cadquery-freecad-module/Examples/Ex029_Braille.py

184 lines
6.0 KiB
Python
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# -*- coding: utf-8 -*-
from __future__ import unicode_literals, division
from collections import namedtuple
import cadquery as cq
from Helpers import show
# text_lines is a list of text lines.
# FreeCAD in braille (converted with braille-converter:
# https://github.com/jpaugh/braille-converter.git).
text_lines = ['⠠ ⠋ ⠗ ⠑ ⠑ ⠠ ⠉ ⠠ ⠁ ⠠ ⠙']
# See http://www.tiresias.org/research/reports/braille_cell.htm for examples
# of braille cell geometry.
horizontal_interdot = 2.5
vertical_interdot = 2.5
horizontal_intercell = 6
vertical_interline = 10
dot_height = 0.5
dot_diameter = 1.3
base_thickness = 1.5
# End of configuration.
BrailleCellGeometry = namedtuple('BrailleCellGeometry',
('horizontal_interdot',
'vertical_interdot',
'intercell',
'interline',
'dot_height',
'dot_diameter'))
class Point(object):
def __init__(self, x, y):
self.x = x
self.y = y
def __add__(self, other):
return Point(self.x + other.x, self.y + other.y)
def __len__(self):
return 2
def __getitem__(self, index):
return (self.x, self.y)[index]
def __str__(self):
return '({}, {})'.format(self.x, self.y)
def brailleToPoints(text, cell_geometry):
# Unicode bit pattern (cf. https://en.wikipedia.org/wiki/Braille_Patterns).
mask1 = 0b00000001
mask2 = 0b00000010
mask3 = 0b00000100
mask4 = 0b00001000
mask5 = 0b00010000
mask6 = 0b00100000
mask7 = 0b01000000
mask8 = 0b10000000
masks = (mask1, mask2, mask3, mask4, mask5, mask6, mask7, mask8)
# Corresponding dot position
w = cell_geometry.horizontal_interdot
h = cell_geometry.vertical_interdot
pos1 = Point(0, 2 * h)
pos2 = Point(0, h)
pos3 = Point(0, 0)
pos4 = Point(w, 2 * h)
pos5 = Point(w, h)
pos6 = Point(w, 0)
pos7 = Point(0, -h)
pos8 = Point(w, -h)
pos = (pos1, pos2, pos3, pos4, pos5, pos6, pos7, pos8)
# Braille blank pattern (u'\u2800').
blank = ''
points = []
# Position of dot1 along the x-axis (horizontal).
character_origin = 0
for c in text:
for m, p in zip(masks, pos):
delta_to_blank = ord(c) - ord(blank)
if (m & delta_to_blank):
points.append(p + Point(character_origin, 0))
character_origin += cell_geometry.intercell
return points
def get_plate_height(text_lines, cell_geometry):
# cell_geometry.vertical_interdot is also used as space between base
# borders and characters.
return (2 * cell_geometry.vertical_interdot +
2 * cell_geometry.vertical_interdot +
(len(text_lines) - 1) * cell_geometry.interline)
def get_plate_width(text_lines, cell_geometry):
# cell_geometry.horizontal_interdot is also used as space between base
# borders and characters.
max_len = max([len(t) for t in text_lines])
return (2 * cell_geometry.horizontal_interdot +
cell_geometry.horizontal_interdot +
(max_len - 1) * cell_geometry.intercell)
def get_cylinder_radius(cell_geometry):
"""Return the radius the cylinder should have
The cylinder have the same radius as the half-sphere make the dots (the
hidden and the shown part of the dots).
The radius is such that the spherical cap with diameter
cell_geometry.dot_diameter has a height of cell_geometry.dot_height.
"""
h = cell_geometry.dot_height
r = cell_geometry.dot_diameter / 2
return (r ** 2 + h ** 2) / 2 / h
def get_base_plate_thickness(plate_thickness, cell_geometry):
"""Return the height on which the half spheres will sit"""
return (plate_thickness +
get_cylinder_radius(cell_geometry) -
cell_geometry.dot_height)
def make_base(text_lines, cell_geometry, plate_thickness):
base_width = get_plate_width(text_lines, cell_geometry)
base_height = get_plate_height(text_lines, cell_geometry)
base_thickness = get_base_plate_thickness(plate_thickness, cell_geometry)
base = cq.Workplane('XY').box(base_width, base_height, base_thickness,
centered=(False, False, False))
return base
def make_embossed_plate(text_lines, cell_geometry):
"""Make an embossed plate with dots as spherical caps
Method:
- make a thin plate on which sit cylinders
- fillet the upper edge of the cylinders so to get pseudo half-spheres
- make the union with a thicker plate so that only the sphere caps stay
"visible".
"""
base = make_base(text_lines, cell_geometry, base_thickness)
dot_pos = []
base_width = get_plate_width(text_lines, cell_geometry)
base_height = get_plate_height(text_lines, cell_geometry)
y = base_height - 3 * cell_geometry.vertical_interdot
line_start_pos = Point(cell_geometry.horizontal_interdot, y)
for text in text_lines:
dots = brailleToPoints(text, cell_geometry)
dots = [p + line_start_pos for p in dots]
dot_pos += dots
line_start_pos += Point(0, -cell_geometry.interline)
r = get_cylinder_radius(cell_geometry)
base = base.faces('>Z').vertices('<XY').workplane() \
.pushPoints(dot_pos).circle(r) \
.extrude(r)
# Make a fillet almost the same radius to get a pseudo spherical cap.
base = base.faces('>Z').edges() \
.fillet(r - 0.001)
hidding_box = cq.Workplane('XY').box(
base_width, base_height, base_thickness, centered=(False, False, False))
result = hidding_box.union(base)
return result
_cell_geometry = BrailleCellGeometry(
horizontal_interdot,
vertical_interdot,
horizontal_intercell,
vertical_interline,
dot_height,
dot_diameter)
if base_thickness < get_cylinder_radius(_cell_geometry):
raise ValueError('Base thickness should be at least {}'.format(dot_height))
show(make_embossed_plate(text_lines, _cell_geometry))