Abstracted reduction

Abstracted reduction relation; now small step rules are separated from
the reduction strategy, and the reduction relation does not needlessly
pass around the inductive environment.
This commit is contained in:
William J. Bowman 2016-03-24 21:49:06 -04:00
parent 2870a346d7
commit 13dd8bc299
No known key found for this signature in database
GPG Key ID: DDD48D26958F0D1A
2 changed files with 22 additions and 20 deletions

View File

@ -43,8 +43,7 @@
(define-metafunction tt-redL
step : Δ e -> e
[(step Δ e)
e_r
(where (_ e_r) ,(car (apply-reduction-relation tt--> (term (Δ e)))))])
,(car (apply-reduction-relation (tt-->cbv (term Δ)) (term e)))])
(define-metafunction tt-typingL
Γ-union : Γ Γ -> Γ

View File

@ -28,7 +28,7 @@
(U ::= (Unv i))
(D x c ::= variable-not-otherwise-mentioned)
(Δ ::= (Δ (D : t ((c : t) ...))))
(t e ::= U (λ (x : t) e) x (Π (x : t) t) (e e)
(t e ::= U (λ (x : e) e) x (Π (x : e) e) (e e)
;; (elim inductive-type motive (indices ...) (methods ...) discriminant)
(elim D e (e ...) (e ...) e))
#:binding-forms
@ -358,27 +358,30 @@
|
| Steps to (m_i a ... ih ...), where ih are computed from the recursive arguments to c_i
|#
(define tt-->
(reduction-relation tt-redL
(--> (Δ (in-hole E ((λ (x : t_0) t_1) t_2)))
(Δ (in-hole E (subst t_1 x t_2)))
-->β)
(--> (Δ (in-hole E (elim D e_motive (e_i ...) (v_m ...) (in-hole Θv_c c))))
(Δ (in-hole E (in-hole Θ_mi v_mi)))
;; Find the method for constructor c_i, relying on the order of the arguments.
(where natural (Δ-constructor-index Δ c))
(where v_mi ,(list-ref (term (v_m ...)) (term natural)))
;; Generate the inductive recursion
(where Θ_ih (Δ-inductive-elim Δ D (elim D e_motive (e_i ...) (v_m ...) hole) Θv_c))
(where Θ_mi (in-hole Θ_ih Θv_c))
-->elim)))
(define (tt--> D)
(term-let ([Δ D])
(reduction-relation tt-redL
(--> ((λ (x : t_0) t_1) t_2)
(subst t_1 x t_2)
-->β)
(--> (elim D e_motive (e_i ...) (e_m ...) (in-hole Θ_c c))
(in-hole Θ_mi e_mi)
(side-condition (term (Δ-in-constructor-dom Δ c)))
;; Find the method for constructor c_i, relying on the order of the arguments.
(where natural (Δ-constructor-index Δ c))
(where e_mi ,(list-ref (term (e_m ...)) (term natural)))
;; Generate the inductive recursion
(where Θ_ih (Δ-inductive-elim Δ D (elim D e_motive (e_i ...) (e_m ...) hole) Θ_c))
(where Θ_mi (in-hole Θ_ih Θ_c))
-->elim))))
(define (tt-->cbv D) (context-closure (tt--> D) tt-redL E))
(define (tt-->full D) (compatible-closure (tt--> D) tt-redL e))
(define-metafunction tt-redL
reduce : Δ e -> e
[(reduce Δ e)
e_r
(where (_ e_r)
,(car (apply-reduction-relation* tt--> (term (Δ e)) #:cache-all? #t)))])
,(car (apply-reduction-relation* (tt-->cbv (term Δ)) (term e) #:cache-all? #t))])
;;; ------------------------------------------------------------------------
;;; Type checking and synthesis