1319 lines
49 KiB
Python
1319 lines
49 KiB
Python
from __future__ import division, absolute_import, print_function
|
|
|
|
import sys
|
|
import warnings
|
|
import functools
|
|
import operator
|
|
|
|
import numpy as np
|
|
from numpy.core.multiarray_tests import array_indexing
|
|
from itertools import product
|
|
from numpy.testing import (
|
|
run_module_suite, assert_, assert_equal, assert_raises,
|
|
assert_array_equal, assert_warns, dec, HAS_REFCOUNT, suppress_warnings,
|
|
)
|
|
|
|
|
|
try:
|
|
cdll = None
|
|
if hasattr(sys, 'gettotalrefcount'):
|
|
try:
|
|
cdll = np.ctypeslib.load_library('multiarray_d', np.core.multiarray.__file__)
|
|
except OSError:
|
|
pass
|
|
if cdll is None:
|
|
cdll = np.ctypeslib.load_library('multiarray', np.core.multiarray.__file__)
|
|
_HAS_CTYPE = True
|
|
except ImportError:
|
|
_HAS_CTYPE = False
|
|
|
|
|
|
class TestIndexing(object):
|
|
def test_index_no_floats(self):
|
|
a = np.array([[[5]]])
|
|
|
|
assert_raises(IndexError, lambda: a[0.0])
|
|
assert_raises(IndexError, lambda: a[0, 0.0])
|
|
assert_raises(IndexError, lambda: a[0.0, 0])
|
|
assert_raises(IndexError, lambda: a[0.0,:])
|
|
assert_raises(IndexError, lambda: a[:, 0.0])
|
|
assert_raises(IndexError, lambda: a[:, 0.0,:])
|
|
assert_raises(IndexError, lambda: a[0.0,:,:])
|
|
assert_raises(IndexError, lambda: a[0, 0, 0.0])
|
|
assert_raises(IndexError, lambda: a[0.0, 0, 0])
|
|
assert_raises(IndexError, lambda: a[0, 0.0, 0])
|
|
assert_raises(IndexError, lambda: a[-1.4])
|
|
assert_raises(IndexError, lambda: a[0, -1.4])
|
|
assert_raises(IndexError, lambda: a[-1.4, 0])
|
|
assert_raises(IndexError, lambda: a[-1.4,:])
|
|
assert_raises(IndexError, lambda: a[:, -1.4])
|
|
assert_raises(IndexError, lambda: a[:, -1.4,:])
|
|
assert_raises(IndexError, lambda: a[-1.4,:,:])
|
|
assert_raises(IndexError, lambda: a[0, 0, -1.4])
|
|
assert_raises(IndexError, lambda: a[-1.4, 0, 0])
|
|
assert_raises(IndexError, lambda: a[0, -1.4, 0])
|
|
assert_raises(IndexError, lambda: a[0.0:, 0.0])
|
|
assert_raises(IndexError, lambda: a[0.0:, 0.0,:])
|
|
|
|
def test_slicing_no_floats(self):
|
|
a = np.array([[5]])
|
|
|
|
# start as float.
|
|
assert_raises(TypeError, lambda: a[0.0:])
|
|
assert_raises(TypeError, lambda: a[0:, 0.0:2])
|
|
assert_raises(TypeError, lambda: a[0.0::2, :0])
|
|
assert_raises(TypeError, lambda: a[0.0:1:2,:])
|
|
assert_raises(TypeError, lambda: a[:, 0.0:])
|
|
# stop as float.
|
|
assert_raises(TypeError, lambda: a[:0.0])
|
|
assert_raises(TypeError, lambda: a[:0, 1:2.0])
|
|
assert_raises(TypeError, lambda: a[:0.0:2, :0])
|
|
assert_raises(TypeError, lambda: a[:0.0,:])
|
|
assert_raises(TypeError, lambda: a[:, 0:4.0:2])
|
|
# step as float.
|
|
assert_raises(TypeError, lambda: a[::1.0])
|
|
assert_raises(TypeError, lambda: a[0:, :2:2.0])
|
|
assert_raises(TypeError, lambda: a[1::4.0, :0])
|
|
assert_raises(TypeError, lambda: a[::5.0,:])
|
|
assert_raises(TypeError, lambda: a[:, 0:4:2.0])
|
|
# mixed.
|
|
assert_raises(TypeError, lambda: a[1.0:2:2.0])
|
|
assert_raises(TypeError, lambda: a[1.0::2.0])
|
|
assert_raises(TypeError, lambda: a[0:, :2.0:2.0])
|
|
assert_raises(TypeError, lambda: a[1.0:1:4.0, :0])
|
|
assert_raises(TypeError, lambda: a[1.0:5.0:5.0,:])
|
|
assert_raises(TypeError, lambda: a[:, 0.4:4.0:2.0])
|
|
# should still get the DeprecationWarning if step = 0.
|
|
assert_raises(TypeError, lambda: a[::0.0])
|
|
|
|
def test_index_no_array_to_index(self):
|
|
# No non-scalar arrays.
|
|
a = np.array([[[1]]])
|
|
|
|
assert_raises(TypeError, lambda: a[a:a:a])
|
|
|
|
def test_none_index(self):
|
|
# `None` index adds newaxis
|
|
a = np.array([1, 2, 3])
|
|
assert_equal(a[None], a[np.newaxis])
|
|
assert_equal(a[None].ndim, a.ndim + 1)
|
|
|
|
def test_empty_tuple_index(self):
|
|
# Empty tuple index creates a view
|
|
a = np.array([1, 2, 3])
|
|
assert_equal(a[()], a)
|
|
assert_(a[()].base is a)
|
|
a = np.array(0)
|
|
assert_(isinstance(a[()], np.int_))
|
|
|
|
def test_void_scalar_empty_tuple(self):
|
|
s = np.zeros((), dtype='V4')
|
|
assert_equal(s[()].dtype, s.dtype)
|
|
assert_equal(s[()], s)
|
|
assert_equal(type(s[...]), np.ndarray)
|
|
|
|
def test_same_kind_index_casting(self):
|
|
# Indexes should be cast with same-kind and not safe, even if that
|
|
# is somewhat unsafe. So test various different code paths.
|
|
index = np.arange(5)
|
|
u_index = index.astype(np.uintp)
|
|
arr = np.arange(10)
|
|
|
|
assert_array_equal(arr[index], arr[u_index])
|
|
arr[u_index] = np.arange(5)
|
|
assert_array_equal(arr, np.arange(10))
|
|
|
|
arr = np.arange(10).reshape(5, 2)
|
|
assert_array_equal(arr[index], arr[u_index])
|
|
|
|
arr[u_index] = np.arange(5)[:,None]
|
|
assert_array_equal(arr, np.arange(5)[:,None].repeat(2, axis=1))
|
|
|
|
arr = np.arange(25).reshape(5, 5)
|
|
assert_array_equal(arr[u_index, u_index], arr[index, index])
|
|
|
|
def test_empty_fancy_index(self):
|
|
# Empty list index creates an empty array
|
|
# with the same dtype (but with weird shape)
|
|
a = np.array([1, 2, 3])
|
|
assert_equal(a[[]], [])
|
|
assert_equal(a[[]].dtype, a.dtype)
|
|
|
|
b = np.array([], dtype=np.intp)
|
|
assert_equal(a[[]], [])
|
|
assert_equal(a[[]].dtype, a.dtype)
|
|
|
|
b = np.array([])
|
|
assert_raises(IndexError, a.__getitem__, b)
|
|
|
|
def test_ellipsis_index(self):
|
|
a = np.array([[1, 2, 3],
|
|
[4, 5, 6],
|
|
[7, 8, 9]])
|
|
assert_(a[...] is not a)
|
|
assert_equal(a[...], a)
|
|
# `a[...]` was `a` in numpy <1.9.
|
|
assert_(a[...].base is a)
|
|
|
|
# Slicing with ellipsis can skip an
|
|
# arbitrary number of dimensions
|
|
assert_equal(a[0, ...], a[0])
|
|
assert_equal(a[0, ...], a[0,:])
|
|
assert_equal(a[..., 0], a[:, 0])
|
|
|
|
# Slicing with ellipsis always results
|
|
# in an array, not a scalar
|
|
assert_equal(a[0, ..., 1], np.array(2))
|
|
|
|
# Assignment with `(Ellipsis,)` on 0-d arrays
|
|
b = np.array(1)
|
|
b[(Ellipsis,)] = 2
|
|
assert_equal(b, 2)
|
|
|
|
def test_single_int_index(self):
|
|
# Single integer index selects one row
|
|
a = np.array([[1, 2, 3],
|
|
[4, 5, 6],
|
|
[7, 8, 9]])
|
|
|
|
assert_equal(a[0], [1, 2, 3])
|
|
assert_equal(a[-1], [7, 8, 9])
|
|
|
|
# Index out of bounds produces IndexError
|
|
assert_raises(IndexError, a.__getitem__, 1 << 30)
|
|
# Index overflow produces IndexError
|
|
assert_raises(IndexError, a.__getitem__, 1 << 64)
|
|
|
|
def test_single_bool_index(self):
|
|
# Single boolean index
|
|
a = np.array([[1, 2, 3],
|
|
[4, 5, 6],
|
|
[7, 8, 9]])
|
|
|
|
assert_equal(a[np.array(True)], a[None])
|
|
assert_equal(a[np.array(False)], a[None][0:0])
|
|
|
|
def test_boolean_shape_mismatch(self):
|
|
arr = np.ones((5, 4, 3))
|
|
|
|
index = np.array([True])
|
|
assert_raises(IndexError, arr.__getitem__, index)
|
|
|
|
index = np.array([False] * 6)
|
|
assert_raises(IndexError, arr.__getitem__, index)
|
|
|
|
index = np.zeros((4, 4), dtype=bool)
|
|
assert_raises(IndexError, arr.__getitem__, index)
|
|
|
|
assert_raises(IndexError, arr.__getitem__, (slice(None), index))
|
|
|
|
|
|
def test_boolean_indexing_onedim(self):
|
|
# Indexing a 2-dimensional array with
|
|
# boolean array of length one
|
|
a = np.array([[ 0., 0., 0.]])
|
|
b = np.array([ True], dtype=bool)
|
|
assert_equal(a[b], a)
|
|
# boolean assignment
|
|
a[b] = 1.
|
|
assert_equal(a, [[1., 1., 1.]])
|
|
|
|
def test_boolean_assignment_value_mismatch(self):
|
|
# A boolean assignment should fail when the shape of the values
|
|
# cannot be broadcast to the subscription. (see also gh-3458)
|
|
a = np.arange(4)
|
|
|
|
def f(a, v):
|
|
a[a > -1] = v
|
|
|
|
assert_raises(ValueError, f, a, [])
|
|
assert_raises(ValueError, f, a, [1, 2, 3])
|
|
assert_raises(ValueError, f, a[:1], [1, 2, 3])
|
|
|
|
def test_boolean_assignment_needs_api(self):
|
|
# See also gh-7666
|
|
# This caused a segfault on Python 2 due to the GIL not being
|
|
# held when the iterator does not need it, but the transfer function
|
|
# does
|
|
arr = np.zeros(1000)
|
|
indx = np.zeros(1000, dtype=bool)
|
|
indx[:100] = True
|
|
arr[indx] = np.ones(100, dtype=object)
|
|
|
|
expected = np.zeros(1000)
|
|
expected[:100] = 1
|
|
assert_array_equal(arr, expected)
|
|
|
|
def test_boolean_indexing_twodim(self):
|
|
# Indexing a 2-dimensional array with
|
|
# 2-dimensional boolean array
|
|
a = np.array([[1, 2, 3],
|
|
[4, 5, 6],
|
|
[7, 8, 9]])
|
|
b = np.array([[ True, False, True],
|
|
[False, True, False],
|
|
[ True, False, True]])
|
|
assert_equal(a[b], [1, 3, 5, 7, 9])
|
|
assert_equal(a[b[1]], [[4, 5, 6]])
|
|
assert_equal(a[b[0]], a[b[2]])
|
|
|
|
# boolean assignment
|
|
a[b] = 0
|
|
assert_equal(a, [[0, 2, 0],
|
|
[4, 0, 6],
|
|
[0, 8, 0]])
|
|
|
|
def test_reverse_strides_and_subspace_bufferinit(self):
|
|
# This tests that the strides are not reversed for simple and
|
|
# subspace fancy indexing.
|
|
a = np.ones(5)
|
|
b = np.zeros(5, dtype=np.intp)[::-1]
|
|
c = np.arange(5)[::-1]
|
|
|
|
a[b] = c
|
|
# If the strides are not reversed, the 0 in the arange comes last.
|
|
assert_equal(a[0], 0)
|
|
|
|
# This also tests that the subspace buffer is initialized:
|
|
a = np.ones((5, 2))
|
|
c = np.arange(10).reshape(5, 2)[::-1]
|
|
a[b, :] = c
|
|
assert_equal(a[0], [0, 1])
|
|
|
|
def test_reversed_strides_result_allocation(self):
|
|
# Test a bug when calculating the output strides for a result array
|
|
# when the subspace size was 1 (and test other cases as well)
|
|
a = np.arange(10)[:, None]
|
|
i = np.arange(10)[::-1]
|
|
assert_array_equal(a[i], a[i.copy('C')])
|
|
|
|
a = np.arange(20).reshape(-1, 2)
|
|
|
|
def test_uncontiguous_subspace_assignment(self):
|
|
# During development there was a bug activating a skip logic
|
|
# based on ndim instead of size.
|
|
a = np.full((3, 4, 2), -1)
|
|
b = np.full((3, 4, 2), -1)
|
|
|
|
a[[0, 1]] = np.arange(2 * 4 * 2).reshape(2, 4, 2).T
|
|
b[[0, 1]] = np.arange(2 * 4 * 2).reshape(2, 4, 2).T.copy()
|
|
|
|
assert_equal(a, b)
|
|
|
|
def test_too_many_fancy_indices_special_case(self):
|
|
# Just documents behaviour, this is a small limitation.
|
|
a = np.ones((1,) * 32) # 32 is NPY_MAXDIMS
|
|
assert_raises(IndexError, a.__getitem__, (np.array([0]),) * 32)
|
|
|
|
def test_scalar_array_bool(self):
|
|
# NumPy bools can be used as boolean index (python ones as of yet not)
|
|
a = np.array(1)
|
|
assert_equal(a[np.bool_(True)], a[np.array(True)])
|
|
assert_equal(a[np.bool_(False)], a[np.array(False)])
|
|
|
|
# After deprecating bools as integers:
|
|
#a = np.array([0,1,2])
|
|
#assert_equal(a[True, :], a[None, :])
|
|
#assert_equal(a[:, True], a[:, None])
|
|
#
|
|
#assert_(not np.may_share_memory(a, a[True, :]))
|
|
|
|
def test_everything_returns_views(self):
|
|
# Before `...` would return a itself.
|
|
a = np.arange(5)
|
|
|
|
assert_(a is not a[()])
|
|
assert_(a is not a[...])
|
|
assert_(a is not a[:])
|
|
|
|
def test_broaderrors_indexing(self):
|
|
a = np.zeros((5, 5))
|
|
assert_raises(IndexError, a.__getitem__, ([0, 1], [0, 1, 2]))
|
|
assert_raises(IndexError, a.__setitem__, ([0, 1], [0, 1, 2]), 0)
|
|
|
|
def test_trivial_fancy_out_of_bounds(self):
|
|
a = np.zeros(5)
|
|
ind = np.ones(20, dtype=np.intp)
|
|
ind[-1] = 10
|
|
assert_raises(IndexError, a.__getitem__, ind)
|
|
assert_raises(IndexError, a.__setitem__, ind, 0)
|
|
ind = np.ones(20, dtype=np.intp)
|
|
ind[0] = 11
|
|
assert_raises(IndexError, a.__getitem__, ind)
|
|
assert_raises(IndexError, a.__setitem__, ind, 0)
|
|
|
|
def test_nonbaseclass_values(self):
|
|
class SubClass(np.ndarray):
|
|
def __array_finalize__(self, old):
|
|
# Have array finalize do funny things
|
|
self.fill(99)
|
|
|
|
a = np.zeros((5, 5))
|
|
s = a.copy().view(type=SubClass)
|
|
s.fill(1)
|
|
|
|
a[[0, 1, 2, 3, 4], :] = s
|
|
assert_((a == 1).all())
|
|
|
|
# Subspace is last, so transposing might want to finalize
|
|
a[:, [0, 1, 2, 3, 4]] = s
|
|
assert_((a == 1).all())
|
|
|
|
a.fill(0)
|
|
a[...] = s
|
|
assert_((a == 1).all())
|
|
|
|
def test_subclass_writeable(self):
|
|
d = np.rec.array([('NGC1001', 11), ('NGC1002', 1.), ('NGC1003', 1.)],
|
|
dtype=[('target', 'S20'), ('V_mag', '>f4')])
|
|
ind = np.array([False, True, True], dtype=bool)
|
|
assert_(d[ind].flags.writeable)
|
|
ind = np.array([0, 1])
|
|
assert_(d[ind].flags.writeable)
|
|
assert_(d[...].flags.writeable)
|
|
assert_(d[0].flags.writeable)
|
|
|
|
def test_memory_order(self):
|
|
# This is not necessary to preserve. Memory layouts for
|
|
# more complex indices are not as simple.
|
|
a = np.arange(10)
|
|
b = np.arange(10).reshape(5,2).T
|
|
assert_(a[b].flags.f_contiguous)
|
|
|
|
# Takes a different implementation branch:
|
|
a = a.reshape(-1, 1)
|
|
assert_(a[b, 0].flags.f_contiguous)
|
|
|
|
def test_scalar_return_type(self):
|
|
# Full scalar indices should return scalars and object
|
|
# arrays should not call PyArray_Return on their items
|
|
class Zero(object):
|
|
# The most basic valid indexing
|
|
def __index__(self):
|
|
return 0
|
|
|
|
z = Zero()
|
|
|
|
class ArrayLike(object):
|
|
# Simple array, should behave like the array
|
|
def __array__(self):
|
|
return np.array(0)
|
|
|
|
a = np.zeros(())
|
|
assert_(isinstance(a[()], np.float_))
|
|
a = np.zeros(1)
|
|
assert_(isinstance(a[z], np.float_))
|
|
a = np.zeros((1, 1))
|
|
assert_(isinstance(a[z, np.array(0)], np.float_))
|
|
assert_(isinstance(a[z, ArrayLike()], np.float_))
|
|
|
|
# And object arrays do not call it too often:
|
|
b = np.array(0)
|
|
a = np.array(0, dtype=object)
|
|
a[()] = b
|
|
assert_(isinstance(a[()], np.ndarray))
|
|
a = np.array([b, None])
|
|
assert_(isinstance(a[z], np.ndarray))
|
|
a = np.array([[b, None]])
|
|
assert_(isinstance(a[z, np.array(0)], np.ndarray))
|
|
assert_(isinstance(a[z, ArrayLike()], np.ndarray))
|
|
|
|
def test_small_regressions(self):
|
|
# Reference count of intp for index checks
|
|
a = np.array([0])
|
|
if HAS_REFCOUNT:
|
|
refcount = sys.getrefcount(np.dtype(np.intp))
|
|
# item setting always checks indices in separate function:
|
|
a[np.array([0], dtype=np.intp)] = 1
|
|
a[np.array([0], dtype=np.uint8)] = 1
|
|
assert_raises(IndexError, a.__setitem__,
|
|
np.array([1], dtype=np.intp), 1)
|
|
assert_raises(IndexError, a.__setitem__,
|
|
np.array([1], dtype=np.uint8), 1)
|
|
|
|
if HAS_REFCOUNT:
|
|
assert_equal(sys.getrefcount(np.dtype(np.intp)), refcount)
|
|
|
|
def test_unaligned(self):
|
|
v = (np.zeros(64, dtype=np.int8) + ord('a'))[1:-7]
|
|
d = v.view(np.dtype("S8"))
|
|
# unaligned source
|
|
x = (np.zeros(16, dtype=np.int8) + ord('a'))[1:-7]
|
|
x = x.view(np.dtype("S8"))
|
|
x[...] = np.array("b" * 8, dtype="S")
|
|
b = np.arange(d.size)
|
|
#trivial
|
|
assert_equal(d[b], d)
|
|
d[b] = x
|
|
# nontrivial
|
|
# unaligned index array
|
|
b = np.zeros(d.size + 1).view(np.int8)[1:-(np.intp(0).itemsize - 1)]
|
|
b = b.view(np.intp)[:d.size]
|
|
b[...] = np.arange(d.size)
|
|
assert_equal(d[b.astype(np.int16)], d)
|
|
d[b.astype(np.int16)] = x
|
|
# boolean
|
|
d[b % 2 == 0]
|
|
d[b % 2 == 0] = x[::2]
|
|
|
|
def test_tuple_subclass(self):
|
|
arr = np.ones((5, 5))
|
|
|
|
# A tuple subclass should also be an nd-index
|
|
class TupleSubclass(tuple):
|
|
pass
|
|
index = ([1], [1])
|
|
index = TupleSubclass(index)
|
|
assert_(arr[index].shape == (1,))
|
|
# Unlike the non nd-index:
|
|
assert_(arr[index,].shape != (1,))
|
|
|
|
def test_broken_sequence_not_nd_index(self):
|
|
# See gh-5063:
|
|
# If we have an object which claims to be a sequence, but fails
|
|
# on item getting, this should not be converted to an nd-index (tuple)
|
|
# If this object happens to be a valid index otherwise, it should work
|
|
# This object here is very dubious and probably bad though:
|
|
class SequenceLike(object):
|
|
def __index__(self):
|
|
return 0
|
|
|
|
def __len__(self):
|
|
return 1
|
|
|
|
def __getitem__(self, item):
|
|
raise IndexError('Not possible')
|
|
|
|
arr = np.arange(10)
|
|
assert_array_equal(arr[SequenceLike()], arr[SequenceLike(),])
|
|
|
|
# also test that field indexing does not segfault
|
|
# for a similar reason, by indexing a structured array
|
|
arr = np.zeros((1,), dtype=[('f1', 'i8'), ('f2', 'i8')])
|
|
assert_array_equal(arr[SequenceLike()], arr[SequenceLike(),])
|
|
|
|
def test_indexing_array_weird_strides(self):
|
|
# See also gh-6221
|
|
# the shapes used here come from the issue and create the correct
|
|
# size for the iterator buffering size.
|
|
x = np.ones(10)
|
|
x2 = np.ones((10, 2))
|
|
ind = np.arange(10)[:, None, None, None]
|
|
ind = np.broadcast_to(ind, (10, 55, 4, 4))
|
|
|
|
# single advanced index case
|
|
assert_array_equal(x[ind], x[ind.copy()])
|
|
# higher dimensional advanced index
|
|
zind = np.zeros(4, dtype=np.intp)
|
|
assert_array_equal(x2[ind, zind], x2[ind.copy(), zind])
|
|
|
|
def test_indexing_array_negative_strides(self):
|
|
# From gh-8264,
|
|
# core dumps if negative strides are used in iteration
|
|
arro = np.zeros((4, 4))
|
|
arr = arro[::-1, ::-1]
|
|
|
|
slices = [slice(None), [0, 1, 2, 3]]
|
|
arr[slices] = 10
|
|
assert_array_equal(arr, 10.)
|
|
|
|
class TestFieldIndexing(object):
|
|
def test_scalar_return_type(self):
|
|
# Field access on an array should return an array, even if it
|
|
# is 0-d.
|
|
a = np.zeros((), [('a','f8')])
|
|
assert_(isinstance(a['a'], np.ndarray))
|
|
assert_(isinstance(a[['a']], np.ndarray))
|
|
|
|
|
|
class TestBroadcastedAssignments(object):
|
|
def assign(self, a, ind, val):
|
|
a[ind] = val
|
|
return a
|
|
|
|
def test_prepending_ones(self):
|
|
a = np.zeros((3, 2))
|
|
|
|
a[...] = np.ones((1, 3, 2))
|
|
# Fancy with subspace with and without transpose
|
|
a[[0, 1, 2], :] = np.ones((1, 3, 2))
|
|
a[:, [0, 1]] = np.ones((1, 3, 2))
|
|
# Fancy without subspace (with broadcasting)
|
|
a[[[0], [1], [2]], [0, 1]] = np.ones((1, 3, 2))
|
|
|
|
def test_prepend_not_one(self):
|
|
assign = self.assign
|
|
s_ = np.s_
|
|
a = np.zeros(5)
|
|
|
|
# Too large and not only ones.
|
|
assert_raises(ValueError, assign, a, s_[...], np.ones((2, 1)))
|
|
assert_raises(ValueError, assign, a, s_[[1, 2, 3],], np.ones((2, 1)))
|
|
assert_raises(ValueError, assign, a, s_[[[1], [2]],], np.ones((2,2,1)))
|
|
|
|
def test_simple_broadcasting_errors(self):
|
|
assign = self.assign
|
|
s_ = np.s_
|
|
a = np.zeros((5, 1))
|
|
|
|
assert_raises(ValueError, assign, a, s_[...], np.zeros((5, 2)))
|
|
assert_raises(ValueError, assign, a, s_[...], np.zeros((5, 0)))
|
|
assert_raises(ValueError, assign, a, s_[:, [0]], np.zeros((5, 2)))
|
|
assert_raises(ValueError, assign, a, s_[:, [0]], np.zeros((5, 0)))
|
|
assert_raises(ValueError, assign, a, s_[[0], :], np.zeros((2, 1)))
|
|
|
|
def test_index_is_larger(self):
|
|
# Simple case of fancy index broadcasting of the index.
|
|
a = np.zeros((5, 5))
|
|
a[[[0], [1], [2]], [0, 1, 2]] = [2, 3, 4]
|
|
|
|
assert_((a[:3, :3] == [2, 3, 4]).all())
|
|
|
|
def test_broadcast_subspace(self):
|
|
a = np.zeros((100, 100))
|
|
v = np.arange(100)[:,None]
|
|
b = np.arange(100)[::-1]
|
|
a[b] = v
|
|
assert_((a[::-1] == v).all())
|
|
|
|
|
|
class TestSubclasses(object):
|
|
def test_basic(self):
|
|
class SubClass(np.ndarray):
|
|
pass
|
|
|
|
s = np.arange(5).view(SubClass)
|
|
assert_(isinstance(s[:3], SubClass))
|
|
assert_(s[:3].base is s)
|
|
|
|
assert_(isinstance(s[[0, 1, 2]], SubClass))
|
|
assert_(isinstance(s[s > 0], SubClass))
|
|
|
|
def test_matrix_fancy(self):
|
|
# The matrix class messes with the shape. While this is always
|
|
# weird (getitem is not used, it does not have setitem nor knows
|
|
# about fancy indexing), this tests gh-3110
|
|
m = np.matrix([[1, 2], [3, 4]])
|
|
|
|
assert_(isinstance(m[[0,1,0], :], np.matrix))
|
|
|
|
# gh-3110. Note the transpose currently because matrices do *not*
|
|
# support dimension fixing for fancy indexing correctly.
|
|
x = np.asmatrix(np.arange(50).reshape(5,10))
|
|
assert_equal(x[:2, np.array(-1)], x[:2, -1].T)
|
|
|
|
def test_finalize_gets_full_info(self):
|
|
# Array finalize should be called on the filled array.
|
|
class SubClass(np.ndarray):
|
|
def __array_finalize__(self, old):
|
|
self.finalize_status = np.array(self)
|
|
self.old = old
|
|
|
|
s = np.arange(10).view(SubClass)
|
|
new_s = s[:3]
|
|
assert_array_equal(new_s.finalize_status, new_s)
|
|
assert_array_equal(new_s.old, s)
|
|
|
|
new_s = s[[0,1,2,3]]
|
|
assert_array_equal(new_s.finalize_status, new_s)
|
|
assert_array_equal(new_s.old, s)
|
|
|
|
new_s = s[s > 0]
|
|
assert_array_equal(new_s.finalize_status, new_s)
|
|
assert_array_equal(new_s.old, s)
|
|
|
|
@dec.skipif(not HAS_REFCOUNT)
|
|
def test_slice_decref_getsetslice(self):
|
|
# See gh-10066, a temporary slice object should be discarted.
|
|
# This test is only really interesting on Python 2 since
|
|
# it goes through `__set/getslice__` here and can probably be
|
|
# removed. Use 0:7 to make sure it is never None:7.
|
|
class KeepIndexObject(np.ndarray):
|
|
def __getitem__(self, indx):
|
|
self.indx = indx
|
|
if indx == slice(0, 7):
|
|
raise ValueError
|
|
|
|
def __setitem__(self, indx, val):
|
|
self.indx = indx
|
|
if indx == slice(0, 4):
|
|
raise ValueError
|
|
|
|
k = np.array([1]).view(KeepIndexObject)
|
|
k[0:5]
|
|
assert_equal(k.indx, slice(0, 5))
|
|
assert_equal(sys.getrefcount(k.indx), 2)
|
|
try:
|
|
k[0:7]
|
|
raise AssertionError
|
|
except ValueError:
|
|
# The exception holds a reference to the slice so clear on Py2
|
|
if hasattr(sys, 'exc_clear'):
|
|
with suppress_warnings() as sup:
|
|
sup.filter(DeprecationWarning)
|
|
sys.exc_clear()
|
|
assert_equal(k.indx, slice(0, 7))
|
|
assert_equal(sys.getrefcount(k.indx), 2)
|
|
|
|
k[0:3] = 6
|
|
assert_equal(k.indx, slice(0, 3))
|
|
assert_equal(sys.getrefcount(k.indx), 2)
|
|
try:
|
|
k[0:4] = 2
|
|
raise AssertionError
|
|
except ValueError:
|
|
# The exception holds a reference to the slice so clear on Py2
|
|
if hasattr(sys, 'exc_clear'):
|
|
with suppress_warnings() as sup:
|
|
sup.filter(DeprecationWarning)
|
|
sys.exc_clear()
|
|
assert_equal(k.indx, slice(0, 4))
|
|
assert_equal(sys.getrefcount(k.indx), 2)
|
|
|
|
|
|
class TestFancyIndexingCast(object):
|
|
def test_boolean_index_cast_assign(self):
|
|
# Setup the boolean index and float arrays.
|
|
shape = (8, 63)
|
|
bool_index = np.zeros(shape).astype(bool)
|
|
bool_index[0, 1] = True
|
|
zero_array = np.zeros(shape)
|
|
|
|
# Assigning float is fine.
|
|
zero_array[bool_index] = np.array([1])
|
|
assert_equal(zero_array[0, 1], 1)
|
|
|
|
# Fancy indexing works, although we get a cast warning.
|
|
assert_warns(np.ComplexWarning,
|
|
zero_array.__setitem__, ([0], [1]), np.array([2 + 1j]))
|
|
assert_equal(zero_array[0, 1], 2) # No complex part
|
|
|
|
# Cast complex to float, throwing away the imaginary portion.
|
|
assert_warns(np.ComplexWarning,
|
|
zero_array.__setitem__, bool_index, np.array([1j]))
|
|
assert_equal(zero_array[0, 1], 0)
|
|
|
|
class TestFancyIndexingEquivalence(object):
|
|
def test_object_assign(self):
|
|
# Check that the field and object special case using copyto is active.
|
|
# The right hand side cannot be converted to an array here.
|
|
a = np.arange(5, dtype=object)
|
|
b = a.copy()
|
|
a[:3] = [1, (1,2), 3]
|
|
b[[0, 1, 2]] = [1, (1,2), 3]
|
|
assert_array_equal(a, b)
|
|
|
|
# test same for subspace fancy indexing
|
|
b = np.arange(5, dtype=object)[None, :]
|
|
b[[0], :3] = [[1, (1,2), 3]]
|
|
assert_array_equal(a, b[0])
|
|
|
|
# Check that swapping of axes works.
|
|
# There was a bug that made the later assignment throw a ValueError
|
|
# do to an incorrectly transposed temporary right hand side (gh-5714)
|
|
b = b.T
|
|
b[:3, [0]] = [[1], [(1,2)], [3]]
|
|
assert_array_equal(a, b[:, 0])
|
|
|
|
# Another test for the memory order of the subspace
|
|
arr = np.ones((3, 4, 5), dtype=object)
|
|
# Equivalent slicing assignment for comparison
|
|
cmp_arr = arr.copy()
|
|
cmp_arr[:1, ...] = [[[1], [2], [3], [4]]]
|
|
arr[[0], ...] = [[[1], [2], [3], [4]]]
|
|
assert_array_equal(arr, cmp_arr)
|
|
arr = arr.copy('F')
|
|
arr[[0], ...] = [[[1], [2], [3], [4]]]
|
|
assert_array_equal(arr, cmp_arr)
|
|
|
|
def test_cast_equivalence(self):
|
|
# Yes, normal slicing uses unsafe casting.
|
|
a = np.arange(5)
|
|
b = a.copy()
|
|
|
|
a[:3] = np.array(['2', '-3', '-1'])
|
|
b[[0, 2, 1]] = np.array(['2', '-1', '-3'])
|
|
assert_array_equal(a, b)
|
|
|
|
# test the same for subspace fancy indexing
|
|
b = np.arange(5)[None, :]
|
|
b[[0], :3] = np.array([['2', '-3', '-1']])
|
|
assert_array_equal(a, b[0])
|
|
|
|
|
|
class TestMultiIndexingAutomated(object):
|
|
"""
|
|
These tests use code to mimic the C-Code indexing for selection.
|
|
|
|
NOTE:
|
|
|
|
* This still lacks tests for complex item setting.
|
|
* If you change behavior of indexing, you might want to modify
|
|
these tests to try more combinations.
|
|
* Behavior was written to match numpy version 1.8. (though a
|
|
first version matched 1.7.)
|
|
* Only tuple indices are supported by the mimicking code.
|
|
(and tested as of writing this)
|
|
* Error types should match most of the time as long as there
|
|
is only one error. For multiple errors, what gets raised
|
|
will usually not be the same one. They are *not* tested.
|
|
|
|
Update 2016-11-30: It is probably not worth maintaining this test
|
|
indefinitely and it can be dropped if maintenance becomes a burden.
|
|
|
|
"""
|
|
|
|
def setup(self):
|
|
self.a = np.arange(np.prod([3, 1, 5, 6])).reshape(3, 1, 5, 6)
|
|
self.b = np.empty((3, 0, 5, 6))
|
|
self.complex_indices = ['skip', Ellipsis,
|
|
0,
|
|
# Boolean indices, up to 3-d for some special cases of eating up
|
|
# dimensions, also need to test all False
|
|
np.array([True, False, False]),
|
|
np.array([[True, False], [False, True]]),
|
|
np.array([[[False, False], [False, False]]]),
|
|
# Some slices:
|
|
slice(-5, 5, 2),
|
|
slice(1, 1, 100),
|
|
slice(4, -1, -2),
|
|
slice(None, None, -3),
|
|
# Some Fancy indexes:
|
|
np.empty((0, 1, 1), dtype=np.intp), # empty and can be broadcast
|
|
np.array([0, 1, -2]),
|
|
np.array([[2], [0], [1]]),
|
|
np.array([[0, -1], [0, 1]], dtype=np.dtype('intp').newbyteorder()),
|
|
np.array([2, -1], dtype=np.int8),
|
|
np.zeros([1]*31, dtype=int), # trigger too large array.
|
|
np.array([0., 1.])] # invalid datatype
|
|
# Some simpler indices that still cover a bit more
|
|
self.simple_indices = [Ellipsis, None, -1, [1], np.array([True]),
|
|
'skip']
|
|
# Very simple ones to fill the rest:
|
|
self.fill_indices = [slice(None, None), 0]
|
|
|
|
def _get_multi_index(self, arr, indices):
|
|
"""Mimic multi dimensional indexing.
|
|
|
|
Parameters
|
|
----------
|
|
arr : ndarray
|
|
Array to be indexed.
|
|
indices : tuple of index objects
|
|
|
|
Returns
|
|
-------
|
|
out : ndarray
|
|
An array equivalent to the indexing operation (but always a copy).
|
|
`arr[indices]` should be identical.
|
|
no_copy : bool
|
|
Whether the indexing operation requires a copy. If this is `True`,
|
|
`np.may_share_memory(arr, arr[indicies])` should be `True` (with
|
|
some exceptions for scalars and possibly 0-d arrays).
|
|
|
|
Notes
|
|
-----
|
|
While the function may mostly match the errors of normal indexing this
|
|
is generally not the case.
|
|
"""
|
|
in_indices = list(indices)
|
|
indices = []
|
|
# if False, this is a fancy or boolean index
|
|
no_copy = True
|
|
# number of fancy/scalar indexes that are not consecutive
|
|
num_fancy = 0
|
|
# number of dimensions indexed by a "fancy" index
|
|
fancy_dim = 0
|
|
# NOTE: This is a funny twist (and probably OK to change).
|
|
# The boolean array has illegal indexes, but this is
|
|
# allowed if the broadcast fancy-indices are 0-sized.
|
|
# This variable is to catch that case.
|
|
error_unless_broadcast_to_empty = False
|
|
|
|
# We need to handle Ellipsis and make arrays from indices, also
|
|
# check if this is fancy indexing (set no_copy).
|
|
ndim = 0
|
|
ellipsis_pos = None # define here mostly to replace all but first.
|
|
for i, indx in enumerate(in_indices):
|
|
if indx is None:
|
|
continue
|
|
if isinstance(indx, np.ndarray) and indx.dtype == bool:
|
|
no_copy = False
|
|
if indx.ndim == 0:
|
|
raise IndexError
|
|
# boolean indices can have higher dimensions
|
|
ndim += indx.ndim
|
|
fancy_dim += indx.ndim
|
|
continue
|
|
if indx is Ellipsis:
|
|
if ellipsis_pos is None:
|
|
ellipsis_pos = i
|
|
continue # do not increment ndim counter
|
|
raise IndexError
|
|
if isinstance(indx, slice):
|
|
ndim += 1
|
|
continue
|
|
if not isinstance(indx, np.ndarray):
|
|
# This could be open for changes in numpy.
|
|
# numpy should maybe raise an error if casting to intp
|
|
# is not safe. It rejects np.array([1., 2.]) but not
|
|
# [1., 2.] as index (same for ie. np.take).
|
|
# (Note the importance of empty lists if changing this here)
|
|
indx = np.array(indx, dtype=np.intp)
|
|
in_indices[i] = indx
|
|
elif indx.dtype.kind != 'b' and indx.dtype.kind != 'i':
|
|
raise IndexError('arrays used as indices must be of '
|
|
'integer (or boolean) type')
|
|
if indx.ndim != 0:
|
|
no_copy = False
|
|
ndim += 1
|
|
fancy_dim += 1
|
|
|
|
if arr.ndim - ndim < 0:
|
|
# we can't take more dimensions then we have, not even for 0-d
|
|
# arrays. since a[()] makes sense, but not a[(),]. We will
|
|
# raise an error later on, unless a broadcasting error occurs
|
|
# first.
|
|
raise IndexError
|
|
|
|
if ndim == 0 and None not in in_indices:
|
|
# Well we have no indexes or one Ellipsis. This is legal.
|
|
return arr.copy(), no_copy
|
|
|
|
if ellipsis_pos is not None:
|
|
in_indices[ellipsis_pos:ellipsis_pos+1] = ([slice(None, None)] *
|
|
(arr.ndim - ndim))
|
|
|
|
for ax, indx in enumerate(in_indices):
|
|
if isinstance(indx, slice):
|
|
# convert to an index array
|
|
indx = np.arange(*indx.indices(arr.shape[ax]))
|
|
indices.append(['s', indx])
|
|
continue
|
|
elif indx is None:
|
|
# this is like taking a slice with one element from a new axis:
|
|
indices.append(['n', np.array([0], dtype=np.intp)])
|
|
arr = arr.reshape((arr.shape[:ax] + (1,) + arr.shape[ax:]))
|
|
continue
|
|
if isinstance(indx, np.ndarray) and indx.dtype == bool:
|
|
if indx.shape != arr.shape[ax:ax+indx.ndim]:
|
|
raise IndexError
|
|
|
|
try:
|
|
flat_indx = np.ravel_multi_index(np.nonzero(indx),
|
|
arr.shape[ax:ax+indx.ndim], mode='raise')
|
|
except Exception:
|
|
error_unless_broadcast_to_empty = True
|
|
# fill with 0s instead, and raise error later
|
|
flat_indx = np.array([0]*indx.sum(), dtype=np.intp)
|
|
# concatenate axis into a single one:
|
|
if indx.ndim != 0:
|
|
arr = arr.reshape((arr.shape[:ax]
|
|
+ (np.prod(arr.shape[ax:ax+indx.ndim]),)
|
|
+ arr.shape[ax+indx.ndim:]))
|
|
indx = flat_indx
|
|
else:
|
|
# This could be changed, a 0-d boolean index can
|
|
# make sense (even outside the 0-d indexed array case)
|
|
# Note that originally this is could be interpreted as
|
|
# integer in the full integer special case.
|
|
raise IndexError
|
|
else:
|
|
# If the index is a singleton, the bounds check is done
|
|
# before the broadcasting. This used to be different in <1.9
|
|
if indx.ndim == 0:
|
|
if indx >= arr.shape[ax] or indx < -arr.shape[ax]:
|
|
raise IndexError
|
|
if indx.ndim == 0:
|
|
# The index is a scalar. This used to be two fold, but if
|
|
# fancy indexing was active, the check was done later,
|
|
# possibly after broadcasting it away (1.7. or earlier).
|
|
# Now it is always done.
|
|
if indx >= arr.shape[ax] or indx < - arr.shape[ax]:
|
|
raise IndexError
|
|
if (len(indices) > 0 and
|
|
indices[-1][0] == 'f' and
|
|
ax != ellipsis_pos):
|
|
# NOTE: There could still have been a 0-sized Ellipsis
|
|
# between them. Checked that with ellipsis_pos.
|
|
indices[-1].append(indx)
|
|
else:
|
|
# We have a fancy index that is not after an existing one.
|
|
# NOTE: A 0-d array triggers this as well, while one may
|
|
# expect it to not trigger it, since a scalar would not be
|
|
# considered fancy indexing.
|
|
num_fancy += 1
|
|
indices.append(['f', indx])
|
|
|
|
if num_fancy > 1 and not no_copy:
|
|
# We have to flush the fancy indexes left
|
|
new_indices = indices[:]
|
|
axes = list(range(arr.ndim))
|
|
fancy_axes = []
|
|
new_indices.insert(0, ['f'])
|
|
ni = 0
|
|
ai = 0
|
|
for indx in indices:
|
|
ni += 1
|
|
if indx[0] == 'f':
|
|
new_indices[0].extend(indx[1:])
|
|
del new_indices[ni]
|
|
ni -= 1
|
|
for ax in range(ai, ai + len(indx[1:])):
|
|
fancy_axes.append(ax)
|
|
axes.remove(ax)
|
|
ai += len(indx) - 1 # axis we are at
|
|
indices = new_indices
|
|
# and now we need to transpose arr:
|
|
arr = arr.transpose(*(fancy_axes + axes))
|
|
|
|
# We only have one 'f' index now and arr is transposed accordingly.
|
|
# Now handle newaxis by reshaping...
|
|
ax = 0
|
|
for indx in indices:
|
|
if indx[0] == 'f':
|
|
if len(indx) == 1:
|
|
continue
|
|
# First of all, reshape arr to combine fancy axes into one:
|
|
orig_shape = arr.shape
|
|
orig_slice = orig_shape[ax:ax + len(indx[1:])]
|
|
arr = arr.reshape((arr.shape[:ax]
|
|
+ (np.prod(orig_slice).astype(int),)
|
|
+ arr.shape[ax + len(indx[1:]):]))
|
|
|
|
# Check if broadcasting works
|
|
res = np.broadcast(*indx[1:])
|
|
# unfortunately the indices might be out of bounds. So check
|
|
# that first, and use mode='wrap' then. However only if
|
|
# there are any indices...
|
|
if res.size != 0:
|
|
if error_unless_broadcast_to_empty:
|
|
raise IndexError
|
|
for _indx, _size in zip(indx[1:], orig_slice):
|
|
if _indx.size == 0:
|
|
continue
|
|
if np.any(_indx >= _size) or np.any(_indx < -_size):
|
|
raise IndexError
|
|
if len(indx[1:]) == len(orig_slice):
|
|
if np.product(orig_slice) == 0:
|
|
# Work around for a crash or IndexError with 'wrap'
|
|
# in some 0-sized cases.
|
|
try:
|
|
mi = np.ravel_multi_index(indx[1:], orig_slice,
|
|
mode='raise')
|
|
except Exception:
|
|
# This happens with 0-sized orig_slice (sometimes?)
|
|
# here it is a ValueError, but indexing gives a:
|
|
raise IndexError('invalid index into 0-sized')
|
|
else:
|
|
mi = np.ravel_multi_index(indx[1:], orig_slice,
|
|
mode='wrap')
|
|
else:
|
|
# Maybe never happens...
|
|
raise ValueError
|
|
arr = arr.take(mi.ravel(), axis=ax)
|
|
arr = arr.reshape((arr.shape[:ax]
|
|
+ mi.shape
|
|
+ arr.shape[ax+1:]))
|
|
ax += mi.ndim
|
|
continue
|
|
|
|
# If we are here, we have a 1D array for take:
|
|
arr = arr.take(indx[1], axis=ax)
|
|
ax += 1
|
|
|
|
return arr, no_copy
|
|
|
|
def _check_multi_index(self, arr, index):
|
|
"""Check a multi index item getting and simple setting.
|
|
|
|
Parameters
|
|
----------
|
|
arr : ndarray
|
|
Array to be indexed, must be a reshaped arange.
|
|
index : tuple of indexing objects
|
|
Index being tested.
|
|
"""
|
|
# Test item getting
|
|
try:
|
|
mimic_get, no_copy = self._get_multi_index(arr, index)
|
|
except Exception as e:
|
|
if HAS_REFCOUNT:
|
|
prev_refcount = sys.getrefcount(arr)
|
|
assert_raises(Exception, arr.__getitem__, index)
|
|
assert_raises(Exception, arr.__setitem__, index, 0)
|
|
if HAS_REFCOUNT:
|
|
assert_equal(prev_refcount, sys.getrefcount(arr))
|
|
return
|
|
|
|
self._compare_index_result(arr, index, mimic_get, no_copy)
|
|
|
|
def _check_single_index(self, arr, index):
|
|
"""Check a single index item getting and simple setting.
|
|
|
|
Parameters
|
|
----------
|
|
arr : ndarray
|
|
Array to be indexed, must be an arange.
|
|
index : indexing object
|
|
Index being tested. Must be a single index and not a tuple
|
|
of indexing objects (see also `_check_multi_index`).
|
|
"""
|
|
try:
|
|
mimic_get, no_copy = self._get_multi_index(arr, (index,))
|
|
except Exception as e:
|
|
if HAS_REFCOUNT:
|
|
prev_refcount = sys.getrefcount(arr)
|
|
assert_raises(Exception, arr.__getitem__, index)
|
|
assert_raises(Exception, arr.__setitem__, index, 0)
|
|
if HAS_REFCOUNT:
|
|
assert_equal(prev_refcount, sys.getrefcount(arr))
|
|
return
|
|
|
|
self._compare_index_result(arr, index, mimic_get, no_copy)
|
|
|
|
def _compare_index_result(self, arr, index, mimic_get, no_copy):
|
|
"""Compare mimicked result to indexing result.
|
|
"""
|
|
arr = arr.copy()
|
|
indexed_arr = arr[index]
|
|
assert_array_equal(indexed_arr, mimic_get)
|
|
# Check if we got a view, unless its a 0-sized or 0-d array.
|
|
# (then its not a view, and that does not matter)
|
|
if indexed_arr.size != 0 and indexed_arr.ndim != 0:
|
|
assert_(np.may_share_memory(indexed_arr, arr) == no_copy)
|
|
# Check reference count of the original array
|
|
if HAS_REFCOUNT:
|
|
if no_copy:
|
|
# refcount increases by one:
|
|
assert_equal(sys.getrefcount(arr), 3)
|
|
else:
|
|
assert_equal(sys.getrefcount(arr), 2)
|
|
|
|
# Test non-broadcast setitem:
|
|
b = arr.copy()
|
|
b[index] = mimic_get + 1000
|
|
if b.size == 0:
|
|
return # nothing to compare here...
|
|
if no_copy and indexed_arr.ndim != 0:
|
|
# change indexed_arr in-place to manipulate original:
|
|
indexed_arr += 1000
|
|
assert_array_equal(arr, b)
|
|
return
|
|
# Use the fact that the array is originally an arange:
|
|
arr.flat[indexed_arr.ravel()] += 1000
|
|
assert_array_equal(arr, b)
|
|
|
|
def test_boolean(self):
|
|
a = np.array(5)
|
|
assert_equal(a[np.array(True)], 5)
|
|
a[np.array(True)] = 1
|
|
assert_equal(a, 1)
|
|
# NOTE: This is different from normal broadcasting, as
|
|
# arr[boolean_array] works like in a multi index. Which means
|
|
# it is aligned to the left. This is probably correct for
|
|
# consistency with arr[boolean_array,] also no broadcasting
|
|
# is done at all
|
|
self._check_multi_index(
|
|
self.a, (np.zeros_like(self.a, dtype=bool),))
|
|
self._check_multi_index(
|
|
self.a, (np.zeros_like(self.a, dtype=bool)[..., 0],))
|
|
self._check_multi_index(
|
|
self.a, (np.zeros_like(self.a, dtype=bool)[None, ...],))
|
|
|
|
def test_multidim(self):
|
|
# Automatically test combinations with complex indexes on 2nd (or 1st)
|
|
# spot and the simple ones in one other spot.
|
|
with warnings.catch_warnings():
|
|
# This is so that np.array(True) is not accepted in a full integer
|
|
# index, when running the file separately.
|
|
warnings.filterwarnings('error', '', DeprecationWarning)
|
|
warnings.filterwarnings('error', '', np.VisibleDeprecationWarning)
|
|
|
|
def isskip(idx):
|
|
return isinstance(idx, str) and idx == "skip"
|
|
|
|
for simple_pos in [0, 2, 3]:
|
|
tocheck = [self.fill_indices, self.complex_indices,
|
|
self.fill_indices, self.fill_indices]
|
|
tocheck[simple_pos] = self.simple_indices
|
|
for index in product(*tocheck):
|
|
index = tuple(i for i in index if not isskip(i))
|
|
self._check_multi_index(self.a, index)
|
|
self._check_multi_index(self.b, index)
|
|
|
|
# Check very simple item getting:
|
|
self._check_multi_index(self.a, (0, 0, 0, 0))
|
|
self._check_multi_index(self.b, (0, 0, 0, 0))
|
|
# Also check (simple cases of) too many indices:
|
|
assert_raises(IndexError, self.a.__getitem__, (0, 0, 0, 0, 0))
|
|
assert_raises(IndexError, self.a.__setitem__, (0, 0, 0, 0, 0), 0)
|
|
assert_raises(IndexError, self.a.__getitem__, (0, 0, [1], 0, 0))
|
|
assert_raises(IndexError, self.a.__setitem__, (0, 0, [1], 0, 0), 0)
|
|
|
|
def test_1d(self):
|
|
a = np.arange(10)
|
|
with warnings.catch_warnings():
|
|
warnings.filterwarnings('error', '', np.VisibleDeprecationWarning)
|
|
for index in self.complex_indices:
|
|
self._check_single_index(a, index)
|
|
|
|
class TestFloatNonIntegerArgument(object):
|
|
"""
|
|
These test that ``TypeError`` is raised when you try to use
|
|
non-integers as arguments to for indexing and slicing e.g. ``a[0.0:5]``
|
|
and ``a[0.5]``, or other functions like ``array.reshape(1., -1)``.
|
|
|
|
"""
|
|
def test_valid_indexing(self):
|
|
# These should raise no errors.
|
|
a = np.array([[[5]]])
|
|
|
|
a[np.array([0])]
|
|
a[[0, 0]]
|
|
a[:, [0, 0]]
|
|
a[:, 0,:]
|
|
a[:,:,:]
|
|
|
|
def test_valid_slicing(self):
|
|
# These should raise no errors.
|
|
a = np.array([[[5]]])
|
|
|
|
a[::]
|
|
a[0:]
|
|
a[:2]
|
|
a[0:2]
|
|
a[::2]
|
|
a[1::2]
|
|
a[:2:2]
|
|
a[1:2:2]
|
|
|
|
def test_non_integer_argument_errors(self):
|
|
a = np.array([[5]])
|
|
|
|
assert_raises(TypeError, np.reshape, a, (1., 1., -1))
|
|
assert_raises(TypeError, np.reshape, a, (np.array(1.), -1))
|
|
assert_raises(TypeError, np.take, a, [0], 1.)
|
|
assert_raises(TypeError, np.take, a, [0], np.float64(1.))
|
|
|
|
def test_non_integer_sequence_multiplication(self):
|
|
# NumPy scalar sequence multiply should not work with non-integers
|
|
def mult(a, b):
|
|
return a * b
|
|
|
|
assert_raises(TypeError, mult, [1], np.float_(3))
|
|
# following should be OK
|
|
mult([1], np.int_(3))
|
|
|
|
def test_reduce_axis_float_index(self):
|
|
d = np.zeros((3,3,3))
|
|
assert_raises(TypeError, np.min, d, 0.5)
|
|
assert_raises(TypeError, np.min, d, (0.5, 1))
|
|
assert_raises(TypeError, np.min, d, (1, 2.2))
|
|
assert_raises(TypeError, np.min, d, (.2, 1.2))
|
|
|
|
|
|
class TestBooleanIndexing(object):
|
|
# Using a boolean as integer argument/indexing is an error.
|
|
def test_bool_as_int_argument_errors(self):
|
|
a = np.array([[[1]]])
|
|
|
|
assert_raises(TypeError, np.reshape, a, (True, -1))
|
|
assert_raises(TypeError, np.reshape, a, (np.bool_(True), -1))
|
|
# Note that operator.index(np.array(True)) does not work, a boolean
|
|
# array is thus also deprecated, but not with the same message:
|
|
assert_raises(TypeError, operator.index, np.array(True))
|
|
assert_warns(DeprecationWarning, operator.index, np.True_)
|
|
assert_raises(TypeError, np.take, args=(a, [0], False))
|
|
|
|
def test_boolean_indexing_weirdness(self):
|
|
# Weird boolean indexing things
|
|
a = np.ones((2, 3, 4))
|
|
a[False, True, ...].shape == (0, 2, 3, 4)
|
|
a[True, [0, 1], True, True, [1], [[2]]] == (1, 2)
|
|
assert_raises(IndexError, lambda: a[False, [0, 1], ...])
|
|
|
|
|
|
class TestArrayToIndexDeprecation(object):
|
|
"""Creating an an index from array not 0-D is an error.
|
|
|
|
"""
|
|
def test_array_to_index_error(self):
|
|
# so no exception is expected. The raising is effectively tested above.
|
|
a = np.array([[[1]]])
|
|
|
|
assert_raises(TypeError, operator.index, np.array([1]))
|
|
assert_raises(TypeError, np.reshape, a, (a, -1))
|
|
assert_raises(TypeError, np.take, a, [0], a)
|
|
|
|
|
|
class TestNonIntegerArrayLike(object):
|
|
"""Tests that array_likes only valid if can safely cast to integer.
|
|
|
|
For instance, lists give IndexError when they cannot be safely cast to
|
|
an integer.
|
|
|
|
"""
|
|
def test_basic(self):
|
|
a = np.arange(10)
|
|
|
|
assert_raises(IndexError, a.__getitem__, [0.5, 1.5])
|
|
assert_raises(IndexError, a.__getitem__, (['1', '2'],))
|
|
|
|
# The following is valid
|
|
a.__getitem__([])
|
|
|
|
|
|
class TestMultipleEllipsisError(object):
|
|
"""An index can only have a single ellipsis.
|
|
|
|
"""
|
|
def test_basic(self):
|
|
a = np.arange(10)
|
|
assert_raises(IndexError, lambda: a[..., ...])
|
|
assert_raises(IndexError, a.__getitem__, ((Ellipsis,) * 2,))
|
|
assert_raises(IndexError, a.__getitem__, ((Ellipsis,) * 3,))
|
|
|
|
|
|
class TestCApiAccess(object):
|
|
def test_getitem(self):
|
|
subscript = functools.partial(array_indexing, 0)
|
|
|
|
# 0-d arrays don't work:
|
|
assert_raises(IndexError, subscript, np.ones(()), 0)
|
|
# Out of bound values:
|
|
assert_raises(IndexError, subscript, np.ones(10), 11)
|
|
assert_raises(IndexError, subscript, np.ones(10), -11)
|
|
assert_raises(IndexError, subscript, np.ones((10, 10)), 11)
|
|
assert_raises(IndexError, subscript, np.ones((10, 10)), -11)
|
|
|
|
a = np.arange(10)
|
|
assert_array_equal(a[4], subscript(a, 4))
|
|
a = a.reshape(5, 2)
|
|
assert_array_equal(a[-4], subscript(a, -4))
|
|
|
|
def test_setitem(self):
|
|
assign = functools.partial(array_indexing, 1)
|
|
|
|
# Deletion is impossible:
|
|
assert_raises(ValueError, assign, np.ones(10), 0)
|
|
# 0-d arrays don't work:
|
|
assert_raises(IndexError, assign, np.ones(()), 0, 0)
|
|
# Out of bound values:
|
|
assert_raises(IndexError, assign, np.ones(10), 11, 0)
|
|
assert_raises(IndexError, assign, np.ones(10), -11, 0)
|
|
assert_raises(IndexError, assign, np.ones((10, 10)), 11, 0)
|
|
assert_raises(IndexError, assign, np.ones((10, 10)), -11, 0)
|
|
|
|
a = np.arange(10)
|
|
assign(a, 4, 10)
|
|
assert_(a[4] == 10)
|
|
|
|
a = a.reshape(5, 2)
|
|
assign(a, 4, 10)
|
|
assert_array_equal(a[-1], [10, 10])
|
|
|
|
|
|
if __name__ == "__main__":
|
|
run_module_suite()
|