),
|
|
[[0, 1, 1, 1], [1, 1, 1, 1]])
|
|
assert_equal(np.minimum.reduce(a, axis=2),
|
|
[[1, 0, 1], [1, 1, 1]])
|
|
assert_equal(np.minimum.reduce(a, axis=()), a)
|
|
|
|
a[...] = 1
|
|
a[0, 0, 1] = 0
|
|
assert_equal(np.minimum.reduce(a, axis=None), 0)
|
|
assert_equal(np.minimum.reduce(a, axis=(0, 1)), [1, 0, 1, 1])
|
|
assert_equal(np.minimum.reduce(a, axis=(0, 2)), [0, 1, 1])
|
|
assert_equal(np.minimum.reduce(a, axis=(1, 2)), [0, 1])
|
|
assert_equal(np.minimum.reduce(a, axis=0),
|
|
[[1, 0, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]])
|
|
assert_equal(np.minimum.reduce(a, axis=1),
|
|
[[1, 0, 1, 1], [1, 1, 1, 1]])
|
|
assert_equal(np.minimum.reduce(a, axis=2),
|
|
[[0, 1, 1], [1, 1, 1]])
|
|
assert_equal(np.minimum.reduce(a, axis=()), a)
|
|
|
|
def test_identityless_reduction_corder(self):
|
|
a = np.empty((2, 3, 4), order='C')
|
|
self.check_identityless_reduction(a)
|
|
|
|
def test_identityless_reduction_forder(self):
|
|
a = np.empty((2, 3, 4), order='F')
|
|
self.check_identityless_reduction(a)
|
|
|
|
def test_identityless_reduction_otherorder(self):
|
|
a = np.empty((2, 4, 3), order='C').swapaxes(1, 2)
|
|
self.check_identityless_reduction(a)
|
|
|
|
def test_identityless_reduction_noncontig(self):
|
|
a = np.empty((3, 5, 4), order='C').swapaxes(1, 2)
|
|
a = a[1:, 1:, 1:]
|
|
self.check_identityless_reduction(a)
|
|
|
|
def test_identityless_reduction_noncontig_unaligned(self):
|
|
a = np.empty((3*4*5*8 + 1,), dtype='i1')
|
|
a = a[1:].view(dtype='f8')
|
|
a.shape = (3, 4, 5)
|
|
a = a[1:, 1:, 1:]
|
|
self.check_identityless_reduction(a)
|
|
|
|
def test_identityless_reduction_nonreorderable(self):
|
|
a = np.array([[8.0, 2.0, 2.0], [1.0, 0.5, 0.25]])
|
|
|
|
res = np.divide.reduce(a, axis=0)
|
|
assert_equal(res, [8.0, 4.0, 8.0])
|
|
|
|
res = np.divide.reduce(a, axis=1)
|
|
assert_equal(res, [2.0, 8.0])
|
|
|
|
res = np.divide.reduce(a, axis=())
|
|
assert_equal(res, a)
|
|
|
|
assert_raises(ValueError, np.divide.reduce, a, axis=(0, 1))
|
|
|
|
def test_reduce_zero_axis(self):
|
|
# If we have a n x m array and do a reduction with axis=1, then we are
|
|
# doing n reductions, and each reduction takes an m-element array. For
|
|
# a reduction operation without an identity, then:
|
|
# n > 0, m > 0: fine
|
|
# n = 0, m > 0: fine, doing 0 reductions of m-element arrays
|
|
# n > 0, m = 0: can't reduce a 0-element array, ValueError
|
|
# n = 0, m = 0: can't reduce a 0-element array, ValueError (for
|
|
# consistency with the above case)
|
|
# This test doesn't actually look at return values, it just checks to
|
|
# make sure that error we get an error in exactly those cases where we
|
|
# expect one, and assumes the calculations themselves are done
|
|
# correctly.
|
|
|
|
def ok(f, *args, **kwargs):
|
|
f(*args, **kwargs)
|
|
|
|
def err(f, *args, **kwargs):
|
|
assert_raises(ValueError, f, *args, **kwargs)
|
|
|
|
def t(expect, func, n, m):
|
|
expect(func, np.zeros((n, m)), axis=1)
|
|
expect(func, np.zeros((m, n)), axis=0)
|
|
expect(func, np.zeros((n // 2, n // 2, m)), axis=2)
|
|
expect(func, np.zeros((n // 2, m, n // 2)), axis=1)
|
|
expect(func, np.zeros((n, m // 2, m // 2)), axis=(1, 2))
|
|
expect(func, np.zeros((m // 2, n, m // 2)), axis=(0, 2))
|
|
expect(func, np.zeros((m // 3, m // 3, m // 3,
|
|
n // 2, n // 2)),
|
|
axis=(0, 1, 2))
|
|
# Check what happens if the inner (resp. outer) dimensions are a
|
|
# mix of zero and non-zero:
|
|
expect(func, np.zeros((10, m, n)), axis=(0, 1))
|
|
expect(func, np.zeros((10, n, m)), axis=(0, 2))
|
|
expect(func, np.zeros((m, 10, n)), axis=0)
|
|
expect(func, np.zeros((10, m, n)), axis=1)
|
|
expect(func, np.zeros((10, n, m)), axis=2)
|
|
|
|
# np.maximum is just an arbitrary ufunc with no reduction identity
|
|
assert_equal(np.maximum.identity, None)
|
|
t(ok, np.maximum.reduce, 30, 30)
|
|
t(ok, np.maximum.reduce, 0, 30)
|
|
t(err, np.maximum.reduce, 30, 0)
|
|
t(err, np.maximum.reduce, 0, 0)
|
|
err(np.maximum.reduce, [])
|
|
np.maximum.reduce(np.zeros((0, 0)), axis=())
|
|
|
|
# all of the combinations are fine for a reduction that has an
|
|
# identity
|
|
t(ok, np.add.reduce, 30, 30)
|
|
t(ok, np.add.reduce, 0, 30)
|
|
t(ok, np.add.reduce, 30, 0)
|
|
t(ok, np.add.reduce, 0, 0)
|
|
np.add.reduce([])
|
|
np.add.reduce(np.zeros((0, 0)), axis=())
|
|
|
|
# OTOH, accumulate always makes sense for any combination of n and m,
|
|
# because it maps an m-element array to an m-element array. These
|
|
# tests are simpler because accumulate doesn't accept multiple axes.
|
|
for uf in (np.maximum, np.add):
|
|
uf.accumulate(np.zeros((30, 0)), axis=0)
|
|
uf.accumulate(np.zeros((0, 30)), axis=0)
|
|
uf.accumulate(np.zeros((30, 30)), axis=0)
|
|
uf.accumulate(np.zeros((0, 0)), axis=0)
|
|
|
|
def test_safe_casting(self):
|
|
# In old versions of numpy, in-place operations used the 'unsafe'
|
|
# casting rules. In versions >= 1.10, 'same_kind' is the
|
|
# default and an exception is raised instead of a warning.
|
|
# when 'same_kind' is not satisfied.
|
|
a = np.array([1, 2, 3], dtype=int)
|
|
# Non-in-place addition is fine
|
|
assert_array_equal(assert_no_warnings(np.add, a, 1.1),
|
|
[2.1, 3.1, 4.1])
|
|
assert_raises(TypeError, np.add, a, 1.1, out=a)
|
|
|
|
def add_inplace(a, b):
|
|
a += b
|
|
|
|
assert_raises(TypeError, add_inplace, a, 1.1)
|
|
# Make sure that explicitly overriding the exception is allowed:
|
|
assert_no_warnings(np.add, a, 1.1, out=a, casting="unsafe")
|
|
assert_array_equal(a, [2, 3, 4])
|
|
|
|
def test_ufunc_custom_out(self):
|
|
# Test ufunc with built in input types and custom output type
|
|
|
|
a = np.array([0, 1, 2], dtype='i8')
|
|
b = np.array([0, 1, 2], dtype='i8')
|
|
c = np.empty(3, dtype=rational)
|
|
|
|
# Output must be specified so numpy knows what
|
|
# ufunc signature to look for
|
|
result = test_add(a, b, c)
|
|
assert_equal(result, np.array([0, 2, 4], dtype=rational))
|
|
|
|
# no output type should raise TypeError
|
|
assert_raises(TypeError, test_add, a, b)
|
|
|
|
def test_operand_flags(self):
|
|
a = np.arange(16, dtype='l').reshape(4, 4)
|
|
b = np.arange(9, dtype='l').reshape(3, 3)
|
|
opflag_tests.inplace_add(a[:-1, :-1], b)
|
|
assert_equal(a, np.array([[0, 2, 4, 3], [7, 9, 11, 7],
|
|
[14, 16, 18, 11], [12, 13, 14, 15]], dtype='l'))
|
|
|
|
a = np.array(0)
|
|
opflag_tests.inplace_add(a, 3)
|
|
assert_equal(a, 3)
|
|
opflag_tests.inplace_add(a, [3, 4])
|
|
assert_equal(a, 10)
|
|
|
|
def test_struct_ufunc(self):
|
|
import numpy.core.struct_ufunc_test as struct_ufunc
|
|
|
|
a = np.array([(1, 2, 3)], dtype='u8,u8,u8')
|
|
b = np.array([(1, 2, 3)], dtype='u8,u8,u8')
|
|
|
|
result = struct_ufunc.add_triplet(a, b)
|
|
assert_equal(result, np.array([(2, 4, 6)], dtype='u8,u8,u8'))
|
|
|
|
def test_custom_ufunc(self):
|
|
a = np.array([rational(1, 2), rational(1, 3), rational(1, 4)],
|
|
dtype=rational)
|
|
b = np.array([rational(1, 2), rational(1, 3), rational(1, 4)],
|
|
dtype=rational)
|
|
|
|
result = test_add_rationals(a, b)
|
|
expected = np.array([rational(1), rational(2, 3), rational(1, 2)],
|
|
dtype=rational)
|
|
assert_equal(result, expected)
|
|
|
|
def test_custom_ufunc_forced_sig(self):
|
|
# gh-9351 - looking for a non-first userloop would previously hang
|
|
assert_raises(TypeError,
|
|
np.multiply, rational(1), 1, signature=(rational, int, None))
|
|
|
|
def test_custom_array_like(self):
|
|
|
|
class MyThing(object):
|
|
__array_priority__ = 1000
|
|
|
|
rmul_count = 0
|
|
getitem_count = 0
|
|
|
|
def __init__(self, shape):
|
|
self.shape = shape
|
|
|
|
def __len__(self):
|
|
return self.shape[0]
|
|
|
|
def __getitem__(self, i):
|
|
MyThing.getitem_count += 1
|
|
if not isinstance(i, tuple):
|
|
i = (i,)
|
|
if len(i) > self.ndim:
|
|
raise IndexError("boo")
|
|
|
|
return MyThing(self.shape[len(i):])
|
|
|
|
def __rmul__(self, other):
|
|
MyThing.rmul_count += 1
|
|
return self
|
|
|
|
np.float64(5)*MyThing((3, 3))
|
|
assert_(MyThing.rmul_count == 1, MyThing.rmul_count)
|
|
assert_(MyThing.getitem_count <= 2, MyThing.getitem_count)
|
|
|
|
def test_inplace_fancy_indexing(self):
|
|
|
|
a = np.arange(10)
|
|
np.add.at(a, [2, 5, 2], 1)
|
|
assert_equal(a, [0, 1, 4, 3, 4, 6, 6, 7, 8, 9])
|
|
|
|
a = np.arange(10)
|
|
b = np.array([100, 100, 100])
|
|
np.add.at(a, [2, 5, 2], b)
|
|
assert_equal(a, [0, 1, 202, 3, 4, 105, 6, 7, 8, 9])
|
|
|
|
a = np.arange(9).reshape(3, 3)
|
|
b = np.array([[100, 100, 100], [200, 200, 200], [300, 300, 300]])
|
|
np.add.at(a, (slice(None), [1, 2, 1]), b)
|
|
assert_equal(a, [[0, 201, 102], [3, 404, 205], [6, 607, 308]])
|
|
|
|
a = np.arange(27).reshape(3, 3, 3)
|
|
b = np.array([100, 200, 300])
|
|
np.add.at(a, (slice(None), slice(None), [1, 2, 1]), b)
|
|
assert_equal(a,
|
|
[[[0, 401, 202],
|
|
[3, 404, 205],
|
|
[6, 407, 208]],
|
|
|
|
[[9, 410, 211],
|
|
[12, 413, 214],
|
|
[15, 416, 217]],
|
|
|
|
[[18, 419, 220],
|
|
[21, 422, 223],
|
|
[24, 425, 226]]])
|
|
|
|
a = np.arange(9).reshape(3, 3)
|
|
b = np.array([[100, 100, 100], [200, 200, 200], [300, 300, 300]])
|
|
np.add.at(a, ([1, 2, 1], slice(None)), b)
|
|
assert_equal(a, [[0, 1, 2], [403, 404, 405], [206, 207, 208]])
|
|
|
|
a = np.arange(27).reshape(3, 3, 3)
|
|
b = np.array([100, 200, 300])
|
|
np.add.at(a, (slice(None), [1, 2, 1], slice(None)), b)
|
|
assert_equal(a,
|
|
[[[0, 1, 2],
|
|
[203, 404, 605],
|
|
[106, 207, 308]],
|
|
|
|
[[9, 10, 11],
|
|
[212, 413, 614],
|
|
[115, 216, 317]],
|
|
|
|
[[18, 19, 20],
|
|
[221, 422, 623],
|
|
[124, 225, 326]]])
|
|
|
|
a = np.arange(9).reshape(3, 3)
|
|
b = np.array([100, 200, 300])
|
|
np.add.at(a, (0, [1, 2, 1]), b)
|
|
assert_equal(a, [[0, 401, 202], [3, 4, 5], [6, 7, 8]])
|
|
|
|
a = np.arange(27).reshape(3, 3, 3)
|
|
b = np.array([100, 200, 300])
|
|
np.add.at(a, ([1, 2, 1], 0, slice(None)), b)
|
|
assert_equal(a,
|
|
[[[0, 1, 2],
|
|
[3, 4, 5],
|
|
[6, 7, 8]],
|
|
|
|
[[209, 410, 611],
|
|
[12, 13, 14],
|
|
[15, 16, 17]],
|
|
|
|
[[118, 219, 320],
|
|
[21, 22, 23],
|
|
[24, 25, 26]]])
|
|
|
|
a = np.arange(27).reshape(3, 3, 3)
|
|
b = np.array([100, 200, 300])
|
|
np.add.at(a, (slice(None), slice(None), slice(None)), b)
|
|
assert_equal(a,
|
|
[[[100, 201, 302],
|
|
[103, 204, 305],
|
|
[106, 207, 308]],
|
|
|
|
[[109, 210, 311],
|
|
[112, 213, 314],
|
|
[115, 216, 317]],
|
|
|
|
[[118, 219, 320],
|
|
[121, 222, 323],
|
|
[124, 225, 326]]])
|
|
|
|
a = np.arange(10)
|
|
np.negative.at(a, [2, 5, 2])
|
|
assert_equal(a, [0, 1, 2, 3, 4, -5, 6, 7, 8, 9])
|
|
|
|
# Test 0-dim array
|
|
a = np.array(0)
|
|
np.add.at(a, (), 1)
|
|
assert_equal(a, 1)
|
|
|
|
assert_raises(IndexError, np.add.at, a, 0, 1)
|
|
assert_raises(IndexError, np.add.at, a, [], 1)
|
|
|
|
# Test mixed dtypes
|
|
a = np.arange(10)
|
|
np.power.at(a, [1, 2, 3, 2], 3.5)
|
|
assert_equal(a, np.array([0, 1, 4414, 46, 4, 5, 6, 7, 8, 9]))
|
|
|
|
# Test boolean indexing and boolean ufuncs
|
|
a = np.arange(10)
|
|
index = a % 2 == 0
|
|
np.equal.at(a, index, [0, 2, 4, 6, 8])
|
|
assert_equal(a, [1, 1, 1, 3, 1, 5, 1, 7, 1, 9])
|
|
|
|
# Test unary operator
|
|
a = np.arange(10, dtype='u4')
|
|
np.invert.at(a, [2, 5, 2])
|
|
assert_equal(a, [0, 1, 2, 3, 4, 5 ^ 0xffffffff, 6, 7, 8, 9])
|
|
|
|
# Test empty subspace
|
|
orig = np.arange(4)
|
|
a = orig[:, None][:, 0:0]
|
|
np.add.at(a, [0, 1], 3)
|
|
assert_array_equal(orig, np.arange(4))
|
|
|
|
# Test with swapped byte order
|
|
index = np.array([1, 2, 1], np.dtype('i').newbyteorder())
|
|
values = np.array([1, 2, 3, 4], np.dtype('f').newbyteorder())
|
|
np.add.at(values, index, 3)
|
|
assert_array_equal(values, [1, 8, 6, 4])
|
|
|
|
# Test exception thrown
|
|
values = np.array(['a', 1], dtype=object)
|
|
assert_raises(TypeError, np.add.at, values, [0, 1], 1)
|
|
assert_array_equal(values, np.array(['a', 1], dtype=object))
|
|
|
|
# Test multiple output ufuncs raise error, gh-5665
|
|
assert_raises(ValueError, np.modf.at, np.arange(10), [1])
|
|
|
|
def test_reduce_arguments(self):
|
|
f = np.add.reduce
|
|
d = np.ones((5,2), dtype=int)
|
|
o = np.ones((2,), dtype=d.dtype)
|
|
r = o * 5
|
|
assert_equal(f(d), r)
|
|
# a, axis=0, dtype=None, out=None, keepdims=False
|
|
assert_equal(f(d, axis=0), r)
|
|
assert_equal(f(d, 0), r)
|
|
assert_equal(f(d, 0, dtype=None), r)
|
|
assert_equal(f(d, 0, dtype='i'), r)
|
|
assert_equal(f(d, 0, 'i'), r)
|
|
assert_equal(f(d, 0, None), r)
|
|
assert_equal(f(d, 0, None, out=None), r)
|
|
assert_equal(f(d, 0, None, out=o), r)
|
|
assert_equal(f(d, 0, None, o), r)
|
|
assert_equal(f(d, 0, None, None), r)
|
|
assert_equal(f(d, 0, None, None, keepdims=False), r)
|
|
assert_equal(f(d, 0, None, None, True), r.reshape((1,) + r.shape))
|
|
# multiple keywords
|
|
assert_equal(f(d, axis=0, dtype=None, out=None, keepdims=False), r)
|
|
assert_equal(f(d, 0, dtype=None, out=None, keepdims=False), r)
|
|
assert_equal(f(d, 0, None, out=None, keepdims=False), r)
|
|
|
|
# too little
|
|
assert_raises(TypeError, f)
|
|
# too much
|
|
assert_raises(TypeError, f, d, 0, None, None, False, 1)
|
|
# invalid axis
|
|
assert_raises(TypeError, f, d, "invalid")
|
|
assert_raises(TypeError, f, d, axis="invalid")
|
|
assert_raises(TypeError, f, d, axis="invalid", dtype=None,
|
|
keepdims=True)
|
|
# invalid dtype
|
|
assert_raises(TypeError, f, d, 0, "invalid")
|
|
assert_raises(TypeError, f, d, dtype="invalid")
|
|
assert_raises(TypeError, f, d, dtype="invalid", out=None)
|
|
# invalid out
|
|
assert_raises(TypeError, f, d, 0, None, "invalid")
|
|
assert_raises(TypeError, f, d, out="invalid")
|
|
assert_raises(TypeError, f, d, out="invalid", dtype=None)
|
|
# keepdims boolean, no invalid value
|
|
# assert_raises(TypeError, f, d, 0, None, None, "invalid")
|
|
# assert_raises(TypeError, f, d, keepdims="invalid", axis=0, dtype=None)
|
|
# invalid mix
|
|
assert_raises(TypeError, f, d, 0, keepdims="invalid", dtype="invalid",
|
|
out=None)
|
|
|
|
# invalid keyord
|
|
assert_raises(TypeError, f, d, axis=0, dtype=None, invalid=0)
|
|
assert_raises(TypeError, f, d, invalid=0)
|
|
assert_raises(TypeError, f, d, 0, keepdims=True, invalid="invalid",
|
|
out=None)
|
|
assert_raises(TypeError, f, d, axis=0, dtype=None, keepdims=True,
|
|
out=None, invalid=0)
|
|
assert_raises(TypeError, f, d, axis=0, dtype=None,
|
|
out=None, invalid=0)
|
|
|
|
def test_structured_equal(self):
|
|
# https://github.com/numpy/numpy/issues/4855
|
|
|
|
class MyA(np.ndarray):
|
|
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
|
|
return getattr(ufunc, method)(*(input.view(np.ndarray)
|
|
for input in inputs), **kwargs)
|
|
a = np.arange(12.).reshape(4,3)
|
|
ra = a.view(dtype=('f8,f8,f8')).squeeze()
|
|
mra = ra.view(MyA)
|
|
|
|
target = np.array([ True, False, False, False], dtype=bool)
|
|
assert_equal(np.all(target == (mra == ra[0])), True)
|
|
|
|
def test_NotImplemented_not_returned(self):
|
|
# See gh-5964 and gh-2091. Some of these functions are not operator
|
|
# related and were fixed for other reasons in the past.
|
|
binary_funcs = [
|
|
np.power, np.add, np.subtract, np.multiply, np.divide,
|
|
np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
|
|
np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
|
|
np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
|
|
np.logical_and, np.logical_or, np.logical_xor, np.maximum,
|
|
np.minimum, np.mod
|
|
]
|
|
|
|
# These functions still return NotImplemented. Will be fixed in
|
|
# future.
|
|
# bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]
|
|
|
|
a = np.array('1')
|
|
b = 1
|
|
for f in binary_funcs:
|
|
assert_raises(TypeError, f, a, b)
|
|
|
|
def test_reduce_noncontig_output(self):
|
|
# Check that reduction deals with non-contiguous output arrays
|
|
# appropriately.
|
|
#
|
|
# gh-8036
|
|
|
|
x = np.arange(7*13*8, dtype=np.int16).reshape(7, 13, 8)
|
|
x = x[4:6,1:11:6,1:5].transpose(1, 2, 0)
|
|
y_base = np.arange(4*4, dtype=np.int16).reshape(4, 4)
|
|
y = y_base[::2,:]
|
|
|
|
y_base_copy = y_base.copy()
|
|
|
|
r0 = np.add.reduce(x, out=y.copy(), axis=2)
|
|
r1 = np.add.reduce(x, out=y, axis=2)
|
|
|
|
# The results should match, and y_base shouldn't get clobbered
|
|
assert_equal(r0, r1)
|
|
assert_equal(y_base[1,:], y_base_copy[1,:])
|
|
assert_equal(y_base[3,:], y_base_copy[3,:])
|
|
|
|
def test_no_doc_string(self):
|
|
# gh-9337
|
|
assert_('\n' not in umt.inner1d_no_doc.__doc__)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
run_module_suite()
|