Moved some mzlib library implementations to racket

The libraries moved were:
  - mzlib/control      => racket/control
  - mzlib/date         => racket/date
  - mzlib/deflate      => file/gzip
  - mzlib/inflate      => file/gunzip
  - mzlib/port         => racket/port
  - mzlib/process      => racket/system
  - mzlib/runtime-path => racket/runtime-path
  - mzlib/shared       => racket/shared
  - mzlib/unit         => racket/unit
  - mzlib/unit-exptime => racket/unit-exptime
  - mzlib/zip          => file/zip

The old modules in mzlib are now pointers to the
new modules. These are all modules that were already
redirected in the documentation.

original commit: 403aaac7d4c32132223f06e059df439cceda7a2e
This commit is contained in:
Asumu Takikawa 2012-07-11 16:43:43 -04:00
parent c53585429a
commit 1ef7101d53
13 changed files with 70 additions and 8629 deletions

View File

@ -1,6 +1,6 @@
(module a-signature mzscheme
(require-for-syntax "private/unit-compiletime.rkt"
"private/unit-syntax.rkt")
(require-for-syntax racket/private/unit-compiletime
racket/private/unit-syntax)
(require "unit.rkt")
(provide (rename module-begin #%module-begin)

View File

@ -1,268 +1,6 @@
#lang racket/base
(require (for-syntax racket/base))
(provide call/prompt call/comp abort/cc
abort
fcontrol %
control prompt control-at prompt-at
;; `-at' variations expect a prompt tag
shift reset shift-at reset-at
control0 prompt0 control0-at prompt0-at
shift0 reset0 shift0-at reset0-at
spawn
splitter
new-prompt set cupto)
;; ----------------------------------------
(define call/prompt call-with-continuation-prompt)
(define call/comp call-with-composable-continuation)
(define abort/cc abort-current-continuation)
;; ----------------------------------------
(define (abort . vals)
(abort-current-continuation
(default-continuation-prompt-tag)
(lambda () (apply values vals))))
;; ----------------------------------------
;; Sitaram, PLDI'93
;; The `%' here is compable with Sitaram & Felleisen, LSC'90,
;; since we make the handler optional.
(define (fcontrol f #:tag [prompt-tag (default-continuation-prompt-tag)])
(call-with-composable-continuation
(lambda (k)
(abort-current-continuation
prompt-tag
f
k))))
(define-syntax %
(syntax-rules ()
[(_ expr handler #:tag prompt-tag)
(call-with-continuation-prompt
(lambda () expr)
prompt-tag
handler)]
[(_ expr handler)
(call-with-continuation-prompt
(lambda () expr)
(default-continuation-prompt-tag)
handler)]
[(_ expr)
(call-with-continuation-prompt
(lambda () expr))]))
;; ----------------------------------------
;; Predecessors of Sitaram, PLDI'93
;; Felleisen, Wand, Friedman, & Duba, LFP'88
;; Instead of `#', we use `prompt' as in Felleisen, POPL'88
;; (where `control' is called `F')
;; See also Sitaram and Felleisen, LSC'90
;; Helpder function: abort-current-continuation/keep-prompt is
;; like abort-current-continuation, but it always leaves the
;; prompt in place, independent of the prompt's handler.
;; This is possible via call/cc (i.e., it must be possible
;; to abort and keep a prompt, because call/cc needs it).
(define (abort-current-continuation/keep-prompt tag thunk)
((call-with-continuation-prompt
(lambda ()
((call-with-current-continuation
(lambda (k) (lambda () k))
tag)))
tag)
thunk))
;; call-with-control, parameterized over whether to keep the
;; prompt (if the prompt's handler gives us the option of
;; removing it). The generated function is the same
;; as fcontrol when `abort-cc' is `abort-current-continuation'.
(define (make-call-with-control abort-cc)
;; Uses call/cc to always keep the enclosing prompt.
(letrec ([call-with-control
(case-lambda
[(f) (call-with-control f (default-continuation-prompt-tag))]
[(f tag) (call-with-composable-continuation
(lambda (k)
(abort-cc
tag
(lambda ()
(f k))))
tag)])])
call-with-control))
(define call-with-control
(make-call-with-control abort-current-continuation/keep-prompt))
(define-syntax define-control-macros
(syntax-rules ()
[(_ control control-at call-with-control)
(begin
(define-syntax (control stx)
(syntax-case stx ()
[(control id expr0 expr (... ...))
(identifier? #'id)
#'(call-with-control (lambda (id) expr0 expr (... ...)))]))
(define-syntax (control-at stx)
(syntax-case stx ()
[(control-at tag id expr0 expr (... ...))
(identifier? #'id)
#'(call-with-control (lambda (id) expr0 expr (... ...)) tag)])))]))
(define-control-macros control control-at call-with-control)
(define-syntax define-prompt-macros
(syntax-rules ()
[(_ prompt prompt-at call-with-prompt)
(begin
(define-syntax prompt
(syntax-rules ()
[(prompt expr0 expr (... ...))
(call-with-prompt (lambda () expr0 expr (... ...)))]))
(define-syntax prompt-at
(syntax-rules ()
[(prompt-at tag expr0 expr (... ...))
(call-with-prompt (lambda () expr0 expr (... ...)) tag)])))]))
(define-prompt-macros prompt prompt-at call-with-continuation-prompt)
;; ----------------------------------------
;; Danvy & Filinski, LFP'90
;; call-with-shift, parameterized over whether to keep the prompt
;; (if the prompt's handler gives us the option of removing it),
;; and whether the new one is removable:
(define (make-call-with-shift abort-cc inserted-handler)
(letrec ([call-with-shift
(case-lambda
[(f) (call-with-shift f (default-continuation-prompt-tag))]
[(f tag)
(call-with-composable-continuation
(lambda (k)
(abort-cc
tag
(lambda ()
(f (lambda vals
(call-with-continuation-prompt
(lambda ()
(apply k vals))
tag
inserted-handler))))))
tag)])])
call-with-shift))
(define call-with-shift
(make-call-with-shift abort-current-continuation/keep-prompt #f))
(define-control-macros shift shift-at call-with-shift)
(define-prompt-macros reset reset-at call-with-continuation-prompt)
;; ----------------------------------------
;; Shan, SCHEME'04
;; Kiselyov, Indiana CS TR-611, 2005
;;
;; The `control0' and `shift0' here are closer to Kiselyov, in that
;; `control0' and `shift0' only behave as in Shan when paired with
;; `prompt0' or `reset0' (which are two names for the same thing).
;; When paired with `prompt' or `reset' (again, the same thing),
;; they act like `control' and `shift'.
;;
;; This difference is intentional. The programmer that inserts a
;; prompt should choose whether the current continuation is visible
;; or not. Note, also, that `control' and `shift' work whether
;; they're paired with `prompt'/`reset' or `prompt0'/`reset0'.
(define call-with-control0
;; Uses abort-current-continuation, so that the prompt
;; is removed --- if the prompt is willing to be removed.
(make-call-with-control abort-current-continuation))
(define call-with-shift0
;; Uses abort-current-continuation, so that the prompt
;; is removed --- if the prompt is willing to be removed.
;; The prompt installed with the captured continuation is
;; itself willing to be removed.
(make-call-with-shift abort-current-continuation (lambda (thunk) (thunk))))
(define-control-macros control0 control0-at call-with-control0)
(define-control-macros shift0 shift0-at call-with-shift0)
(define call-with-prompt0
(case-lambda
[(thunk) (call-with-prompt0 thunk (default-continuation-prompt-tag))]
[(thunk tag)
(call-with-continuation-prompt thunk tag (lambda (thunk) (thunk)))]))
(define-prompt-macros prompt0 prompt0-at call-with-prompt0)
(define-prompt-macros reset0 reset0-at call-with-prompt0)
;; ----------------------------------------
;; Hieb & Dybvig, PPOPP'90
(define (spawn f)
(let ([p (make-continuation-prompt-tag)])
(call-with-continuation-prompt
(lambda ()
(f (lambda (f)
(call-with-composable-continuation
(lambda (k)
(abort-current-continuation
p
(lambda ()
(f (lambda vals
(call-with-continuation-prompt
(lambda ()
(apply k vals))
p
(lambda (thunk) (thunk))))))))
p))))
p
(lambda (thunk) (thunk)))))
;; ----------------------------------------
;; Queinnec & Serpette, POPL'91
(define (splitter receiver)
(let ([p (make-continuation-prompt-tag)])
(call-with-continuation-prompt
(lambda ()
(receiver (lambda (thunk)
(abort-current-continuation
p
thunk))
(lambda (proc)
(call-with-composable-continuation
proc
p))))
p
(lambda (thunk) (thunk)))))
;; ----------------------------------------
;; Gunter, Remy, & Rieke, FPLCA'95
;; Unfortunately, the "prompt"s in Gunter et al. are what
;; we call "prompt tags". In our terminology, a "prompt"
;; is a tagged instance in a continuation.
(define (new-prompt) (make-continuation-prompt-tag))
(define-syntax set (make-rename-transformer #'prompt0-at))
(define-syntax cupto (make-rename-transformer #'control0-at))
;; ----------------------------------------
;; deprecated library, see `racket/control`
(require racket/control)
(provide (all-from-out racket/control))

View File

@ -1,367 +1,6 @@
#lang racket/base
(require racket/promise
racket/match
racket/list
racket/function
racket/contract/base)
(provide/contract
[current-date (-> date?)]
[date->seconds ((date?) (any/c) . ->* . exact-integer?)]
[date->string ((date?) (any/c) . ->* . string?)]
[date-display-format (parameter/c (symbols 'american 'chinese 'german 'indian 'irish 'julian 'iso-8601 'rfc2822))]
[find-seconds (((integer-in 0 61)
(integer-in 0 59)
(integer-in 0 23)
(integer-in 1 31)
(integer-in 1 12)
exact-nonnegative-integer?)
(any/c)
. ->* .
exact-integer?)]
[date->julian/scalinger (date? . -> . exact-integer?)]
[julian/scalinger->string (exact-integer? . -> . string?)])
;; deprecated library, see `racket/date`
(define (current-date)
(seconds->date (current-seconds)))
;; Support for Julian calendar added by Shriram;
;; current version only works until 2099 CE Gregorian
(define date-display-format
(make-parameter 'american))
(define (month/number->string x)
(case x
[(12) "December"] [(1) "January"] [(2) "February"]
[(3) "March"] [(4) "April"] [(5) "May"]
[(6) "June"] [(7) "July"] [(8) "August"]
[(9) "September"] [(10) "October"] [(11) "November"]
[else ""]))
(define (day/number->string x)
(case x
[(0) "Sunday"]
[(1) "Monday"]
[(2) "Tuesday"]
[(3) "Wednesday"]
[(4) "Thursday"]
[(5) "Friday"]
[(6) "Saturday"]
[else ""]))
(define (add-zero n)
(if (< n 10)
(string-append "0" (number->string n))
(number->string n)))
(define (date->string date [time? #f])
(define year (number->string (date-year date)))
(define num-month (number->string (date-month date)))
(define week-day (day/number->string (date-week-day date)))
(define week-day-num (date-week-day date))
(define month (month/number->string (date-month date)))
(define day (number->string (date-day date)))
(define day-th
(if (<= 11 (date-day date) 13)
"th"
(case (modulo (date-day date) 10)
[(1) "st"]
[(2) "nd"]
[(3) "rd"]
[(0 4 5 6 7 8 9) "th"])))
(define hour (date-hour date))
(define am-pm (if (>= hour 12) "pm" "am"))
(define hour24 (add-zero hour))
(define hour12
(number->string
(cond
[(zero? hour) 12]
[(> hour 12) (- hour 12)]
[else hour])))
(define minute (add-zero (date-minute date)))
(define second (add-zero (date-second date)))
(define-values
(day-strs time-strs)
(case (date-display-format)
[(american)
(values (list week-day ", " month " " day day-th ", " year)
(list " " hour12 ":" minute ":" second am-pm))]
[(chinese)
(values
(list year "/" num-month "/" day
" \u661F\u671F" (case (date-week-day date)
[(0) "\u5929"]
[(1) "\u4E00"]
[(2) "\u4E8C"]
[(3) "\u4e09"]
[(4) "\u56DB"]
[(5) "\u4E94"]
[(6) "\u516D"]
[else ""]))
(list " " hour24 ":" minute ":" second))]
[(indian)
(values (list day "-" num-month "-" year)
(list " " hour12 ":" minute ":" second am-pm))]
[(german)
(values (list day ". "
(case (date-month date)
[(1) "Januar"]
[(2) "Februar"]
[(3) "M\344rz"]
[(4) "April"]
[(5) "Mai"]
[(6) "Juni"]
[(7) "Juli"]
[(8) "August"]
[(9) "September"]
[(10) "Oktober"]
[(11) "November"]
[(12) "Dezember"]
[else ""])
" " year)
(list ", " hour24 "." minute))]
[(irish)
(values (list week-day ", " day day-th " " month " " year)
(list ", " hour12 ":" minute am-pm))]
[(julian)
(values (list (julian/scalinger->string
(date->julian/scalinger date)))
(list ", " hour24 ":" minute ":" second))]
[(iso-8601)
(values
(list year "-" (add-zero (date-month date)) "-" (add-zero (date-day date)))
(list " " hour24 ":" minute ":" second))]
[(rfc2822)
(values
(list (substring week-day 0 3) ", " day " " (substring month 0 3) " " year)
(list* " " hour24 ":" minute ":" second " "
(let* ([delta (date-time-zone-offset date)]
[hours (quotient delta 3600)]
[minutes (modulo (quotient delta 60) 60)])
(list
(if (negative? delta) "-" "+")
(add-zero (abs hours))
(add-zero minutes)))))]
[else (error 'date->string "unknown date-display-format: ~s"
(date-display-format))]))
(apply string-append
(if time?
(append day-strs time-strs)
day-strs)))
(define (leap-year? year)
(or (= 0 (modulo year 400))
(and (= 0 (modulo year 4))
(not (= 0 (modulo year 100))))))
;; it's not clear what months mean in this context -- use days
(define-struct date-offset (second minute hour day year))
(define (fixup s x) (if (< s 0) (+ s x) s))
(define (date- date1 date2)
(define second (- (date-second date1) (date-second date2)))
(define minute
(+ (- (date-minute date1) (date-minute date2))
(if (< second 0) -1 0)))
(define hour
(+ (- (date-hour date1) (date-hour date2))
(if (< minute 0) -1 0)
(cond [(equal? (date-dst? date1) (date-dst? date2)) 0]
[(date-dst? date1) -1]
[(date-dst? date2) 1])))
(define day
(+ (- (date-year-day date1) (date-year-day date2))
(if (< hour 0) -1 0)))
(define year
(+ (- (date-year date1) (date-year date2))
(if (< day 0) -1 0)))
(make-date-offset
(fixup second 60)
(fixup minute 60)
(fixup hour 24)
(fixup day (if (leap-year? (date-year date1)) 366 365))
year))
(define (one-entry b)
(string-append
(number->string (first b))
" "
(second b)
(if (= 1 (first b)) "" "s")))
(define (date-offset->string date [seconds? #f])
(define fields
(list (list (date-offset-year date) "year")
(list (date-offset-day date) "day")
(list (date-offset-hour date) "hour")
(list (date-offset-minute date) "minute")
(list (if seconds? (date-offset-second date) 0) "second")))
(define non-zero-fields
(filter (negate (compose (curry = 0) first)) fields))
(match non-zero-fields
[(list) ""]
[(list one) (one-entry one)]
[_
(for/fold ([string ""])
([b (in-list non-zero-fields)])
(cond
[(= 0 (first b)) string]
[(string=? string "")
(string-append "and "
(one-entry b)
string)]
[else (string-append (one-entry b) ", " string)]))]))
(define (days-per-month year month)
(cond
[(and (= month 2) (leap-year? year)) 29]
[(= month 2) 28]
[(<= month 7) (+ 30 (modulo month 2))]
[else (+ 30 (- 1 (modulo month 2)))]))
(define (find-extreme-date-seconds start offset)
(let/ec found
(letrec ([find-between
(lambda (lo hi)
(let ([mid (floor (/ (+ lo hi) 2))])
(if (or (and (positive? offset) (= lo mid))
(and (negative? offset) (= hi mid)))
(found lo)
(let ([mid-ok?
(with-handlers ([exn:fail? (lambda (exn) #f)])
(seconds->date mid)
#t)])
(if mid-ok?
(find-between mid hi)
(find-between lo mid))))))])
(let loop ([lo start][offset offset])
(let ([hi (+ lo offset)])
(with-handlers ([exn:fail?
(lambda (exn)
; failed - must be between lo & hi
(find-between lo hi))])
(seconds->date hi))
; succeeded; double offset again
(loop hi (* 2 offset)))))))
(define get-min-seconds
(let ([d (delay (find-extreme-date-seconds (current-seconds) -1))])
(lambda ()
(force d))))
(define get-max-seconds
(let ([d (delay (find-extreme-date-seconds (current-seconds) 1))])
(lambda ()
(force d))))
(define (date->seconds date [local-time? #t])
(find-seconds
(date-second date)
(date-minute date)
(date-hour date)
(date-day date)
(date-month date)
(date-year date)
local-time?))
(define (find-seconds sec min hour day month year [local-time? #t])
(define (signal-error msg)
(error 'find-secs (string-append
msg
" (inputs: ~a ~a ~a ~a ~a ~a)")
sec min hour day month year))
(let loop ([below-secs (get-min-seconds)]
[secs (floor (/ (+ (get-min-seconds) (get-max-seconds)) 2))]
[above-secs (get-max-seconds)])
(let* ([date (seconds->date secs local-time?)]
[compare
(let loop ([inputs (list year month day
hour min sec)]
[tests (list (date-year date)
(date-month date)
(date-day date)
(date-hour date)
(date-minute date)
(date-second date))])
(cond
[(null? inputs) 'equal]
[else (let ([input (car inputs)]
[test (car tests)])
(if (= input test)
(loop (cdr inputs) (cdr tests))
(if (<= input test)
'input-smaller
'test-smaller)))]))])
; (printf "~a ~a ~a\n" compare secs (date->string date))
(cond
[(eq? compare 'equal) secs]
[(or (= secs below-secs) (= secs above-secs))
(signal-error "non-existent date")]
[(eq? compare 'input-smaller)
(loop below-secs (floor (/ (+ secs below-secs) 2)) secs)]
[(eq? compare 'test-smaller)
(loop secs (floor (/ (+ above-secs secs) 2)) above-secs)]))))
;; date->julian/scalinger :
;; date -> number [julian-day]
;; Note: This code is correct until 2099 CE Gregorian
(define (date->julian/scalinger date)
(define day (date-day date))
(define month (date-month date))
(define d-year (date-year date))
(define year (+ 4712 d-year))
(define adj-year (if (< month 3) (sub1 year) year))
(define cycle-number (quotient adj-year 4))
(define cycle-position (remainder adj-year 4))
(define base-day (+ (* 1461 cycle-number) (* 365 cycle-position)))
(define month-day-number
(case month
((3) 0)
((4) 31)
((5) 61)
((6) 92)
((7) 122)
((8) 153)
((9) 184)
((10) 214)
((11) 245)
((12) 275)
((1) 306)
((2) 337)))
(define total-days (+ base-day month-day-number day))
(define total-days/march-adjustment (+ total-days 59))
(define gregorian-adjustment
(cond
((< adj-year 1700) 11)
((< adj-year 1800) 12)
(else 13)))
(define final-date
(- total-days/march-adjustment
gregorian-adjustment))
final-date)
;; julian/scalinger->string :
;; number [julian-day] -> string [julian-day-format]
(define (julian/scalinger->string julian-day)
(apply string-append
(cons "JD "
(reverse
(let loop ((reversed-digits (map number->string
(let loop ((jd julian-day))
(if (zero? jd) null
(cons (remainder jd 10)
(loop (quotient jd 10))))))))
(cond
((or (null? reversed-digits)
(null? (cdr reversed-digits))
(null? (cdr (cdr reversed-digits)))
(null? (cdr (cdr (cdr reversed-digits)))))
(list (apply string-append (reverse reversed-digits))))
(else (cons (apply string-append
(list " "
(caddr reversed-digits)
(cadr reversed-digits)
(car reversed-digits)))
(loop (cdr (cdr (cdr reversed-digits))))))))))))
(require racket/date)
(provide (all-from-out racket/date))

File diff suppressed because it is too large Load Diff

View File

@ -3,6 +3,7 @@
racket/local
racket/bool
racket/block
racket/private/this-expression-source-directory
(only racket/function
identity)
(only racket/base
@ -10,7 +11,6 @@
build-list
build-vector
compose)
"private/this-expression-source-directory.rkt"
(rename racket/base base-else else))
(require-for-syntax syntax/name

View File

@ -1,931 +1,6 @@
#lang racket/base
(require (for-syntax racket/base))
(provide inflate
gunzip-through-ports
gunzip)
#|
/* inflate.c -- Not copyrighted 1992 by Mark Adler
version c10p1, 10 January 1993 */
; Taken from the gzip source distribution
; Translated directly from C (obviously) by Matthew, April 1997
/* You can do whatever you like with this source file, though I would
prefer that if you modify it and redistribute it that you include
comments to that effect with your name and the date. Thank you.
[The history has been moved to the file ChangeLog.]
; ChangeLog is distributed with the gzip source.
*/
/*
Inflate deflated (PKZIP's method 8 compressed) data. The compression
method searches for as much of the current string of bytes (up to a
length of 258) in the previous 32K bytes. If it doesn't find any
matches (of at least length 3), it codes the next byte. Otherwise, it
codes the length of the matched string and its distance backwards from
the current position. There is a single Huffman code that codes both
single bytes (called "literals") and match lengths. A second Huffman
code codes the distance information, which follows a length code. Each
length or distance code actually represents a base value and a number
of "extra" (sometimes zero) bits to get to add to the base value. At
the end of each deflated block is a special end-of-block (EOB) literal/
length code. The decoding process is basically: get a literal/length
code; if EOB then done; if a literal, emit the decoded byte; if a
length then get the distance and emit the referred-to bytes from the
sliding window of previously emitted data.
There are (currently) three kinds of inflate blocks: stored, fixed, and
dynamic. The compressor deals with some chunk of data at a time, and
decides which method to use on a chunk-by-chunk basis. A chunk might
typically be 32K or 64K. If the chunk is uncompressible, then the
"stored" method is used. In this case, the bytes are simply stored as
is, eight bits per byte, with none of the above coding. The bytes are
preceded by a count, since there is no longer an EOB code.
If the data is compressible, then either the fixed or dynamic methods
are used. In the dynamic method, the compressed data is preceded by
an encoding of the literal/length and distance Huffman codes that are
to be used to decode this block. The representation is itself Huffman
coded, and so is preceded by a description of that code. These code
descriptions take up a little space, and so for small blocks, there is
a predefined set of codes, called the fixed codes. The fixed method is
used if the block codes up smaller that way (usually for quite small
chunks), otherwise the dynamic method is used. In the latter case, the
codes are customized to the probabilities in the current block, and so
can code it much better than the pre-determined fixed codes.
The Huffman codes themselves are decoded using a mutli-level table
lookup, in order to maximize the speed of decoding plus the speed of
building the decoding tables. See the comments below that precede the
lbits and dbits tuning parameters.
*/
/*
Notes beyond the 1.93a appnote.txt:
1. Distance pointers never point before the beginning of the output
stream.
2. Distance pointers can point back across blocks, up to 32k away.
3. There is an implied maximum of 7 bits for the bit length table and
15 bits for the actual data.
4. If only one code exists, then it is encoded using one bit. (Zero
would be more efficient, but perhaps a little confusing.) If two
codes exist, they are coded using one bit each (0 and 1).
5. There is no way of sending zero distance codes--a dummy must be
sent if there are none. (History: a pre 2.0 version of PKZIP would
store blocks with no distance codes, but this was discovered to be
too harsh a criterion.) Valid only for 1.93a. 2.04c does allow
zero distance codes, which is sent as one code of zero bits in
length.
6. There are up to 286 literal/length codes. Code 256 represents the
end-of-block. Note however that the static length tree defines
288 codes just to fill out the Huffman codes. Codes 286 and 287
cannot be used though, since there is no length base or extra bits
defined for them. Similarly, there are up to 30 distance codes.
However, static trees define 32 codes (all 5 bits) to fill out the
Huffman codes, but the last two had better not show up in the data.
7. Unzip can check dynamic Huffman blocks for complete code sets.
The exception is that a single code would not be complete (see #4).
8. The five bits following the block type is really the number of
literal codes sent minus 257.
9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
(1+6+6). Therefore, to output three times the length, you output
three codes (1+1+1), whereas to output four times the same length,
you only need two codes (1+3). Hmm.
10. In the tree reconstruction algorithm, Code = Code + Increment
only if BitLength(i) is not zero. (Pretty obvious.)
11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19)
12. Note: length code 284 can represent 227-258, but length code 285
really is 258. The last length deserves its own, short code
since it gets used a lot in very redundant files. The length
258 is special since 258 - 3 (the min match length) is 255.
13. The literal/length and distance code bit lengths are read as a
single stream of lengths. It is possible (and advantageous) for
a repeat code (16, 17, or 18) to go across the boundary between
the two sets of lengths.
*/
|#
#|
/* Huffman code lookup table entry--this entry is four bytes for machines
that have 16-bit pointers (e.g. PC's in the small or medium model).
Valid extra bits are 0..13. e == 15 is EOB (end of block), e == 16
means that v is a literal, 16 < e < 32 means that v is a pointer to
the next table, which codes e - 16 bits, and lastly e == 99 indicates
an unused code. If a code with e == 99 is looked up, this implies an
error in the data. */
|#
(define-struct huft (e b v) #:mutable)
(define (huft-copy dest src)
(set-huft-e! dest (huft-e src))
(set-huft-b! dest (huft-b src))
(set-huft-v! dest (huft-v src)))
(define (step start < end add1 f)
(let loop ([i start])
(when (< i end)
(f i)
(loop (add1 i)))))
(define (subvector v offset)
(let* ([len (- (vector-length v) offset)]
[new (make-vector len)])
(step 0 < len add1
(lambda (i)
(vector-set! new i (vector-ref v (+ i offset)))))
new))
(define (build-vector n p)
(let ([v (make-vector n)])
(step 0 < n add1 (lambda (i) (vector-set! v i (p i))))
v))
;; We know that inflating will be a bottleneck, so we might as
;; well help out the compiler...
(define-syntax define-const
(syntax-rules ()
[(_ id v) (define-syntax id (make-const #'v))]))
(define-for-syntax (make-const val)
(make-set!-transformer
(lambda (stx)
(syntax-case stx (set!)
[(set! id . _) (raise-syntax-error (syntax-e #'id)
"cannot assign constant"
stx)]
[(id . rest) (quasisyntax/loc stx (#,val . rest))]
[id val]))))
#|
/* The inflate algorithm uses a sliding 32K byte window on the uncompressed
stream to find repeated byte strings. This is implemented here as a
circular buffer. The index is updated simply by incrementing and then
and'ing with 0x7fff (32K-1). */
|#
(define-const WSIZE 32768)
(define border
(vector
16 17 18 0 8 7 9 6 10 5 11 4 12 3 13 2 14 1 15))
(define cplens
(vector
3 4 5 6 7 8 9 10 11 13 15 17 19 23 27 31
35 43 51 59 67 83 99 115 131 163 195 227 258 0 0))
; /* note: see note #13 above about the 258 in this list. */
(define cplext
(vector
0 0 0 0 0 0 0 0 1 1 1 1 2 2 2 2
3 3 3 3 4 4 4 4 5 5 5 5 0 99 99)) ; /* 99==invalid */
(define cpdist
(vector
1 2 3 4 5 7 9 13 17 25 33 49 65 97 129 193
257 385 513 769 1025 1537 2049 3073 4097 6145
8193 12289 16385 24577))
(define cpdext
(vector
0 0 0 0 1 1 2 2 3 3 4 4 5 5 6 6
7 7 8 8 9 9 10 10 11 11
12 12 13 13))
(define mask_bits
(vector
#x0000
#x0001 #x0003 #x0007 #x000f #x001f #x003f #x007f #x00ff
#x01ff #x03ff #x07ff #x0fff #x1fff #x3fff #x7fff #xffff))
(define-const lbits 9) ; /* bits in base literal/length lookup table */
(define-const dbits 6) ; /* bits in base distance lookup table */
; /* If BMAX needs to be larger than 16, then h and x[] should be ulg. */
(define-const BMAX 16) ; /* maximum bit length of any code (16 for explode) */
(define-const N_MAX 288) ; /* maximum number of codes in any set */
(define (inflate input-port output-port)
(define slide (make-bytes WSIZE))
(define wp 0)
(define (flush-output len)
; write out the data
(write-bytes slide output-port 0 len))
(define (check-flush)
(when (= wp WSIZE)
(flush-output WSIZE)
(set! wp 0)))
#|
/* Macros for inflate() bit peeking and grabbing.
The usage is:
NEEDBITS(j)
x = b & mask_bits[j];
DUMPBITS(j)
where NEEDBITS makes sure that b has at least j bits in it, and
DUMPBITS removes the bits from b. The macros use the variable k
for the number of bits in b. Normally, b and k are register
variables for speed, and are initialized at the beginning of a
routine that uses these macros from a global bit buffer and count.
If we assume that EOB will be the longest code, then we will never
ask for bits with NEEDBITS that are beyond the end of the stream.
So, NEEDBITS should not read any more bytes than are needed to
meet the request. Then no bytes need to be "returned" to the buffer
at the end of the last block.
However, this assumption is not true for fixed blocks--the EOB code
is 7 bits, but the other literal/length codes can be 8 or 9 bits.
(The EOB code is shorter than other codes because fixed blocks are
generally short. So, while a block always has an EOB, many other
literal/length codes have a significantly lower probability of
showing up at all.) However, by making the first table have a
lookup of seven bits, the EOB code will be found in that first
lookup, and so will not require that too many bits be pulled from
the stream.
*/
|#
;; We can't read the bytes outright, because we may
;; look ahead. Assume that we need no more than 32 bytes
;; look ahead, and peek in 4096-byte blocks.
(define MAX-LOOKAHEAD 32)
(define BUFFER-SIZE 4096)
(define buffer (make-bytes BUFFER-SIZE))
(define buf-max 0) ; number of bytes in buffer
(define buf-pos 0) ; index into buffer = number of used peeked bytes
(define bb 0) ; /* bit buffer */
(define bk 0) ; /* bits in bit buffer */
(define (NEEDBITS n)
(when (< bk n)
(READBITS n)))
(define (READBITS n)
(if (= buf-pos buf-max)
(begin
(when (positive? buf-max)
(read-bytes! buffer input-port 0 (- buf-max MAX-LOOKAHEAD))
; (bytes-copy! buffer 0 buffer (- buf-max MAX-LOOKAHEAD) buf-max)
(set! buf-pos MAX-LOOKAHEAD))
(let ([got (peek-bytes-avail! buffer buf-pos #f input-port buf-pos BUFFER-SIZE)])
(if (eof-object? got)
(error 'inflate "unexpected end of file")
(set! buf-max (+ buf-pos got))))
(READBITS n))
(let ([v (bytes-ref buffer buf-pos)])
(set! buf-pos (add1 buf-pos))
(set! bb (+ bb (arithmetic-shift v bk)))
(set! bk (+ bk 8))
(NEEDBITS n))))
(define (DUMPBITS n)
(set! bb (arithmetic-shift bb (- n)))
(set! bk (- bk n)))
(define (GETBITS n)
(NEEDBITS n)
(begin0
bb
(DUMPBITS n)))
#|
/*
Huffman code decoding is performed using a multi-level table lookup.
The fastest way to decode is to simply build a lookup table whose
size is determined by the longest code. However, the time it takes
to build this table can also be a factor if the data being decoded
is not very long. The most common codes are necessarily the
shortest codes, so those codes dominate the decoding time, and hence
the speed. The idea is you can have a shorter table that decodes the
shorter, more probable codes, and then point to subsidiary tables for
the longer codes. The time it costs to decode the longer codes is
then traded against the time it takes to make longer tables.
This results of this trade are in the variables lbits and dbits
below. lbits is the number of bits the first level table for literal/
length codes can decode in one step, and dbits is the same thing for
the distance codes. Subsequent tables are also less than or equal to
those sizes. These values may be adjusted either when all of the
codes are shorter than that, in which case the longest code length in
bits is used, or when the shortest code is *longer* than the requested
table size, in which case the length of the shortest code in bits is
used.
There are two different values for the two tables, since they code a
different number of possibilities each. The literal/length table
codes 286 possible values, or in a flat code, a little over eight
bits. The distance table codes 30 possible values, or a little less
than five bits, flat. The optimum values for speed end up being
about one bit more than those, so lbits is 8+1 and dbits is 5+1.
The optimum values may differ though from machine to machine, and
possibly even between compilers. Your mileage may vary.
*/
|#
(define (huft_build
b ; int vector /* code lengths in bits (all assumed <= BMAX) */
n ; /* number of codes (assumed <= N_MAX) */
s ; /* number of simple-valued codes (0..s-1) */
d ; int vector /* list of base values for non-simple codes */
e ; int vector /* list of extra bits for non-simple codes */
m ; int /* maximum lookup bits, returns actual */
incomp-ok?)
; return: new-t new-m ok?
#|
/* Given a list of code lengths and a maximum table size, make a set of
tables to decode that set of codes. Return zero on success, one if
the given code set is incomplete (the tables are still built in this
case), two if the input is invalid (all zero length codes or an
oversubscribed set of lengths), and three if not enough memory. */
|#
(define c (make-vector (add1 BMAX) 0))
(define x (make-vector (add1 BMAX)))
(define v (make-vector N_MAX))
(define final-y 0)
(define t-result #f)
; (printf "n: ~s\n" n)
(let/ec return
#|
(if (= n 270)
(step 0 < n add1
(lambda (i) (printf "b[~a] = ~a\n" i (vector-ref b i)))))
|#
(step 0 < n add1
(lambda (i)
(let ([pos (vector-ref b i)])
(vector-set! c pos (add1 (vector-ref c pos))))))
(when (= n (vector-ref c 0))
; (printf "zero\n")
(return #f 0 #t))
#|
(when (= n 270)
(step 0 <= BMAX add1
(lambda (i)
(printf "c[~s]: ~s\n" i (vector-ref c i)))))
|#
; /* Find minimum and maximum length, bound m-result by those */
(let* ([j ; min-code-length
(let loop ([j 1])
(cond
[(> j BMAX) j]
[(positive? (vector-ref c j)) j]
[else (loop (add1 j))]))]
[k j]
[i ; max-code-length
(let loop ([i BMAX])
(cond
[(zero? i) 0]
[(positive? (vector-ref c i)) i]
[else (loop (sub1 i))]))]
[g i]
[l (min (max m j) i)]
[m-result l])
; (printf "min: ~s max: ~s\n" k g)
; /* Adjust last length count to fill out codes, if needed */
(let-values ([(y j)
(let loop ([y (arithmetic-shift 1 j)][j j])
(if (>= j i)
(values y j)
(let ([new-y (- y (vector-ref c j))])
(if (negative? new-y)
(begin
(error 'inflate
"bad input: more codes than bits")
(return null m-result #f))
(loop (* new-y 2) (add1 j))))))])
; (printf "loop y: ~s\n" y)
(let ([y (- y (vector-ref c i))])
(when (negative? y)
(error 'inflate "bad input: more codes than bits")
(return #f m-result #f))
; (printf "set c[~s] ~s + ~s\n" i (vector-ref c i) y)
(vector-set! c i (+ (vector-ref c i) y))
(set! final-y y)))
; /* Generate starting offsets into the value table for each length */
(vector-set! x 1 0)
(let* ([j (let loop ([i (sub1 i)][x-pos 2][c-pos 1][j 0])
(if (zero? i)
j
(let ([v (vector-ref c c-pos)])
(vector-set! x x-pos (+ j v))
(loop (sub1 i) (add1 x-pos) (add1 c-pos) (+ j v)))))])
; /* Make a table of values in order of bit lengths */
(let loop ([i 0][b-pos 0])
(let ([j (vector-ref b b-pos)])
(unless (zero? j)
(let ([xj (vector-ref x j)])
(vector-set! x j (add1 xj))
(vector-set! v xj i)))
(let ([new-i (add1 i)])
(when (< new-i n)
(loop new-i (add1 b-pos))))))
; /* Generate the Huffman codes and for each, make the table entries */
(vector-set! x 0 0) ; /* first Huffman code is zero */
(let ([v-pos 0] ; /* grab values in bit order */
[i 0] ; /* the Huffman code of length k bits for value *p */
[h -1] ; /* no tables yet--level -1 */
[w (- l)] ; /* bits decoded == (l * h) */
[u (make-vector BMAX)] ; /* table stack */
[q null] ; /* points to current table */
[z 0] ; /* number of entries in current table */
[r (make-huft 0 0 0)]) ; /* table entry for structure assignment */
; /* go through the bit lengths (k already is bits in shortest code) */
(let k-loop ([k k])
; (printf "k: ~s\n" k)
(when (<= k g)
(let ([a (vector-ref c k)])
(let a-loop ([a (sub1 a)])
(unless (negative? a)
; (printf "a: ~s\n" a)
; /* here i is the Huffman code of length k bits for value *p */
; /* make tables up to required level */
(let kwl-loop ()
(when (> k (+ w l))
(set! h (add1 h))
(set! w (+ w l)) ; /* previous table always l bits */
; /* compute minimum size table less than or equal to l bits */
(set! z (min (- g w) l)) ; /* upper limit on table size */
; (printf "z: ~s k: ~s w: ~s\n" z k w)
(let* ([j (- k w)]
[f (arithmetic-shift 1 j)])
(when (> f (add1 a)) ; /* try a k-w bit table */
; /* too few codes for k-w bit table */
(set! f (- f a 1)) ; /* deduct codes from patterns left */
; /* try smaller tables up to z bits */
(let loop ([c-pos k])
(set! j (add1 j))
(when (< j z)
(set! f (* f 2))
(let* ([c-pos (add1 c-pos)]
[cv (vector-ref c c-pos)])
(if (<= f cv)
(void) ; /* enough codes to use up j bits */
(begin
(set! f (- f cv)) ; /* else deduct codes from patterns */
(loop c-pos)))))))
(set! z (arithmetic-shift 1 j)) ; /* table entries for j-bit table */
; /* allocate and link in new table */
; (printf "alloc: ~a\n" z)
(set! q (build-vector z (lambda (i) (make-huft 0 0 0))))
(when (not t-result)
(set! t-result q))
(vector-set! u h q)
; /* connect to last table, if there is one */
(unless (zero? h)
(vector-set! x h i) ; /* save pattern for backing up */
(set-huft-b! r l) ; /* bits to dump before this table */
(set-huft-e! r (+ j 16)); /* bits in this table */
(set-huft-v! r q) ; /* pointer to this table */
(set! j (arithmetic-shift i (- l w)))
; /* connect to last table: */
(huft-copy (vector-ref (vector-ref u (sub1 h)) j) r)))
(kwl-loop)))
(set-huft-b! r (- k w)) ; cast uch (- k w) if needed
(if (>= v-pos n)
(set-huft-e! r 99) ; /* out of values--invalid code */
(let ([vv (vector-ref v v-pos)])
; (printf "*p: ~s s: ~s\n" vv s)
(if (< vv s)
(begin
(set-huft-e! r (if (< vv 256) 16 15)) ; /* 256 is end-of-block code */
(set-huft-v! r vv)) ; /* simple code is just the value */
(begin
(set-huft-e! r (vector-ref e (- vv s))) ; /* non-simple--look up in lists */
(set-huft-v! r (vector-ref d (- vv s)))))
(set! v-pos (add1 v-pos))))
; /* fill code-like entries with r */
; (printf "i: ~s w: ~s k: ~s\n" i w k)
(let ([f (arithmetic-shift 1 (- k w))]) ; /* i repeats in table every f entries */
(let loop ([j (arithmetic-shift i (- w))])
(when (< j z)
(huft-copy (vector-ref q j) r)
(loop (+ j f)))))
; /* backwards increment the k-bit code i */
(let loop ([j (arithmetic-shift 1 (sub1 k))])
(if (positive? (bitwise-and i j))
(begin
(set! i (bitwise-xor i j))
(loop (arithmetic-shift j -1)))
(set! i (bitwise-xor i j))))
; /* backup over finished tables */
(let loop ()
(unless (= (vector-ref x h) (bitwise-and i (sub1 (arithmetic-shift 1 w))))
(set! h (sub1 h)) ; /* don't need to update q */
(set! w (- w l))
(loop)))
(a-loop (sub1 a))))
(k-loop (add1 k)))))
; /* Return #f as third if we were given an incomplete table */
; (printf "done: ~s ~s\n" final-y g)
(let ([ok? (or incomp-ok?
(not (and (not (zero? final-y))
(not (= g 1)))))])
(unless ok?
(error 'inflate "incomplete table"))
(values t-result m-result ok?)))))))
(define (inflate_codes
tl ; vector of hufts ; /* literal/length tables */
td ; vector of hufts ; /* distance decoder tables */
bl ; /* number of bits decoded by tl */
bd) ; /* number of bits decoded by td[] */
; /* inflate (decompress) the codes in a deflated (compressed) block.
; Return an error code or zero if it all goes ok. */
; /* inflate the coded data */
; /* precompute masks for speed */
(define ml (vector-ref mask_bits bl))
(define md (vector-ref mask_bits bd))
(define t (void))
(define e 0)
(define n 0)
(define d 0)
(let/ec return
(define (jump-to-next)
(let loop ()
(when (= e 99)
(error 'inflate "bad inflate code")
(return #f))
(DUMPBITS (huft-b t))
(set! e (- e 16))
(NEEDBITS e)
(set! t (vector-ref (huft-v t) (bitwise-and bb (vector-ref mask_bits e))))
(set! e (huft-e t))
(when (> e 16)
(loop))))
(let loop () ; /* do until end of block */
(NEEDBITS bl)
(set! t (vector-ref tl (bitwise-and bb ml)))
; (printf "t->e: ~s t->b: ~s\n" (huft-e t) (huft-b t))
(set! e (huft-e t))
(when (> e 16)
(jump-to-next))
(DUMPBITS (huft-b t))
; (printf "e: ~s\n" e)
(if (= e 16) ; /* then it's a literal */
(begin
(bytes-set! slide wp (huft-v t))
(set! wp (add1 wp))
(check-flush))
(begin ; /* it's an EOB or a length */
; /* exit if end of block */
(when (= e 15)
(return #t))
; /* get length of block to copy */
(NEEDBITS e)
(set! n (+ (huft-v t) (bitwise-and bb (vector-ref mask_bits e))))
(DUMPBITS e)
; (printf "n: ~s bb: ~s md: ~s\n" n bb md)
; /* decode distance of block to copy */
(NEEDBITS bd)
(set! t (vector-ref td (bitwise-and bb md)))
; (printf "t->e: ~s t->b: ~s\n" (huft-e t) (huft-b t))
(set! e (huft-e t))
; (printf "e: ~s\n" e)
(when (> e 16)
(jump-to-next))
(DUMPBITS (huft-b t))
; (printf "e: ~s\n" e)
(NEEDBITS e)
(set! d (modulo (- wp (huft-v t) (bitwise-and bb (vector-ref mask_bits e))) WSIZE))
(DUMPBITS e)
; (printf "wp: ~s t->v: ~s d: ~s\n" wp (huft-v t) d)
; /* do the copy */
(let loop ()
(set! d (bitwise-and d (sub1 WSIZE)))
(set! e (min n (- WSIZE (max d wp))))
(set! n (- n e))
(let loop ()
(bytes-set! slide wp (bytes-ref slide d))
(set! wp (add1 wp))
(set! d (add1 d))
(set! e (sub1 e))
(unless (zero? e)
(loop)))
(check-flush)
(unless (zero? n)
(loop)))))
(loop))))
(define (inflate_stored)
; /* "decompress" an inflated type 0 (stored) block. */
(let/ec return
; /* go to byte boundary */
(DUMPBITS (bitwise-and bk 7))
; /* get the length and its complement */
(NEEDBITS 16)
(let ([n (bitwise-and bb #xffff)])
(DUMPBITS 16)
(NEEDBITS 16)
(unless (= n (bitwise-and (bitwise-not bb) #xffff))
(error 'inflate "error in compressed data")
(return #f)) ; /* error in compressed data */
(DUMPBITS 16)
; /* read and output the compressed data */
(let loop ([n n])
(when (positive? n)
(NEEDBITS 8)
(bytes-set! slide wp (bitwise-and bb #xff))
(set! wp (add1 wp))
(check-flush)
(DUMPBITS 8)
(loop (sub1 n))))
#t)))
(define (inflate_fixed)
; /* decompress an inflated type 1 (fixed Huffman codes) block. We should
; either replace this with a custom decoder, or at least precompute the
; Huffman tables. */
(define l (make-vector 288))
(step 0 < 144 add1 (lambda (i) (vector-set! l i 8)))
(step 144 < 256 add1 (lambda (i) (vector-set! l i 9)))
(step 256 < 280 add1 (lambda (i) (vector-set! l i 7)))
(step 280 < 288 add1 (lambda (i) (vector-set! l i 8)))
(let-values ([(tl bl ok?)
(huft_build l 288 257 cplens cplext 7 #f)])
(if (not ok?)
#f
(begin
(step 0 < 30 add1 (lambda (i) (vector-set! l i 5)))
(let-values ([(td bd ok?)
(huft_build l 30 0 cpdist cpdext 5 #t)])
(if (not ok?)
#f
; /* decompress until an end-of-block code */
(inflate_codes tl td bl bd)))))))
(define (inflate_dynamic)
; /* decompress an inflated type 2 (dynamic Huffman codes) block. */
(begin ; let/ec return
; /* read in table lengths */
; (define junk1 (begin (NEEDBITS 5) (printf "~s ~s\n" bb bk)))
(define nl (+ 257 (bitwise-and (GETBITS 5) #x1f)))
; (define junk2 (begin (NEEDBITS 5) (printf "~s ~s\n" bb bk)))
(define nd (+ 1 (bitwise-and (GETBITS 5) #x1f)))
; (define junk3 (begin (NEEDBITS 4) (printf "~s ~s\n" bb bk)))
(define nb (+ 4 (bitwise-and (GETBITS 4) #xf)))
; (define junk8 (printf "~s ~s ~s\n" nl nd nb))
(define ll (make-vector (+ 286 30)))
(define i 0)
(define l 0)
(if (or (> nl 286) (> nd 30))
(begin
(error 'inflate "bad lengths")
#f) ; /* bad lengths */
(begin
; /* read in bit-length-code lengths */
(step 0 < nb add1
(lambda (j)
(vector-set! ll (vector-ref border j) (bitwise-and (GETBITS 3) 7))))
(step nb < 19 add1
(lambda (j)
(vector-set! ll (vector-ref border j) 0)))
; /* build decoding table for trees--single level, 7 bit lookup */
(let-values ([(tl bl ok?)
(huft_build ll 19 19 null null 7 #f)])
(if (not ok?)
#f
(begin
; /* read in literal and distance code lengths */
(let ([n (+ nl nd)]
[m (vector-ref mask_bits bl)])
; (printf "bl: ~s\n" bl)
(set! i 0)
(set! l 0)
(let loop ()
(when (< i n)
(NEEDBITS bl)
(let* ([pos (bitwise-and bb m)]
[td (vector-ref tl pos)]
[dmp (huft-b td)]
[j (huft-v td)]
[set-lit
(lambda (j l)
(when (> (+ i j) n)
(error 'inflate "bad hop")
#;(return #f))
(let loop ([j j])
(unless (zero? j)
(vector-set! ll i l)
(set! i (add1 i))
(loop (sub1 j)))))])
(DUMPBITS dmp)
; (printf "pos: ~s j: ~s l: ~s i: ~s\n" pos j l i)
(cond
[(< j 16) ; /* length of code in bits (0..15) */
(vector-set! ll i j)
(set! l j) ; /* save last length in l */
(set! i (add1 i))]
[(= j 16) ; /* repeat last length 3 to 6 times */
(let ([j (+ 3 (bitwise-and (GETBITS 2) 3))])
(set-lit j l))]
[(= j 17) ; /* 3 to 10 zero length codes */
(let ([j (+ 3 (bitwise-and (GETBITS 3) 7))])
(set-lit j 0)
(set! l 0))]
[else ; /* j == 18: 11 to 138 zero length codes */
(let ([j (+ 11 (bitwise-and (GETBITS 7) #x7f))])
(set-lit j 0)
(set! l 0))]))
(loop)))
; /* build the decoding tables for literal/length and distance codes */
(let-values ([(tl bl ok?)
(huft_build ll nl 257 cplens cplext lbits #f)])
(if (not ok?)
(begin
(error 'inflate "incomplete code set")
#f) ; /* incomplete code set */
(let-values ([(td bd ok?)
(huft_build (subvector ll nl) nd 0 cpdist cpdext dbits #f)])
(if (not ok?)
(begin
(error 'inflate "incomplete code set")
#f) ; /* incomplete code set */
; /* decompress until an end-of-block code */
(inflate_codes tl td bl bd)))))))))))))
(define (inflate_block)
; return values: /* last block flag */ ok?
; /* decompress an inflated block */
(define e-result (bitwise-and (GETBITS 1) 1))
; /* read in block type */
(define t (bitwise-and (GETBITS 2) 3))
(values e-result
(case t
[(2) (inflate_dynamic)]
[(0) (inflate_stored)]
[(1) (inflate_fixed)]
[else (error 'inflate "unknown inflate type")
#f])))
;;;;;;;;;;;;;;;;;;;;;;;;
; inflate starts here
;;;;;;;;;;;;;;;;;;;;;;;;
; /* decompress an inflated entry */
; /* initialize window, bit buffer */
(set! wp 0)
(set! bk 0)
(set! bb 0)
; /* decompress until the last block */
(let loop ()
(let-values ([(e ok?) (inflate_block)])
(if ok?
(if (zero? e)
(loop)
(begin
; /* Undo too much lookahead. The next read will be byte aligned so we
; * can discard unused bits in the last meaningful byte.
; */
(let loop ()
(when (>= bk 8)
(set! bk (- bk 8))
(set! buf-pos (sub1 buf-pos))
(loop)))
(read-bytes! buffer input-port 0 buf-pos)
(flush-output wp)
#t = (void)))
#f))))
(define make-small-endian
(case-lambda
[(a b) (+ a (arithmetic-shift b 8))]
[(a b c d) (+ a
(arithmetic-shift b 8)
(arithmetic-shift c 16)
(arithmetic-shift d 24))]))
(define (do-gunzip in out name-filter)
(let ([header1 (read-byte in)]
[header2 (read-byte in)])
(unless (and (= header1 #o037) (= header2 #o213))
(error 'gnu-unzip "bad header")))
(let ([compression-type (read-byte in)])
(unless (= compression-type #o010)
(error 'gnu-unzip "unknown compression type")))
(let* ([flags (read-byte in)]
[ascii? (positive? (bitwise-and flags #b1))]
[continuation? (positive? (bitwise-and flags #b10))]
[has-extra-field? (positive? (bitwise-and flags #b100))]
[has-original-filename? (positive? (bitwise-and flags #b1000))]
[has-comment? (positive? (bitwise-and flags #b10000))]
[encrypted? (positive? (bitwise-and flags #b100000))])
(when encrypted?
(error 'gnu-unzip "cannot unzip encrypted file"))
(when continuation?
(error 'gnu-unzip "cannot handle multi-part files"))
(let ([unix-mod-time (make-small-endian (read-byte in) (read-byte in)
(read-byte in) (read-byte in))]
[extra-flags (read-byte in)]
[source-os (read-byte in)])
(when continuation?
(let ([part-number (make-small-endian (read-byte in) (read-byte in))])
'ok))
(when has-extra-field?
(let ([len (make-small-endian (read-byte in) (read-byte in))])
(let loop ([len len])
(unless (zero? len)
(read-byte in)
(loop (sub1 len))))))
(let* ([read-null-term-string
(lambda ()
(let loop ([s null])
(let ([r (read-byte in)])
(if (zero? r)
(list->bytes (reverse s))
(loop (cons r s))))))]
[original-filename (and has-original-filename?
(read-null-term-string))]
[comment (and has-comment? (read-null-term-string))])
(when encrypted?
(let loop ([n 12])
(unless (zero? n)
(read-byte in)
(loop (sub1 n)))))
(let-values ([(out close?) (if out
(values out #f)
(let-values ([(fn orig?)
(if original-filename
(values (bytes->path original-filename) #t)
(values "unzipped" #f))])
(values (open-output-file (name-filter fn orig?) #:exists 'truncate)
#t)))])
(dynamic-wind
void
(lambda () (begin0 (inflate in out)
(read-bytes 8 in))) ; read CRC32 and ISIZE
(lambda () (when close? (close-output-port out)))))))))
(define (gunzip-through-ports in out)
(do-gunzip in out void))
(define gunzip
(case-lambda
[(src) (gunzip src (lambda (name from-file?) name))]
[(src name-filter)
(let ([in (open-input-file src #:mode 'binary)])
(dynamic-wind
void
(lambda () (do-gunzip in #f name-filter))
(lambda () (close-input-port in))))]))
;; deprecated library, see `file/gunzip`
(require file/gunzip)
(provide (all-from-out file/gunzip))

File diff suppressed because it is too large Load Diff

View File

@ -1,207 +1,6 @@
#lang racket/base
(provide process
process*
process/ports
process*/ports
system
system*
system/exit-code
system*/exit-code)
(require "private/streams.rkt")
;; deprecated library, see `racket/system`
;; Helpers: ----------------------------------------
(define (shell-path/args who argstr)
(case (system-type)
[(unix macosx) (append '("/bin/sh" "-c") (list argstr))]
[(windows) (let ([cmd
(let ([d (find-system-path 'sys-dir)])
(let ([cmd (build-path d "cmd.exe")])
(if (file-exists? cmd)
cmd
(let ([cmd (build-path d "command.com")])
(if (file-exists? cmd)
cmd
;; One last try: up a dir
(build-path d 'up "command.com"))))))])
(list cmd
'exact
(format "~a /c \"~a\"" (path->string cmd) argstr)))]
[else (raise-mismatch-error
who
(format "~a: don't know what shell to use for platform: " who)
(system-type))]))
(define (check-exe who exe)
(unless (path-string? exe)
(raise-argument-error who "path-string?" exe))
exe)
(define (path-or-ok-string? s)
;; use `path-string?' t check for nul characters in a string,
;; but allow the empty string (which is not an ok path), too:
(or (path-string? s)
(equal? "" s)))
(define (string-no-nuls? s)
(and (string? s) (path-or-ok-string? s)))
(define (bytes-no-nuls? s)
(and (bytes? s)
(not (regexp-match? #rx#"\0" s))))
(define (check-args who args)
(cond
[(null? args) (void)]
[(eq? (car args) 'exact)
(when (null? (cdr args))
(raise-mismatch-error
who
"expected a single string argument after: "
(car args)))
(unless (and (>= 2 (length args))
(string? (cadr args))
(path-or-ok-string? (cadr args)))
(raise-mismatch-error who
"expected a single string argument after 'exact, given: "
(cadr args)))
(when (pair? (cddr args))
(raise-mismatch-error
who
"expected a single string argument after 'exact, given additional argument: "
(caddr args)))]
[else
(for ([s (in-list args)])
(unless (or (path-or-ok-string? s)
(bytes-no-nuls? s))
(raise-argument-error
who
(string-append "(or/c path-string?\n"
" (and/c bytes? (lambda (bs) (not (memv 0 (bytes->list bs))))))")
s)))])
args)
(define (check-command who str)
(unless (or (string-no-nuls? str)
(bytes-no-nuls? str))
(raise-argument-error
who
(string-append "(or/c (and/c string? (lambda (s) (not (memv #\\nul (string->list s)))))\n"
" (and/c bytes? (lambda (bs) (not (memv 0 (bytes->list bs))))))")
str)))
;; Old-style functions: ----------------------------------------
(define (do-process*/ports who cout cin cerr exe . args)
(let-values ([(subp out in err) (apply subprocess
(if-stream-out who cout)
(if-stream-in who cin)
(if-stream-out who cerr #t)
(check-exe who exe)
(check-args who args))]
[(it-ready) (make-semaphore)])
(let ([so (streamify-out cout out)]
[si (streamify-in cin in (lambda (ok?)
(if ok?
(semaphore-post it-ready)
(semaphore-wait it-ready))))]
[se (streamify-out cerr err)]
[aport (lambda (x) (and (port? x) x))])
(when (thread? si)
;; Wait for process to end, then stop copying input:
(thread (lambda ()
(sync subp si)
(semaphore-wait it-ready)
(break-thread si))))
(let ([threads-still-going?
(lambda ()
(ormap (lambda (s) (and (thread? s) (thread-running? s)))
(list so si se)))])
(define (control m)
(case m
[(status)
(let ([s (subprocess-status subp)])
(cond [(or (not (integer? s)) (threads-still-going?))
'running]
[(zero? s) 'done-ok]
[else 'done-error]))]
[(exit-code)
(if (threads-still-going?)
#f
(let ([s (subprocess-status subp)]) (and (integer? s) s)))]
[(wait)
(subprocess-wait subp)
(let ([twait (lambda (t) (when (thread? t) (thread-wait t)))])
(twait so)
(twait si)
(twait se))]
[(interrupt) (subprocess-kill subp #f)]
[(kill) (subprocess-kill subp #t)]
[else (raise-argument-error
'control-process
"(or/c 'status 'exit-code 'wait 'interrupt 'kill)" m)]))
(list (aport so)
(aport si)
(subprocess-pid subp)
(aport se)
control)))))
(define (process*/ports cout cin cerr exe . args)
(apply do-process*/ports 'process*/ports cout cin cerr exe args))
(define (process/ports out in err str)
(apply do-process*/ports 'process/ports out in err (shell-path/args 'process/ports str)))
(define (process* exe . args)
(apply do-process*/ports 'process* #f #f #f exe args))
(define (process str)
(check-command 'process str)
(apply do-process*/ports 'process #f #f #f (shell-path/args 'process str)))
;; Note: these always use current ports
(define (do-system*/exit-code who exe . args)
(let ([cout (current-output-port)]
[cin (current-input-port)]
[cerr (current-error-port)]
[it-ready (make-semaphore)])
(let-values ([(subp out in err)
(apply subprocess
(if-stream-out who cout)
(if-stream-in who cin)
(if-stream-out who cerr #t)
(check-exe who exe)
(check-args who args))])
(let ([ot (streamify-out cout out)]
[it (streamify-in cin in (lambda (ok?)
(if ok?
(semaphore-post it-ready)
(semaphore-wait it-ready))))]
[et (streamify-out cerr err)])
(subprocess-wait subp)
(when it
;; stop piping output to subprocess
(semaphore-wait it-ready)
(break-thread it))
;; wait for other pipes to run dry:
(when (thread? ot) (thread-wait ot))
(when (thread? et) (thread-wait et))
(when err (close-input-port err))
(when out (close-input-port out))
(when in (close-output-port in)))
(subprocess-status subp))))
(define (system*/exit-code exe . args)
(apply do-system*/exit-code 'system*/exit-code exe args))
(define (system* exe . args)
(zero? (apply do-system*/exit-code 'system* exe args)))
(define (system str)
(check-command 'system str)
(zero? (apply do-system*/exit-code 'system (shell-path/args 'system str))))
(define (system/exit-code str)
(check-command 'system/exit-code str)
(apply do-system*/exit-code 'system/exit-code (shell-path/args 'system/exit-code str)))
(require racket/system)
(provide (all-from-out racket/system))

View File

@ -1,172 +1,10 @@
(module runtime-path racket/base
(require "private/this-expression-source-directory.rkt"
racket/list
setup/dirs
(only-in "private/runtime-path-table.rkt" table)
(for-syntax racket/base))
#lang racket/base
(provide define-runtime-path
define-runtime-paths
define-runtime-path-list
define-runtime-module-path-index
runtime-paths)
(define-for-syntax ext-file-table (make-hasheq))
;; deprecated library, see `racket/runtime-path`
(define (lookup-in-table var-ref p)
;; This function is designed to cooperate with a table embedded
;; in an executable by create-embedding-executable.
(let ([modname (variable-reference->resolved-module-path var-ref)])
(let ([p (hash-ref
table
(cons (resolved-module-path-name modname)
(if (path? p)
(path->bytes p)
(if (and (pair? p) (eq? 'module (car p)))
(list 'module (cadr p))
p)))
#f)])
(and p
(car p)
(let* ([p (car p)]
[p (if (bytes? p)
(bytes->path p)
p)])
(if (symbol? p)
(module-path-index-join (list 'quote p) #f) ; make it a module path index
(if (absolute-path? p)
p
(parameterize ([current-directory (find-system-path 'orig-dir)])
(or (find-executable-path (find-system-path 'exec-file) p #t)
(build-path (current-directory) p))))))))))
(define (resolve-paths tag-stx get-base paths)
(let ([base #f])
(map (lambda (p)
(or
;; Check table potentially substituted by
;; mzc --exe:
(and table
(lookup-in-table tag-stx p))
;; Normal resolution
(cond
[(and (or (string? p) (path? p))
(not (complete-path? p)))
(unless base
(set! base (get-base)))
(path->complete-path p base)]
[(string? p) (string->path p)]
[(path? p) p]
[(and (list? p)
(= 2 (length p))
(eq? 'so (car p))
(string? (cadr p)))
(let ([f (path-replace-suffix (cadr p) (system-type 'so-suffix))])
(or (ormap (lambda (p)
(let ([p (build-path p f)])
(and (file-exists? p)
p)))
(get-lib-search-dirs))
(cadr p)))]
[(and (list? p)
((length p) . > . 1)
(eq? 'lib (car p))
(andmap string? (cdr p)))
(let* ([strs (regexp-split #rx"/"
(let ([s (cadr p)])
(if (regexp-match? #rx"[./]" s)
s
(string-append s "/main.rkt"))))])
(apply collection-file-path
(last strs)
(if (and (null? (cddr p))
(null? (cdr strs)))
(list "mzlib")
(append (cddr p) (drop-right strs 1)))))]
[(and (list? p)
((length p) . = . 3)
(eq? 'module (car p))
(or (not (caddr p))
(variable-reference? (caddr p))))
(let ([p (cadr p)]
[vr (caddr p)])
(unless (module-path? p)
(error 'runtime-path "not a module path: ~.s" p))
(let ([base (and vr
(variable-reference->resolved-module-path vr))])
(if (and (pair? p)
(eq? (car p) 'submod)
(path? (cadr p)))
(module-path-index-join `(submod "." ,@(cddr p))
(module-path-index-join (cadr p) base))
(module-path-index-join p base))))]
[else (error 'runtime-path "unknown form: ~.s" p)])))
paths)))
(define-for-syntax (register-ext-files var-ref paths)
(let ([modname (variable-reference->resolved-module-path var-ref)])
(let ([files (hash-ref ext-file-table modname null)])
(hash-set! ext-file-table modname (append paths files)))))
(define-syntax (-define-runtime-path stx)
(syntax-case stx ()
[(_ orig-stx (id ...) expr to-list to-values)
(let ([ids (syntax->list #'(id ...))])
(unless (memq (syntax-local-context) '(module module-begin top-level))
(raise-syntax-error #f "allowed only at the top level" #'orig-stx))
(for-each (lambda (id)
(unless (identifier? id)
(raise-syntax-error
#f
#'orig-stx
id)))
ids)
#`(begin
(define-values (id ...)
(let-values ([(id ...) expr])
(let ([get-dir (lambda ()
#,(datum->syntax
#'orig-stx
`(,#'this-expression-source-directory)
#'orig-stx))])
(apply to-values (resolve-paths (#%variable-reference)
get-dir
(to-list id ...))))))
(begin-for-syntax
(register-ext-files
(#%variable-reference)
(let-values ([(id ...) expr])
(to-list id ...))))))]))
(define-syntax (define-runtime-path stx)
(syntax-case stx ()
[(_ id expr) #`(-define-runtime-path #,stx (id) expr list values)]))
(define-syntax (define-runtime-paths stx)
(syntax-case stx ()
[(_ (id ...) expr) #`(-define-runtime-path #,stx (id ...) expr list values)]))
(define-syntax (define-runtime-path-list stx)
(syntax-case stx ()
[(_ id expr) #`(-define-runtime-path #,stx (id) expr values list)]))
(define-syntax (define-runtime-module-path-index stx)
(syntax-case stx ()
[(_ id expr) #`(-define-runtime-path #,stx (id) `(module ,expr ,(#%variable-reference)) list values)]))
(define-syntax (runtime-paths stx)
(syntax-case stx ()
[(_ mp)
#`(quote
#,(hash-ref
ext-file-table
(module-path-index-resolve
(let ([p (syntax->datum #'mp)]
[base (syntax-source-module stx)])
(if (and (pair? p) (eq? (car p) 'submod) (path? (cadr p)))
(module-path-index-join `(submod "." ,@(cddr p))
(module-path-index-join (cadr p) base))
(module-path-index-join p base))))
null))]))
)
(require racket/runtime-path)
(provide define-runtime-path
define-runtime-paths
define-runtime-path-list
define-runtime-module-path-index
runtime-paths)

View File

@ -1,21 +1,6 @@
#lang racket/base
(require (for-syntax racket/base
syntax/kerncase
syntax/struct
racket/struct-info
racket/include))
;; deprecated library, see `racket/shared`
(require racket/shared)
(provide shared)
(define-for-syntax code-insp (variable-reference->module-declaration-inspector
(#%variable-reference)))
(define undefined (letrec ([x x]) x))
(require (only-in racket/base [cons the-cons]))
(define-syntax shared
(lambda (stx)
(define make-check-cdr #f)
;; Include the implementation.
;; See private/shared-body.rkt.
(include "private/shared-body.rkt")))

View File

@ -1,27 +1,6 @@
#lang racket/base
(require "private/unit-syntax.rkt"
"private/unit-compiletime.rkt")
;; deprecated library, see `racket/unit-exptime`
(provide unit-static-signatures
signature-members)
(define (unit-static-signatures name err-stx)
(parameterize ((error-syntax err-stx))
(let ((ui (lookup-def-unit name)))
(values (apply list (unit-info-import-sig-ids ui))
(apply list (unit-info-export-sig-ids ui))))))
(define (signature-members name err-stx)
(parameterize ((error-syntax err-stx))
(let ([s (lookup-signature name)])
(values
;; extends:
(and (pair? (cdr (siginfo-names (signature-siginfo s))))
(cadr (siginfo-names (signature-siginfo s))))
;; vars
(apply list (signature-vars s))
;; defined vars
(apply list (apply append (map car (signature-val-defs s))))
;; defined stxs
(apply list (apply append (map car (signature-stx-defs s))))))))
(require racket/unit-exptime)
(provide (all-from-out racket/unit-exptime))

File diff suppressed because it is too large Load Diff

View File

@ -1,269 +1,6 @@
;; A modification of Dave Herman's zip module
#lang racket/base
(module zip mzscheme
(require mzlib/deflate racket/file mzlib/kw)
;; deprecated library, see `file/zip`
;; ===========================================================================
;; DATA DEFINITIONS
;; ===========================================================================
;; An msdos-time or an msdos-date is an exact-integer in the respective format
;; described at:
;;
;; http://msdn.microsoft.com/library/en-us/com/htm/cmf_a2c_25gl.asp
;; metadata : path * bytes * boolean * integer * integer * nat * integer
(define-struct metadata
(path name directory? time date compression attributes))
;; header : metadata * exact-integer * nat * nat * nat
(define-struct header (metadata crc compressed uncompressed size))
;; ===========================================================================
;; CONSTANTS etc
;; ===========================================================================
(define *spec-version* 62) ; version 6.2
(define *required-version* 20) ; version 2.0
(define *compression-level* 8) ; I don't think this is configurable
(define *zip-comment* #"packed by Racket - http://racket-lang.org/")
;; PKZIP specification:
;; http://www.pkware.com/company/standards/appnote/
(define *local-file-header* #x04034b50)
(define *archive-extra-record* #x08064b50)
(define *central-file-header* #x02014b50)
(define *digital-signature* #x05054b50)
(define *zip64-end-of-central-directory-record* #x06064b50)
(define *zip64-end-of-central-directory-locator* #x07064b50)
(define *end-of-central-directory-record* #x06054b50)
(define *system*
(case (system-type)
[(unix oskit) 3]
[(windows) 0]
[(macos) 7]
[(macosx) 19]))
(define *os-specific-separator-regexp*
(case (system-type)
[(unix macosx oskit) #rx"/"]
[(windows) #rx"\\\\"]
[(macos) #rx":"]))
(provide zip-verbose)
(define zip-verbose (make-parameter #f))
;; ===========================================================================
;; FILE CREATION
;; ===========================================================================
;; date->msdos-time : date -> msdos-time
(define (date->msdos-time date)
(bitwise-ior (ceiling (/ (date-second date) 2))
(arithmetic-shift (date-minute date) 5)
(arithmetic-shift (date-hour date) 11)))
;; date->msdos-date : date -> msdos-date
(define (date->msdos-date date)
(bitwise-ior (date-day date)
(arithmetic-shift (date-month date) 5)
(arithmetic-shift (- (date-year date) 1980) 9)))
;; seekable-port? : port -> boolean
(define (seekable-port? port)
(and (file-stream-port? port)
(with-handlers ([void (lambda (exn) #f)])
(file-position port (file-position port))
#t)))
(define (write-int n size)
(write-bytes (integer->integer-bytes n size #f #f)))
;; zip-one-entry : metadata boolean -> header
(define (zip-one-entry metadata seekable?)
(let* ([directory? (metadata-directory? metadata)]
[path (metadata-path metadata)]
[filename (metadata-name metadata)]
[filename-length (bytes-length filename)]
[bits (if seekable? 0 #b1000)]
[time (metadata-time metadata)]
[date (metadata-date metadata)]
[compression (metadata-compression metadata)]
[mark1 #f]
[mark2 #f])
(when (zip-verbose)
(eprintf "zip: compressing ~a...\n" filename))
;; write the contents to the output stream:
(write-int *local-file-header* 4) ; signature
(write-int *required-version* 2) ; version
(write-int bits 2) ; bits
(write-int compression 2) ; compression
(write-int time 2) ; time
(write-int date 2) ; date
(when seekable? (set! mark1 (file-position (current-output-port))))
(write-int 0 4) ; crc-32
(write-int 0 4) ; compressed
(write-int 0 4) ; uncompressed
(write-int filename-length 2) ; filename-length
(write-int 0 2) ; extra-length
(write-bytes filename) ; filename
(if directory?
(make-header metadata 0 0 0 (+ filename-length 30))
(let-values ([(uncompressed compressed crc)
(with-input-from-file path
(lambda ()
(deflate (current-input-port)
(current-output-port))))])
(if seekable?
(begin (set! mark2 (file-position (current-output-port)))
(file-position (current-output-port) mark1))
(write-int #x08074b50 4)) ; EXT signature
(write-int crc 4) ; crc-32
(write-int compressed 4) ; compressed
(write-int uncompressed 4) ; uncompressed
(when seekable? (file-position (current-output-port) mark2))
;; return the header information
(make-header metadata crc compressed uncompressed
(+ filename-length compressed
(if seekable? 30 46)))))))
;; write-end-of-central-directory : nat nat nat ->
(define (write-end-of-central-directory count start size)
(let ([comment-length (bytes-length *zip-comment*)])
(write-int #x06054b50 4) ; signature
(write-int 0 2) ; # this disk
(write-int 0 2) ; # disk with start of central dir.
(write-int count 2) ; # entries in central dir. on this disk
(write-int count 2) ; # entries in central dir.
(write-int size 4) ; size of central dir.
(write-int start 4) ; offset of start of central dir.
(write-int comment-length 2)
(write-bytes *zip-comment*)))
;; write-central-directory : (listof header) ->
(define (write-central-directory headers)
(let ([count (length headers)])
(let loop ([headers headers] [offset 0] [size 0])
(if (null? headers)
;; no digital signature (why?)
(write-end-of-central-directory count offset size)
(let* ([header (car headers)]
[metadata (header-metadata header)]
[filename-length (bytes-length (metadata-name metadata))]
[attributes (metadata-attributes metadata)]
[compression (metadata-compression metadata)]
[version (bitwise-ior *spec-version*
(arithmetic-shift *system* 8))])
(write-int #x02014b50 4)
(write-int version 2)
(write-int *required-version* 2)
(write-int 0 2)
(write-int compression 2)
(write-int (metadata-time metadata) 2)
(write-int (metadata-date metadata) 2)
(write-int (header-crc header) 4)
(write-int (header-compressed header) 4)
(write-int (header-uncompressed header) 4)
(write-int filename-length 2)
(write-int 0 2)
(write-int 0 2) ; comment length
(write-int 0 2)
(write-int 0 2) ; internal attributes
(write-int attributes 4) ; external attributes
(write-int offset 4)
(write-bytes (metadata-name metadata))
(loop (cdr headers)
(+ offset (header-size header))
(+ size filename-length 46)))))))
;; The PKZIP specification includes an entry in the central directory for
;; an entry's "external file attributes," which for standard ZIP files is
;; the MS-DOS (i.e., FAT) directory attribute byte, and the Unix zip adds
;; the Unix bits as the higher two bytes.
;; This is for reference
;; (define *msdos:read-only* #x01)
;; (define *msdos:hidden* #x02)
;; (define *msdos:system* #x04)
;; (define *msdos:volume* #x08)
;; (define *msdos:directory* #x10)
;; (define *msdos:archive* #x20)
;; (define *unix:directory* #o40000)
;; (define *unix:char-dev* #o20000)
;; (define *unix:fifo* #o10000)
;; (define *unix:suid* #o04000)
;; (define *unix:sgid* #o02000)
;; (define *unix:sticky* #o01000)
;; (define *unix:owner-read* #o00400)
;; (define *unix:owner-write* #o00200)
;; (define *unix:owner-exe* #o00100)
;; (define *unix:group-read* #o00040)
;; (define *unix:group-write* #o00020)
;; (define *unix:group-exe* #o00010)
;; (define *unix:other-read* #o00004)
;; (define *unix:other-write* #o00002)
;; (define *unix:other-exe* #o00001)
(define (path-attributes path dir?)
(let ([dos (if dir? #x10 0)]
[unix (apply bitwise-ior (if dir? #o40000 0)
(map (lambda (p)
(case p
[(read) #o444]
[(write) #o200] ; mask out write bits
[(execute) #o111]))
(file-or-directory-permissions path)))])
(bitwise-ior dos (arithmetic-shift unix 16))))
;; with-trailing-slash : bytes -> bytes
(define (with-trailing-slash bytes)
(regexp-replace #rx#"/*$" bytes "/"))
;; with-slash-separator : bytes -> bytes
(define (with-slash-separator bytes)
(regexp-replace* *os-specific-separator-regexp* bytes #"/"))
;; build-metadata : relative-path -> metadata
(define (build-metadata path)
(let* ([mod (seconds->date (file-or-directory-modify-seconds path))]
[dir? (directory-exists? path)]
[path (cond [(path? path) path]
[(string? path) (string->path path)]
[(bytes? path) (bytes->path path)])]
[name (with-slash-separator (path->bytes path))]
[name (if dir? (with-trailing-slash name) name)]
[time (date->msdos-time mod)]
[date (date->msdos-date mod)]
[comp (if dir? 0 *compression-level*)]
[attr (path-attributes path dir?)])
(make-metadata path name dir? time date comp attr)))
;; ===========================================================================
;; FRONT END
;; ===========================================================================
;; zip-write : (listof relative-path) ->
;; writes a zip file to current-output-port
(provide zip->output)
(define/kw (zip->output files #:optional [out (current-output-port)])
(parameterize ([current-output-port out])
(let* ([seekable? (seekable-port? (current-output-port))]
[headers ; note: Racket's `map' is always left-to-right
(map (lambda (file)
(zip-one-entry (build-metadata file) seekable?))
files)])
(when (zip-verbose)
(eprintf "zip: writing headers...\n"))
(write-central-directory headers))
(when (zip-verbose)
(eprintf "zip: done.\n"))))
;; zip : output-file paths ->
(provide zip)
(define (zip zip-file . paths)
(when (null? paths) (error 'zip "no paths specified"))
(with-output-to-file zip-file
(lambda () (zip->output (pathlist-closure paths)))))
)
(require file/zip)
(provide (all-from-out file/zip))