More check-equiv? tests

* check-equiv? now uses default-equiv, for more extensibility
* more tests now uses check-equiv?
This commit is contained in:
William J. Bowman 2015-09-30 21:38:39 -04:00
parent 9eca5d6222
commit 0ff4474bcc
No known key found for this signature in database
GPG Key ID: DDD48D26958F0D1A

View File

@ -2,7 +2,6 @@
(require
racket/function
(only-in racket/set set=?)
redex/reduction-semantics)
(provide
@ -11,7 +10,9 @@
(set-cache-size! 10000)
(module+ test
(require rackunit)
(require
rackunit
(only-in racket/set set=?))
(define-syntax-rule (check-holds (e ...))
(check-true
(judgment-holds (e ...))))
@ -198,11 +199,14 @@
(α-equivalent (elim e_0 e_1) (elim e_2 e_3))])
(module+ test
;; NB: Hack to allow checking contexts without explicitly defining on contexts
(default-equiv (lambda (x y) (term (α-equivalent (in-hole ,x Type) (in-hole ,y Type)))))
(define-syntax-rule (check-equiv? e1 e2)
(check (lambda (x y) (term (α-equivalent (in-hole ,x Type) (in-hole ,y Type)))) e1 e2))
(check-holds (α-equivalent x x))
(check-not-holds (α-equivalent x y))
(check-holds (α-equivalent (λ (x : A) x) (λ (y : A) y))))
(check (default-equiv) e1 e2))
(define-syntax-rule (check-not-equiv? e1 e2)
(check (compose not (default-equiv)) e1 e2))
(check-equiv? (term x) (term x))
(check-not-equiv? (term x) (term y))
(check-equiv? (term (λ (x : A) x)) (term (λ (y : A) y))))
;; NB: Substitution is hard
;; NB: Copy and pasted from Redex examples
@ -231,10 +235,9 @@
[(subst (elim e_0 e_1) x t) (elim (subst e_0 x t) (subst e_1 x t))])
(module+ test
(check-true (t? (term (Π (a : A) (Π (b : B) ((and A) B))))))
(check-holds
(α-equivalent
(Π (a : S) (Π (b : B) ((and S) B)))
(subst (Π (a : A) (Π (b : B) ((and A) B))) A S))))
(check-equiv?
(term (Π (a : S) (Π (b : B) ((and S) B))))
(term (subst (Π (a : A) (Π (b : B) ((and A) B))) A S))))
;; NB:
;; TODO: Why do I not have tests for substitutions?!?!?!?!?!?!?!!?!?!?!?!?!?!!??!?!
@ -258,6 +261,7 @@
;; NB: Does an apply context correspond to a substitution (γ)?
(Θ ::= hole (Θ e)) ;;(Apply context)
(Θv ::= hole (Θv v)))
(define Ξ? (redex-match? tt-redL Ξ))
(define Φ? (redex-match? tt-redL Φ))
(define Θ? (redex-match? tt-redL Θ))
@ -296,7 +300,7 @@
(select-arg x_ci (x_0 ...) Θ)
(where ((x_0 : t_0) ...) (Σ-ref-constructors Σ x_D))])
(module+ test
(check-equal?
(check-equiv?
(term (method-lookup ,Σ nat s
((hole (s zero))
(λ (x : nat) (λ (ih-x : nat) (s (s zero)))))))
@ -318,7 +322,7 @@
(module+ test
(check-true
(redex-match? tt-redL (in-hole Θ_i (hole (in-hole Θ_r zero))) (term (hole zero))))
(check-equal?
(check-equiv?
(term (elim-recur nat Type (λ (x : nat) nat)
((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
@ -328,7 +332,7 @@
(s zero))
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
zero))))
(check-equal?
(check-equiv?
(term (elim-recur nat Type (λ (x : nat) nat)
((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
@ -419,39 +423,39 @@
(car r)))])
;; TODO: Move equivalence up here, and use in these tests.
(module+ test
(check-equal? (term (reduce (Unv 0))) (term (Unv 0)))
(check-equal? (term (reduce ((λ (x : t) x) (Unv 0)))) (term (Unv 0)))
(check-equal? (term (reduce ((Π (x : t) x) (Unv 0)))) (term (Unv 0)))
(check-equal? (term (reduce (Π (x : t) ((Π (x_0 : t) x_0) (Unv 0)))))
(check-equiv? (term (reduce (Unv 0))) (term (Unv 0)))
(check-equiv? (term (reduce ((λ (x : t) x) (Unv 0)))) (term (Unv 0)))
(check-equiv? (term (reduce ((Π (x : t) x) (Unv 0)))) (term (Unv 0)))
(check-equiv? (term (reduce (Π (x : t) ((Π (x_0 : t) x_0) (Unv 0)))))
(term (Π (x : t) (Unv 0))))
(check-equal? (term (reduce (Π (x : t) ((Π (x_0 : t) (x_0 x)) x))))
(check-equiv? (term (reduce (Π (x : t) ((Π (x_0 : t) (x_0 x)) x))))
(term (Π (x : t) (x x))))
(check-equal? (term (reduce ,Σ (((((elim nat Type) (λ (x : nat) nat))
(check-equiv? (term (reduce ,Σ (((((elim nat Type) (λ (x : nat) nat))
(s zero))
(λ (x : nat) (λ (ih-x : nat)
(s (s x)))))
zero)))
(term (s zero)))
(check-equal? (term (reduce ,Σ (((((elim nat Type) (λ (x : nat) nat))
(check-equiv? (term (reduce ,Σ (((((elim nat Type) (λ (x : nat) nat))
(s zero))
(λ (x : nat) (λ (ih-x : nat)
(s (s x)))))
(s zero))))
(term (s (s zero))))
(check-equal? (term (reduce ,Σ (((((elim nat Type) (λ (x : nat) nat))
(check-equiv? (term (reduce ,Σ (((((elim nat Type) (λ (x : nat) nat))
(s zero))
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
(s (s (s zero))))))
(term (s (s (s (s zero))))))
(check-equal?
(check-equiv?
(term (reduce ,Σ
(((((elim nat Type) (λ (x : nat) nat))
(s (s zero)))
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
(s (s zero)))))
(term (s (s (s (s zero))))))
(check-equal?
(check-equiv?
(term (step ,Σ
(((((elim nat Type) (λ (x : nat) nat))
(s (s zero)))
@ -681,7 +685,7 @@
(check-true (Ξ? (term hole)))
(check-true (t? (term (λ (y : false) (Π (x : Type) x)))))
(check-true (redex-match? ttL ((x : t) ...) (term ())))
(check-equal?
(check-equiv?
(term (methods-for false (λ (y : false) (Π (x : Type) x))
()))
(term hole)))
@ -694,10 +698,10 @@
[(Σ-ref-parameters (Σ (x_1 : t_1 ((x : t) ...))) x_D)
(Σ-ref-parameters Σ x_D)])
(module+ test
(check-equal?
(check-equiv?
(term (Σ-ref-parameters ,Σ nat))
(term hole))
(check-equal?
(check-equiv?
(term (Σ-ref-parameters ,Σ4 and))
(term (Π (A : Type) (Π (B : Type) hole)))))
@ -1157,7 +1161,7 @@
(in-hole (Θ_p (in-hole Θ_i x_ci)) Θ_m)
(term (((((hole
(λ (A1 : (Unv 0)) (λ (x1 : A1) zero))) bool) true) true) ((refl bool) true)))))
(check-equal?
(check-equiv?
(term (Σ-ref-parameters ,Σ= ==))
(term (Π (A : Type) (Π (a : A) (Π (b : A) hole)))))
(check-equal?