518 lines
18 KiB
Python
518 lines
18 KiB
Python
from __future__ import division, absolute_import, print_function
|
|
|
|
import sys
|
|
|
|
import numpy as np
|
|
from numpy.testing import (
|
|
run_module_suite, assert_, assert_equal, assert_array_equal,
|
|
assert_raises, HAS_REFCOUNT
|
|
)
|
|
|
|
# Switch between new behaviour when NPY_RELAXED_STRIDES_CHECKING is set.
|
|
NPY_RELAXED_STRIDES_CHECKING = np.ones((10, 1), order='C').flags.f_contiguous
|
|
|
|
|
|
def test_array_array():
|
|
tobj = type(object)
|
|
ones11 = np.ones((1, 1), np.float64)
|
|
tndarray = type(ones11)
|
|
# Test is_ndarray
|
|
assert_equal(np.array(ones11, dtype=np.float64), ones11)
|
|
if HAS_REFCOUNT:
|
|
old_refcount = sys.getrefcount(tndarray)
|
|
np.array(ones11)
|
|
assert_equal(old_refcount, sys.getrefcount(tndarray))
|
|
|
|
# test None
|
|
assert_equal(np.array(None, dtype=np.float64),
|
|
np.array(np.nan, dtype=np.float64))
|
|
if HAS_REFCOUNT:
|
|
old_refcount = sys.getrefcount(tobj)
|
|
np.array(None, dtype=np.float64)
|
|
assert_equal(old_refcount, sys.getrefcount(tobj))
|
|
|
|
# test scalar
|
|
assert_equal(np.array(1.0, dtype=np.float64),
|
|
np.ones((), dtype=np.float64))
|
|
if HAS_REFCOUNT:
|
|
old_refcount = sys.getrefcount(np.float64)
|
|
np.array(np.array(1.0, dtype=np.float64), dtype=np.float64)
|
|
assert_equal(old_refcount, sys.getrefcount(np.float64))
|
|
|
|
# test string
|
|
S2 = np.dtype((str, 2))
|
|
S3 = np.dtype((str, 3))
|
|
S5 = np.dtype((str, 5))
|
|
assert_equal(np.array("1.0", dtype=np.float64),
|
|
np.ones((), dtype=np.float64))
|
|
assert_equal(np.array("1.0").dtype, S3)
|
|
assert_equal(np.array("1.0", dtype=str).dtype, S3)
|
|
assert_equal(np.array("1.0", dtype=S2), np.array("1."))
|
|
assert_equal(np.array("1", dtype=S5), np.ones((), dtype=S5))
|
|
|
|
# test unicode
|
|
_unicode = globals().get("unicode")
|
|
if _unicode:
|
|
U2 = np.dtype((_unicode, 2))
|
|
U3 = np.dtype((_unicode, 3))
|
|
U5 = np.dtype((_unicode, 5))
|
|
assert_equal(np.array(_unicode("1.0"), dtype=np.float64),
|
|
np.ones((), dtype=np.float64))
|
|
assert_equal(np.array(_unicode("1.0")).dtype, U3)
|
|
assert_equal(np.array(_unicode("1.0"), dtype=_unicode).dtype, U3)
|
|
assert_equal(np.array(_unicode("1.0"), dtype=U2),
|
|
np.array(_unicode("1.")))
|
|
assert_equal(np.array(_unicode("1"), dtype=U5),
|
|
np.ones((), dtype=U5))
|
|
|
|
builtins = getattr(__builtins__, '__dict__', __builtins__)
|
|
assert_(hasattr(builtins, 'get'))
|
|
|
|
# test buffer
|
|
_buffer = builtins.get("buffer")
|
|
if _buffer and sys.version_info[:3] >= (2, 7, 5):
|
|
# This test fails for earlier versions of Python.
|
|
# Evidently a bug got fixed in 2.7.5.
|
|
dat = np.array(_buffer('1.0'), dtype=np.float64)
|
|
assert_equal(dat, [49.0, 46.0, 48.0])
|
|
assert_(dat.dtype.type is np.float64)
|
|
|
|
dat = np.array(_buffer(b'1.0'))
|
|
assert_equal(dat, [49, 46, 48])
|
|
assert_(dat.dtype.type is np.uint8)
|
|
|
|
# test memoryview, new version of buffer
|
|
_memoryview = builtins.get("memoryview")
|
|
if _memoryview:
|
|
dat = np.array(_memoryview(b'1.0'), dtype=np.float64)
|
|
assert_equal(dat, [49.0, 46.0, 48.0])
|
|
assert_(dat.dtype.type is np.float64)
|
|
|
|
dat = np.array(_memoryview(b'1.0'))
|
|
assert_equal(dat, [49, 46, 48])
|
|
assert_(dat.dtype.type is np.uint8)
|
|
|
|
# test array interface
|
|
a = np.array(100.0, dtype=np.float64)
|
|
o = type("o", (object,),
|
|
dict(__array_interface__=a.__array_interface__))
|
|
assert_equal(np.array(o, dtype=np.float64), a)
|
|
|
|
# test array_struct interface
|
|
a = np.array([(1, 4.0, 'Hello'), (2, 6.0, 'World')],
|
|
dtype=[('f0', int), ('f1', float), ('f2', str)])
|
|
o = type("o", (object,),
|
|
dict(__array_struct__=a.__array_struct__))
|
|
## wasn't what I expected... is np.array(o) supposed to equal a ?
|
|
## instead we get a array([...], dtype=">V18")
|
|
assert_equal(bytes(np.array(o).data), bytes(a.data))
|
|
|
|
# test array
|
|
o = type("o", (object,),
|
|
dict(__array__=lambda *x: np.array(100.0, dtype=np.float64)))()
|
|
assert_equal(np.array(o, dtype=np.float64), np.array(100.0, np.float64))
|
|
|
|
# test recursion
|
|
nested = 1.5
|
|
for i in range(np.MAXDIMS):
|
|
nested = [nested]
|
|
|
|
# no error
|
|
np.array(nested)
|
|
|
|
# Exceeds recursion limit
|
|
assert_raises(ValueError, np.array, [nested], dtype=np.float64)
|
|
|
|
# Try with lists...
|
|
assert_equal(np.array([None] * 10, dtype=np.float64),
|
|
np.full((10,), np.nan, dtype=np.float64))
|
|
assert_equal(np.array([[None]] * 10, dtype=np.float64),
|
|
np.full((10, 1), np.nan, dtype=np.float64))
|
|
assert_equal(np.array([[None] * 10], dtype=np.float64),
|
|
np.full((1, 10), np.nan, dtype=np.float64))
|
|
assert_equal(np.array([[None] * 10] * 10, dtype=np.float64),
|
|
np.full((10, 10), np.nan, dtype=np.float64))
|
|
|
|
assert_equal(np.array([1.0] * 10, dtype=np.float64),
|
|
np.ones((10,), dtype=np.float64))
|
|
assert_equal(np.array([[1.0]] * 10, dtype=np.float64),
|
|
np.ones((10, 1), dtype=np.float64))
|
|
assert_equal(np.array([[1.0] * 10], dtype=np.float64),
|
|
np.ones((1, 10), dtype=np.float64))
|
|
assert_equal(np.array([[1.0] * 10] * 10, dtype=np.float64),
|
|
np.ones((10, 10), dtype=np.float64))
|
|
|
|
# Try with tuples
|
|
assert_equal(np.array((None,) * 10, dtype=np.float64),
|
|
np.full((10,), np.nan, dtype=np.float64))
|
|
assert_equal(np.array([(None,)] * 10, dtype=np.float64),
|
|
np.full((10, 1), np.nan, dtype=np.float64))
|
|
assert_equal(np.array([(None,) * 10], dtype=np.float64),
|
|
np.full((1, 10), np.nan, dtype=np.float64))
|
|
assert_equal(np.array([(None,) * 10] * 10, dtype=np.float64),
|
|
np.full((10, 10), np.nan, dtype=np.float64))
|
|
|
|
assert_equal(np.array((1.0,) * 10, dtype=np.float64),
|
|
np.ones((10,), dtype=np.float64))
|
|
assert_equal(np.array([(1.0,)] * 10, dtype=np.float64),
|
|
np.ones((10, 1), dtype=np.float64))
|
|
assert_equal(np.array([(1.0,) * 10], dtype=np.float64),
|
|
np.ones((1, 10), dtype=np.float64))
|
|
assert_equal(np.array([(1.0,) * 10] * 10, dtype=np.float64),
|
|
np.ones((10, 10), dtype=np.float64))
|
|
|
|
|
|
def test_fastCopyAndTranspose():
|
|
# 0D array
|
|
a = np.array(2)
|
|
b = np.fastCopyAndTranspose(a)
|
|
assert_equal(b, a.T)
|
|
assert_(b.flags.owndata)
|
|
|
|
# 1D array
|
|
a = np.array([3, 2, 7, 0])
|
|
b = np.fastCopyAndTranspose(a)
|
|
assert_equal(b, a.T)
|
|
assert_(b.flags.owndata)
|
|
|
|
# 2D array
|
|
a = np.arange(6).reshape(2, 3)
|
|
b = np.fastCopyAndTranspose(a)
|
|
assert_equal(b, a.T)
|
|
assert_(b.flags.owndata)
|
|
|
|
def test_array_astype():
|
|
a = np.arange(6, dtype='f4').reshape(2, 3)
|
|
# Default behavior: allows unsafe casts, keeps memory layout,
|
|
# always copies.
|
|
b = a.astype('i4')
|
|
assert_equal(a, b)
|
|
assert_equal(b.dtype, np.dtype('i4'))
|
|
assert_equal(a.strides, b.strides)
|
|
b = a.T.astype('i4')
|
|
assert_equal(a.T, b)
|
|
assert_equal(b.dtype, np.dtype('i4'))
|
|
assert_equal(a.T.strides, b.strides)
|
|
b = a.astype('f4')
|
|
assert_equal(a, b)
|
|
assert_(not (a is b))
|
|
|
|
# copy=False parameter can sometimes skip a copy
|
|
b = a.astype('f4', copy=False)
|
|
assert_(a is b)
|
|
|
|
# order parameter allows overriding of the memory layout,
|
|
# forcing a copy if the layout is wrong
|
|
b = a.astype('f4', order='F', copy=False)
|
|
assert_equal(a, b)
|
|
assert_(not (a is b))
|
|
assert_(b.flags.f_contiguous)
|
|
|
|
b = a.astype('f4', order='C', copy=False)
|
|
assert_equal(a, b)
|
|
assert_(a is b)
|
|
assert_(b.flags.c_contiguous)
|
|
|
|
# casting parameter allows catching bad casts
|
|
b = a.astype('c8', casting='safe')
|
|
assert_equal(a, b)
|
|
assert_equal(b.dtype, np.dtype('c8'))
|
|
|
|
assert_raises(TypeError, a.astype, 'i4', casting='safe')
|
|
|
|
# subok=False passes through a non-subclassed array
|
|
b = a.astype('f4', subok=0, copy=False)
|
|
assert_(a is b)
|
|
|
|
a = np.matrix([[0, 1, 2], [3, 4, 5]], dtype='f4')
|
|
|
|
# subok=True passes through a matrix
|
|
b = a.astype('f4', subok=True, copy=False)
|
|
assert_(a is b)
|
|
|
|
# subok=True is default, and creates a subtype on a cast
|
|
b = a.astype('i4', copy=False)
|
|
assert_equal(a, b)
|
|
assert_equal(type(b), np.matrix)
|
|
|
|
# subok=False never returns a matrix
|
|
b = a.astype('f4', subok=False, copy=False)
|
|
assert_equal(a, b)
|
|
assert_(not (a is b))
|
|
assert_(type(b) is not np.matrix)
|
|
|
|
# Make sure converting from string object to fixed length string
|
|
# does not truncate.
|
|
a = np.array([b'a'*100], dtype='O')
|
|
b = a.astype('S')
|
|
assert_equal(a, b)
|
|
assert_equal(b.dtype, np.dtype('S100'))
|
|
a = np.array([u'a'*100], dtype='O')
|
|
b = a.astype('U')
|
|
assert_equal(a, b)
|
|
assert_equal(b.dtype, np.dtype('U100'))
|
|
|
|
# Same test as above but for strings shorter than 64 characters
|
|
a = np.array([b'a'*10], dtype='O')
|
|
b = a.astype('S')
|
|
assert_equal(a, b)
|
|
assert_equal(b.dtype, np.dtype('S10'))
|
|
a = np.array([u'a'*10], dtype='O')
|
|
b = a.astype('U')
|
|
assert_equal(a, b)
|
|
assert_equal(b.dtype, np.dtype('U10'))
|
|
|
|
a = np.array(123456789012345678901234567890, dtype='O').astype('S')
|
|
assert_array_equal(a, np.array(b'1234567890' * 3, dtype='S30'))
|
|
a = np.array(123456789012345678901234567890, dtype='O').astype('U')
|
|
assert_array_equal(a, np.array(u'1234567890' * 3, dtype='U30'))
|
|
|
|
a = np.array([123456789012345678901234567890], dtype='O').astype('S')
|
|
assert_array_equal(a, np.array(b'1234567890' * 3, dtype='S30'))
|
|
a = np.array([123456789012345678901234567890], dtype='O').astype('U')
|
|
assert_array_equal(a, np.array(u'1234567890' * 3, dtype='U30'))
|
|
|
|
a = np.array(123456789012345678901234567890, dtype='S')
|
|
assert_array_equal(a, np.array(b'1234567890' * 3, dtype='S30'))
|
|
a = np.array(123456789012345678901234567890, dtype='U')
|
|
assert_array_equal(a, np.array(u'1234567890' * 3, dtype='U30'))
|
|
|
|
a = np.array(u'a\u0140', dtype='U')
|
|
b = np.ndarray(buffer=a, dtype='uint32', shape=2)
|
|
assert_(b.size == 2)
|
|
|
|
a = np.array([1000], dtype='i4')
|
|
assert_raises(TypeError, a.astype, 'S1', casting='safe')
|
|
|
|
a = np.array(1000, dtype='i4')
|
|
assert_raises(TypeError, a.astype, 'U1', casting='safe')
|
|
|
|
def test_copyto_fromscalar():
|
|
a = np.arange(6, dtype='f4').reshape(2, 3)
|
|
|
|
# Simple copy
|
|
np.copyto(a, 1.5)
|
|
assert_equal(a, 1.5)
|
|
np.copyto(a.T, 2.5)
|
|
assert_equal(a, 2.5)
|
|
|
|
# Where-masked copy
|
|
mask = np.array([[0, 1, 0], [0, 0, 1]], dtype='?')
|
|
np.copyto(a, 3.5, where=mask)
|
|
assert_equal(a, [[2.5, 3.5, 2.5], [2.5, 2.5, 3.5]])
|
|
mask = np.array([[0, 1], [1, 1], [1, 0]], dtype='?')
|
|
np.copyto(a.T, 4.5, where=mask)
|
|
assert_equal(a, [[2.5, 4.5, 4.5], [4.5, 4.5, 3.5]])
|
|
|
|
def test_copyto():
|
|
a = np.arange(6, dtype='i4').reshape(2, 3)
|
|
|
|
# Simple copy
|
|
np.copyto(a, [[3, 1, 5], [6, 2, 1]])
|
|
assert_equal(a, [[3, 1, 5], [6, 2, 1]])
|
|
|
|
# Overlapping copy should work
|
|
np.copyto(a[:, :2], a[::-1, 1::-1])
|
|
assert_equal(a, [[2, 6, 5], [1, 3, 1]])
|
|
|
|
# Defaults to 'same_kind' casting
|
|
assert_raises(TypeError, np.copyto, a, 1.5)
|
|
|
|
# Force a copy with 'unsafe' casting, truncating 1.5 to 1
|
|
np.copyto(a, 1.5, casting='unsafe')
|
|
assert_equal(a, 1)
|
|
|
|
# Copying with a mask
|
|
np.copyto(a, 3, where=[True, False, True])
|
|
assert_equal(a, [[3, 1, 3], [3, 1, 3]])
|
|
|
|
# Casting rule still applies with a mask
|
|
assert_raises(TypeError, np.copyto, a, 3.5, where=[True, False, True])
|
|
|
|
# Lists of integer 0's and 1's is ok too
|
|
np.copyto(a, 4.0, casting='unsafe', where=[[0, 1, 1], [1, 0, 0]])
|
|
assert_equal(a, [[3, 4, 4], [4, 1, 3]])
|
|
|
|
# Overlapping copy with mask should work
|
|
np.copyto(a[:, :2], a[::-1, 1::-1], where=[[0, 1], [1, 1]])
|
|
assert_equal(a, [[3, 4, 4], [4, 3, 3]])
|
|
|
|
# 'dst' must be an array
|
|
assert_raises(TypeError, np.copyto, [1, 2, 3], [2, 3, 4])
|
|
|
|
def test_copyto_permut():
|
|
# test explicit overflow case
|
|
pad = 500
|
|
l = [True] * pad + [True, True, True, True]
|
|
r = np.zeros(len(l)-pad)
|
|
d = np.ones(len(l)-pad)
|
|
mask = np.array(l)[pad:]
|
|
np.copyto(r, d, where=mask[::-1])
|
|
|
|
# test all permutation of possible masks, 9 should be sufficient for
|
|
# current 4 byte unrolled code
|
|
power = 9
|
|
d = np.ones(power)
|
|
for i in range(2**power):
|
|
r = np.zeros(power)
|
|
l = [(i & x) != 0 for x in range(power)]
|
|
mask = np.array(l)
|
|
np.copyto(r, d, where=mask)
|
|
assert_array_equal(r == 1, l)
|
|
assert_equal(r.sum(), sum(l))
|
|
|
|
r = np.zeros(power)
|
|
np.copyto(r, d, where=mask[::-1])
|
|
assert_array_equal(r == 1, l[::-1])
|
|
assert_equal(r.sum(), sum(l))
|
|
|
|
r = np.zeros(power)
|
|
np.copyto(r[::2], d[::2], where=mask[::2])
|
|
assert_array_equal(r[::2] == 1, l[::2])
|
|
assert_equal(r[::2].sum(), sum(l[::2]))
|
|
|
|
r = np.zeros(power)
|
|
np.copyto(r[::2], d[::2], where=mask[::-2])
|
|
assert_array_equal(r[::2] == 1, l[::-2])
|
|
assert_equal(r[::2].sum(), sum(l[::-2]))
|
|
|
|
for c in [0xFF, 0x7F, 0x02, 0x10]:
|
|
r = np.zeros(power)
|
|
mask = np.array(l)
|
|
imask = np.array(l).view(np.uint8)
|
|
imask[mask != 0] = c
|
|
np.copyto(r, d, where=mask)
|
|
assert_array_equal(r == 1, l)
|
|
assert_equal(r.sum(), sum(l))
|
|
|
|
r = np.zeros(power)
|
|
np.copyto(r, d, where=True)
|
|
assert_equal(r.sum(), r.size)
|
|
r = np.ones(power)
|
|
d = np.zeros(power)
|
|
np.copyto(r, d, where=False)
|
|
assert_equal(r.sum(), r.size)
|
|
|
|
def test_copy_order():
|
|
a = np.arange(24).reshape(2, 1, 3, 4)
|
|
b = a.copy(order='F')
|
|
c = np.arange(24).reshape(2, 1, 4, 3).swapaxes(2, 3)
|
|
|
|
def check_copy_result(x, y, ccontig, fcontig, strides=False):
|
|
assert_(not (x is y))
|
|
assert_equal(x, y)
|
|
assert_equal(res.flags.c_contiguous, ccontig)
|
|
assert_equal(res.flags.f_contiguous, fcontig)
|
|
# This check is impossible only because
|
|
# NPY_RELAXED_STRIDES_CHECKING changes the strides actively
|
|
if not NPY_RELAXED_STRIDES_CHECKING:
|
|
if strides:
|
|
assert_equal(x.strides, y.strides)
|
|
else:
|
|
assert_(x.strides != y.strides)
|
|
|
|
# Validate the initial state of a, b, and c
|
|
assert_(a.flags.c_contiguous)
|
|
assert_(not a.flags.f_contiguous)
|
|
assert_(not b.flags.c_contiguous)
|
|
assert_(b.flags.f_contiguous)
|
|
assert_(not c.flags.c_contiguous)
|
|
assert_(not c.flags.f_contiguous)
|
|
|
|
# Copy with order='C'
|
|
res = a.copy(order='C')
|
|
check_copy_result(res, a, ccontig=True, fcontig=False, strides=True)
|
|
res = b.copy(order='C')
|
|
check_copy_result(res, b, ccontig=True, fcontig=False, strides=False)
|
|
res = c.copy(order='C')
|
|
check_copy_result(res, c, ccontig=True, fcontig=False, strides=False)
|
|
res = np.copy(a, order='C')
|
|
check_copy_result(res, a, ccontig=True, fcontig=False, strides=True)
|
|
res = np.copy(b, order='C')
|
|
check_copy_result(res, b, ccontig=True, fcontig=False, strides=False)
|
|
res = np.copy(c, order='C')
|
|
check_copy_result(res, c, ccontig=True, fcontig=False, strides=False)
|
|
|
|
# Copy with order='F'
|
|
res = a.copy(order='F')
|
|
check_copy_result(res, a, ccontig=False, fcontig=True, strides=False)
|
|
res = b.copy(order='F')
|
|
check_copy_result(res, b, ccontig=False, fcontig=True, strides=True)
|
|
res = c.copy(order='F')
|
|
check_copy_result(res, c, ccontig=False, fcontig=True, strides=False)
|
|
res = np.copy(a, order='F')
|
|
check_copy_result(res, a, ccontig=False, fcontig=True, strides=False)
|
|
res = np.copy(b, order='F')
|
|
check_copy_result(res, b, ccontig=False, fcontig=True, strides=True)
|
|
res = np.copy(c, order='F')
|
|
check_copy_result(res, c, ccontig=False, fcontig=True, strides=False)
|
|
|
|
# Copy with order='K'
|
|
res = a.copy(order='K')
|
|
check_copy_result(res, a, ccontig=True, fcontig=False, strides=True)
|
|
res = b.copy(order='K')
|
|
check_copy_result(res, b, ccontig=False, fcontig=True, strides=True)
|
|
res = c.copy(order='K')
|
|
check_copy_result(res, c, ccontig=False, fcontig=False, strides=True)
|
|
res = np.copy(a, order='K')
|
|
check_copy_result(res, a, ccontig=True, fcontig=False, strides=True)
|
|
res = np.copy(b, order='K')
|
|
check_copy_result(res, b, ccontig=False, fcontig=True, strides=True)
|
|
res = np.copy(c, order='K')
|
|
check_copy_result(res, c, ccontig=False, fcontig=False, strides=True)
|
|
|
|
def test_contiguous_flags():
|
|
a = np.ones((4, 4, 1))[::2,:,:]
|
|
if NPY_RELAXED_STRIDES_CHECKING:
|
|
a.strides = a.strides[:2] + (-123,)
|
|
b = np.ones((2, 2, 1, 2, 2)).swapaxes(3, 4)
|
|
|
|
def check_contig(a, ccontig, fcontig):
|
|
assert_(a.flags.c_contiguous == ccontig)
|
|
assert_(a.flags.f_contiguous == fcontig)
|
|
|
|
# Check if new arrays are correct:
|
|
check_contig(a, False, False)
|
|
check_contig(b, False, False)
|
|
if NPY_RELAXED_STRIDES_CHECKING:
|
|
check_contig(np.empty((2, 2, 0, 2, 2)), True, True)
|
|
check_contig(np.array([[[1], [2]]], order='F'), True, True)
|
|
else:
|
|
check_contig(np.empty((2, 2, 0, 2, 2)), True, False)
|
|
check_contig(np.array([[[1], [2]]], order='F'), False, True)
|
|
check_contig(np.empty((2, 2)), True, False)
|
|
check_contig(np.empty((2, 2), order='F'), False, True)
|
|
|
|
# Check that np.array creates correct contiguous flags:
|
|
check_contig(np.array(a, copy=False), False, False)
|
|
check_contig(np.array(a, copy=False, order='C'), True, False)
|
|
check_contig(np.array(a, ndmin=4, copy=False, order='F'), False, True)
|
|
|
|
if NPY_RELAXED_STRIDES_CHECKING:
|
|
# Check slicing update of flags and :
|
|
check_contig(a[0], True, True)
|
|
check_contig(a[None, ::4, ..., None], True, True)
|
|
check_contig(b[0, 0, ...], False, True)
|
|
check_contig(b[:,:, 0:0,:,:], True, True)
|
|
else:
|
|
# Check slicing update of flags:
|
|
check_contig(a[0], True, False)
|
|
# Would be nice if this was C-Contiguous:
|
|
check_contig(a[None, 0, ..., None], False, False)
|
|
check_contig(b[0, 0, 0, ...], False, True)
|
|
|
|
# Test ravel and squeeze.
|
|
check_contig(a.ravel(), True, True)
|
|
check_contig(np.ones((1, 3, 1)).squeeze(), True, True)
|
|
|
|
def test_broadcast_arrays():
|
|
# Test user defined dtypes
|
|
a = np.array([(1, 2, 3)], dtype='u4,u4,u4')
|
|
b = np.array([(1, 2, 3), (4, 5, 6), (7, 8, 9)], dtype='u4,u4,u4')
|
|
result = np.broadcast_arrays(a, b)
|
|
assert_equal(result[0], np.array([(1, 2, 3), (1, 2, 3), (1, 2, 3)], dtype='u4,u4,u4'))
|
|
assert_equal(result[1], np.array([(1, 2, 3), (4, 5, 6), (7, 8, 9)], dtype='u4,u4,u4'))
|
|
|
|
if __name__ == "__main__":
|
|
run_module_suite()
|