A different language for each reduction strategies

Now, call-by-value and call-by-name have different languages, making it
slightly simpler to define new reduction strategies.
This commit is contained in:
William J. Bowman 2016-03-25 02:52:38 -04:00
parent 816da683ec
commit 2382151166
No known key found for this signature in database
GPG Key ID: DDD48D26958F0D1A
2 changed files with 22 additions and 27 deletions

View File

@ -20,9 +20,9 @@
(define Ξ? (redex-match? tt-ctxtL Ξ))
(define Φ? (redex-match? tt-ctxtL Φ))
(define Θ? (redex-match? tt-ctxtL Θ))
(define Θv? (redex-match? tt-redL Θv))
(define E? (redex-match? tt-redL E))
(define v? (redex-match? tt-redL v))
(define Θv? (redex-match? tt-cbvL Θv))
(define E? (redex-match? tt-cbvL E))
(define v? (redex-match? tt-cbvL v))
(define-metafunction ttL
subst-all : t (x ...) (e ...) -> t

View File

@ -29,6 +29,7 @@
(D x c ::= variable-not-otherwise-mentioned)
(Δ ::= (Δ (D : t ((c : t) ...))))
(t e ::= U (λ (x : e) e) x (Π (x : e) e) (e e)
;; TODO: Might make more sense for methods to come first
;; (elim inductive-type motive (indices ...) (methods ...) discriminant)
(elim D e (e ...) (e ...) e))
#:binding-forms
@ -243,22 +244,6 @@
(hypotheses-loop D t_P Φ_1))
(where x_h ,(variable-not-in (term (D t_P any_0)) 'x-ih))])
;; Computes the type of the eliminator for the inductively defined type D with a motive whose result
;; is in universe U.
;;
;; The type of (elim D U) is something like:
;; (∀ (P : (∀ a -> ... -> (D a ...) -> U))
;; (method_ci ...) -> ... ->
;; (a -> ... -> (D a ...) ->
;; (P a ... (D a ...))))
;;
;; D is an inductively defined type
;; U is the sort the motive
;; x_P is the name of the motive
;; Ξ_P*D is the telescope of the indices of D and
;; the witness of type D (applied to the indices)
;; Ξ_m is the telescope of the methods for D
;; Returns the inductive hypotheses required for the elimination method of constructor c_i for
;; inductive type D, when eliminating with motive t_P.
(define-metafunction tt-ctxtL
@ -306,13 +291,7 @@
;;; inductively defined type x with a motive whose result is in universe U
(define-extended-language tt-redL tt-ctxtL
(v ::= x U (Π (x : t) t) (λ (x : t) t) (in-hole Θv c))
(Θv ::= hole (Θv v))
(C-elim ::= (elim D t_P (e_i ...) (e_m ...) hole))
;; call-by-value
(E ::= hole (E e) (v E)
(elim D e (e ...) (v ... E e ...) e)
(elim D e (e ...) (v ...) E)))
(C-elim ::= (elim D t_P (e_i ...) (e_m ...) hole)))
(define-metafunction tt-ctxtL
is-inductive-argument : Δ_0 D_0 t -> #t or #f
@ -372,7 +351,21 @@
(where Θ_mi (in-hole Θ_ih Θ_c))
-->elim))))
(define (tt-->cbv D) (context-closure (tt--> D) tt-redL E))
(define-extended-language tt-cbvL tt-redL
;; NB: Not exactly right; only true when c is a constructor
(v ::= x U (Π (x : t) t) (λ (x : t) t) (in-hole Θv c))
(Θv ::= hole (Θv v))
(E ::= hole (E e) (v E)
(elim D e (e ...) (v ... E e ...) e)
(elim D e (e ...) (v ...) E)))
(define-extended-language tt-cbnL tt-cbvL
(E ::= hole (E e) (elim D e (e ...) (e ...) E)))
(define (tt-->cbv D) (context-closure (tt--> D) tt-cbvL E))
;; Lazyness has lots of implications, such as on conversion and test suite.
(define (tt-->cbn D) (context-closure (tt--> D) tt-cbnL E))
;; Full reduction seems to loop forever
(define (tt-->full D) (compatible-closure (tt--> D) tt-redL e))
(define-metafunction tt-redL
@ -430,6 +423,8 @@
[(Γ-ref (Γ x_!_0 : t_0) (name x_1 x_!_0))
(Γ-ref Γ x_1)])
;; TODO: After reading https://coq.inria.fr/doc/Reference-Manual006.html#sec209, not convinced this is right.
(define-metafunction tt-typingL
nonpositive : x t -> #t or #f
[(nonpositive x (in-hole Θ x))