Cleaned up comments, added refernces

This commit is contained in:
William J. Bowman 2015-03-25 20:29:00 -04:00
parent 3304ed8531
commit 0caeed6080

View File

@ -111,6 +111,65 @@
[(subst-all t (x_0 x ...) (e_0 e ...))
(subst-all (subst t x_0 e_0) (x ...) (e ...))])
;; ---
;; Proper inductives.
;; Proper inductives start with proper telescopes.
;; References:
;; http://people.cs.kuleuven.be/~jesper.cockx/Without-K/Pattern-matching-without-K.pdf
;; http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.74
;; http://eb.host.cs.st-andrews.ac.uk/writings/thesis.pdf
;; Trying to generate well-typed eliminators generally amounts to
;; trying to give a single type and rule to elim-D, which is
;; basically the same thing as case. So might as well just use case?
;; (Telescope) (Ξ Φ) ::= hole (Π (x : t) Ξ)
;; (Apply context) Θ ::= hole (Θ e)
;;
;; (apply-telescope D hole ) = D
;; (apply-telescope D (Π (x : t) Ψ)) = (apply-telescope (D x) Ψ)
;; Data: (when does an inductive type-check. Should specify this using judgment forms)
;;
;; (D : (in-hole Ξ U) ((c : (in-hole Ξ (in-hole Φ (in-hole Θ D)))) ...))
;; (side-condition (judgment-holds (check-constructor Φ)))
;;
;; NB: Um. I forgot what this is doing? The above pattern already checks
;; NB: that all constructors produce D
;; (check-constructor D hole) = #t
;; (check-constructor D (Π (x : (in-hole Φ (in-hole Θ D))) Φ_1)) = (check-constructor Φ_1)
;; (check-constructor D any) = #f
;;
;;
;; elim : (Π (i_0 : T_0) (Π (i_1 : T_1) ... (Π (x : ((D i_0) ... i_n)) ...)))
;; elim : (in-hole Ξ (Π (x : (apply-telescope D Ξ))
;; (Π (P : (in-hole Ξ (Π (x : (apply-telescope x_D Ξ)) U)))
;; (in-hole Φ ((apply-telescope P Ξ) x)))))
;; (where Φ (methods D (constructors-for D)))
;;
;; (methods D ()) = hole
;; (methods D ((c : (in-hole Ξ (in-hole Φ (in-hole Θ D)))) (c : e) ...)) =
;; (Π (m_i : (in-hole Ξ (in-hole Φ (in-hole Φ_1 ((in-hole Θ P) (apply-telescope (apply-telescope c Ξ) Φ))))))
; (methods D ((c : e) ...)))
;; (where Φ_1 (hypotheses D Φ))
;;
;; (hypotheses D hole) = hole
;; (hypotheses D (Π (x : (in-hole Φ (in-hole Θ D))) Φ_1)) =
;; (Π (h : (in-hole Φ ((in-hole Θ P) (apply-telescope x Φ))))
;; (hypotheses D Φ_1))
;; (in-hole Θ_m (((elim D) (in-hole Θ_i c_i)) v_P)) ->
;; (in-hole Θ_r (in-hole Θ_i m_i) ...)
;; (where m_i (method-lookup D c_i Θ_m))
;; (where Θ_r (elim-recur D Θ_m Θ_i (constructors-for D) v_P Θ_m))
;;
;; (elim-recur D Θ hole () v_P hole) = hole
;; Not so sure about the (in-hole Θ_t ) bit. Trying to ignore the
;; non-recursive parameters.
;; (elim-recur D Θ (in-hole Θ_t (Θ_i (in-hole Θ_r c_i))) (c_i c ...) v_P (Θ_m m_i)) =
;; ((elim-recur D Θ_i (c ...) v_P Θ_m) (in-hole Θ (((elim D) (in-hole Θ_r c_i)) v_P))
(define-extended-language cic-redL cicL
(E ::= hole (E t))
;; Σ signature. (inductive-name : type ((constructor : tye) ...))
@ -119,6 +178,7 @@
(Θ ::= hole (Θ e))) ;;(Apply context)
(define Σ? (redex-match? cic-redL Σ))
(module+ test
;; TODO: Rename these signatures, and use them in all future tests.
(define Σ (term ( (nat : (Unv 0) ((zero : nat) (s : (Π (x : nat) nat)))))))
(define Σ0 (term ))
(define Σ3 (term ( (and : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0))) ()))))
@ -182,57 +242,6 @@
(Γ ::= (Γ x : t)))
(define Γ? (redex-match? cic-typingL Γ))
;; TODO: Rename these signatures, and use them in all future tests.
;; TODO: Convert these to new Σ format
;; Trying to generate well-typed eliminators generally amounts to
;; trying to give a single type and rule to elim-D, which is
;; basically the same thing as case. So might as well just use case?
;; (Telescope) (Ξ Φ) ::= hole (Π (x : t) Ξ)
;; (Apply context) Θ ::= hole (Θ e)
;;
;; (apply-telescope D hole ) = D
;; (apply-telescope D (Π (x : t) Ψ)) = (apply-telescope (D x) Ψ)
;; Data: (when does an inductive type-check. Should specify this using judgment forms)
;;
;; (D : (in-hole Ξ U) ((c : (in-hole Ξ (in-hole Φ (in-hole Θ D)))) ...))
;; (side-condition (judgment-holds (check-constructor Φ)))
;;
;; NB: Um. I forgot what this is doing? The above pattern already checks
;; NB: that all constructors produce D
;; (check-constructor D hole) = #t
;; (check-constructor D (Π (x : (in-hole Φ (in-hole Θ D))) Φ_1)) = (check-constructor Φ_1)
;; (check-constructor D any) = #f
;;
;;
;; elim : (Π (i_0 : T_0) (Π (i_1 : T_1) ... (Π (x : ((D i_0) ... i_n)) ...)))
;; elim : (in-hole Ξ (Π (x : (apply-telescope D Ξ))
;; (Π (P : (in-hole Ξ (Π (x : (apply-telescope x_D Ξ)) U)))
;; (in-hole Φ ((apply-telescope P Ξ) x)))))
;; (where Φ (methods D (constructors-for D)))
;;
;; (methods D ()) = hole
;; (methods D ((c : (in-hole Ξ (in-hole Φ (in-hole Θ D)))) (c : e) ...)) =
;; (Π (m_i : (in-hole Ξ (in-hole Φ (in-hole Φ_1 ((in-hole Θ P) (apply-telescope (apply-telescope c Ξ) Φ))))))
; (methods D ((c : e) ...)))
;; (where Φ_1 (hypotheses D Φ))
;;
;; (hypotheses D hole) = hole
;; (hypotheses D (Π (x : (in-hole Φ (in-hole Θ D))) Φ_1)) =
;; (Π (h : (in-hole Φ ((in-hole Θ P) (apply-telescope x Φ))))
;; (hypotheses D Φ_1))
;; (in-hole Θ_m (((elim D) (in-hole Θ_i c_i)) v_P)) ->
;; (in-hole Θ_r (in-hole Θ_i m_i) ...)
;; (where m_i (method-lookup D c_i Θ_m))
;; (where Θ_r (elim-recur D Θ_m Θ_i (constructors-for D) v_P Θ_m))
;;
;; (elim-recur D Θ hole () v_P hole) = hole
;; Not so sure about the (in-hole Θ_t ) bit. Trying to ignore the
;; non-recursive parameters.
;; (elim-recur D Θ (in-hole Θ_t (Θ_i (in-hole Θ_r c_i))) (c_i c ...) v_P (Θ_m m_i)) =
;; ((elim-recur D Θ_i (c ...) v_P Θ_m) (in-hole Θ (((elim D) (in-hole Θ_r c_i)) v_P))
(define-metafunction cic-typingL
append-env : Γ Γ -> Γ
@ -262,6 +271,7 @@
[(remove (Γ x : t) x) Γ]
[(remove (Γ x_0 : t_0) x_1) (remove Γ x_1)])
;; TODO: Add positivity checking.
(define-metafunction cicL
positive : t any -> #t or #f