diff --git a/curnel/redex-core.rkt b/curnel/redex-core.rkt index 2f6dea0..4eaa33a 100644 --- a/curnel/redex-core.rkt +++ b/curnel/redex-core.rkt @@ -535,13 +535,48 @@ ;; The types of the methods for this inductive. (where Ξ_m (Σ-methods-telescope Σ x_D x_P))]) +;; TODO: This might belong in the next section, since it's related to evaluation +;; Generate recursive applications of the eliminator for each inductive argument of type x_D. +;; In more detaill, given motive t_P, parameters Θ_p, methods Θ_m, and arguments Θ_i to constructor +;; x_ci for x_D, for each inductively smaller term t_i of type (in-hole Θ_p x_D) inside Θ_i, +;; generate: (elim x_D U t_P Θ_m ... Θ_p ... t_i) +(define-metafunction tt-ctxtL + Σ-inductive-elim : Σ x U t Θ Θ Θ -> Θ + [(Σ-inductive-elim Σ x_D U t_P Θ_p Θ_m (in-hole Θ_i (hole (name t_i (in-hole Θ_r x_ci))))) + ((Σ-inductive-elim Σ x_D U t_P Θ_p Θ_m Θ_i) + (in-hole ((in-hole Θ_p Θ_m) t_i) ((elim x_D U) t_P))) + (side-condition (memq (term x_ci) (term (Σ-ref-constructors Σ x_D))))] + [(Σ-inductive-elim Σ x_D U t_P Θ_p Θ_m Θ_nr) hole]) + +;; TODO: Insufficient tests, no tests of inductives with parameters, or complex induction. +(module+ test + (check-true + (redex-match? tt-ctxtL (in-hole Θ_i (hole (in-hole Θ_r zero))) (term (hole zero)))) + (check-equiv? + (term (Σ-inductive-elim ,Σ nat Type (λ (x : nat) nat) hole + ((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x))))) + (hole zero))) + (term (hole (((((elim nat Type) (λ (x : nat) nat)) + (s zero)) + (λ (x : nat) (λ (ih-x : nat) (s (s x))))) + zero)))) + (check-equiv? + (term (Σ-inductive-elim ,Σ nat Type (λ (x : nat) nat) hole + ((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x))))) + (hole (s zero)))) + (term (hole (((((elim nat Type) (λ (x : nat) nat)) + (s zero)) + (λ (x : nat) (λ (ih-x : nat) (s (s x))))) + (s zero)))))) + ;;; ------------------------------------------------------------------------ ;;; Dynamic semantics ;;; The majority of this section is dedicated to evaluation of (elim x U), the eliminator for the ;;; inductively defined type x with a motive whose result is in universe U (define-extended-language tt-redL tt-ctxtL - ;; NB: (in-hole Θv (elim x U)) is only a value when it's a partially applied elim. + ;; NB: (in-hole Θv (elim x U)) is only a value when it's a partially applied elim. However, + ;; determining whether or not it is partially applied cannot be done with the grammar alone. (v ::= x U (Π (x : t) t) (λ (x : t) t) (elim x U) (in-hole Θv x) (in-hole Θv (elim x U))) (Θv ::= hole (Θv v)) ;; call-by-value, plus reduce under Π (helps with typing checking) @@ -556,43 +591,6 @@ (check-true (v? (term (refl Nat)))) (check-true (v? (term ((refl Nat) z))))) -;; Create the recursive applications of elim to the recursive -;; arguments of an inductive constructor. -;; TODO: Poorly documented, and poorly tested. -(define-metafunction tt-redL - elim-recur : x U e Θ Θ Θ (x ...) -> Θ - [(elim-recur x_D U e_P Θ - (in-hole Θ_m (hole e_mi)) - (in-hole Θ_i (hole (in-hole Θ_r x_ci))) - (x_c0 ... x_ci x_c1 ...)) - ((elim-recur x_D U e_P Θ Θ_m Θ_i (x_c0 ... x_ci x_c1 ...)) - (in-hole (Θ (in-hole Θ_r x_ci)) ((elim x_D U) e_P)))] - [(elim-recur x_D U e_P Θ Θ_i Θ_nr (x ...)) hole]) - -(module+ test - (check-true - (redex-match? tt-redL (in-hole Θ_i (hole (in-hole Θ_r zero))) (term (hole zero)))) - (check-equiv? - (term (elim-recur nat Type (λ (x : nat) nat) - ((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x))))) - ((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x))))) - (hole zero) - (zero s))) - (term (hole (((((elim nat Type) (λ (x : nat) nat)) - (s zero)) - (λ (x : nat) (λ (ih-x : nat) (s (s x))))) - zero)))) - (check-equiv? - (term (elim-recur nat Type (λ (x : nat) nat) - ((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x))))) - ((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x))))) - (hole (s zero)) - (zero s))) - (term (hole (((((elim nat Type) (λ (x : nat) nat)) - (s zero)) - (λ (x : nat) (λ (ih-x : nat) (s (s x))))) - (s zero)))))) - (define tt--> (reduction-relation tt-redL (--> (Σ (in-hole E ((any (x : t_0) t_1) t_2))) @@ -615,7 +613,8 @@ | Unfortunately, Θ contexts turn all this inside out: | TODO: Write better abstractions for this notation |# - ;; Split Θv into its components + ;; Split Θv into its components: the paramters Θv_P for x_D, the methods Θv_m for x_D, and + ;; the discriminant: the constructor x_ci applied to its argument Θv_i (where (in-hole (Θv_p (in-hole Θv_i x_ci)) Θv_m) Θv) ;; Check that Θ_p actually matches the parameters of x_D, to ensure it doesn't capture other ;; arguments. @@ -629,7 +628,7 @@ ;; Find the method for constructor x_ci, relying on the order of the arguments. (where v_mi (Θ-ref Θv_m (Σ-constructor-index Σ x_D x_ci))) ;; Generate the inductive recursion - (where Θ_r (elim-recur x_D U v_P (in-hole Θv_p Θv_m) Θv_m Θv_i (x_c* ...))) + (where Θ_r (Σ-inductive-elim Σ x_D U v_P Θv_p Θv_m Θv_i)) -->elim))) (define-metafunction tt-redL @@ -644,8 +643,9 @@ e_r (where (_ e_r) ,(let ([r (apply-reduction-relation* tt--> (term (Σ e)) #:cache-all? #t)]) + ;; Efficient check for (= (length r) 1) (unless (null? (cdr r)) - (error "Church-rosser broken" r)) + (error "Church-Rosser broken" r)) (car r)))]) ;; TODO: Move equivalence up here, and use in these tests. @@ -790,14 +790,13 @@ (type-infer Σ ∅ t_D U_D) (type-infer Σ (∅ x_D : t_D) t_c U_c) ... ;; NB: Ugh this should be possible with pattern matching alone .... - (side-condition ,(map (curry equal? (term Ξ_D)) (term (Ξ_D* ...)))) (side-condition ,(map (curry equal? (term x_D)) (term (x_D* ...)))) (side-condition (positive t_D (t_c ...))) ----------------- "WF-Inductive" - (wf (Σ (x_D : (name t_D (in-hole Ξ_D t)) + (wf (Σ (x_D : t_D ;; Checks that a constructor for x actually produces an x, i.e., that ;; the constructor is well-formed. - ((x_c : (name t_c (in-hole Ξ_D* (in-hole Φ (in-hole Θ x_D*))))) ...))) ∅)]) + ((x_c : (name t_c (in-hole Ξ (in-hole Θ x_D*)))) ...))) ∅)]) (module+ test (check-true (judgment-holds (wf ,Σ0 ∅))) @@ -885,6 +884,8 @@ [(type-infer Σ Γ e_0 (Π (x_0 : t_0) t_1)) (type-check Σ Γ e_1 t_0) + ;; TODO: Not sure why this explicit reduction is necessary, since type-check should check modulo + ;; equivalence. (where t_3 (reduce Σ ((Π (x_0 : t_0) t_1) e_1))) ----------------- "DTR-Application" (type-infer Σ Γ (e_0 e_1) t_3)] @@ -894,11 +895,10 @@ ----------------- "DTR-Abstraction" (type-infer Σ Γ (λ (x : t_0) e) (Π (x : t_0) t_1))] - ;; NB: Sort of redundant since we will actually infer this exact type for x_D - ;; TODO: Do we want to check the Σ-elim-telescope is well-formed? - [(type-check Σ Γ x_D (Σ-ref-type Σ x_D)) + [(where t (Σ-elim-type Σ x_D U)) + (type-infer Σ Γ t U_e) ----------------- "DTR-Elim_D" - (type-infer Σ Γ (elim x_D U) (Σ-elim-type Σ x_D U))]) + (type-infer Σ Γ (elim x_D U) t)]) (define-judgment-form tt-typingL #:mode (type-check I I I I) @@ -908,6 +908,7 @@ (equivalent Σ t t_0) ----------------- "DTR-Check" (type-check Σ Γ e t)]) + (module+ test (check-holds (type-infer ∅ ∅ (Unv 0) (Unv 1))) (check-holds (type-infer ∅ (∅ x : (Unv 0)) (Unv 0) (Unv 1)))