A little clean up
This commit is contained in:
parent
a4862f3006
commit
2928969691
140
redex-curnel.rkt
140
redex-curnel.rkt
|
@ -1,6 +1,5 @@
|
|||
#lang racket
|
||||
|
||||
;; This module contains a model of CIC, ish.
|
||||
;; TODO: Strip to racket/base as much as possible
|
||||
(module core racket
|
||||
(require
|
||||
|
@ -15,9 +14,14 @@
|
|||
;; http://www3.di.uminho.pt/~mjf/pub/SFV-CIC-2up.pdf
|
||||
;; https://www.cs.uoregon.edu/research/summerschool/summer11/lectures/oplss-herbelin1.pdf
|
||||
;; http://www.emn.fr/z-info/ntabareau/papers/universe_polymorphism.pdf
|
||||
;; http://people.cs.kuleuven.be/~jesper.cockx/Without-K/Pattern-matching-without-K.pdf
|
||||
;; http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.74
|
||||
;; http://eb.host.cs.st-andrews.ac.uk/writings/thesis.pdf
|
||||
|
||||
;; Core language. Surface langauge should provide short-hand, such as
|
||||
;; -> for non-dependent function types, and type inference.
|
||||
;; cicL is the core language of Cur. Very similar to TT (Idirs core)
|
||||
;; and Luo's UTT. Used to be similar to CIC, hence the name.
|
||||
;; Surface langauge should provide short-hand, such as -> for
|
||||
;; non-dependent function types, and type inference.
|
||||
(define-language cicL
|
||||
(i ::= natural)
|
||||
(U ::= (Unv i))
|
||||
|
@ -25,14 +29,13 @@
|
|||
(v ::= (Π (x : t) t) (λ (x : t) t) x U)
|
||||
(t e ::= v (t t) (elim e ...)))
|
||||
|
||||
(define x? (redex-match? cicL x))
|
||||
(define t? (redex-match? cicL t))
|
||||
(define e? (redex-match? cicL e))
|
||||
(define v? (redex-match? cicL v))
|
||||
(define U? (redex-match? cicL U))
|
||||
|
||||
(module+ test
|
||||
(require rackunit)
|
||||
(define x? (redex-match? cicL x))
|
||||
(define t? (redex-match? cicL t))
|
||||
(define e? (redex-match? cicL e))
|
||||
(define v? (redex-match? cicL v))
|
||||
(define U? (redex-match? cicL U))
|
||||
(define-term Type (Unv 0))
|
||||
(check-true (x? (term T)))
|
||||
(check-true (x? (term truth)))
|
||||
|
@ -111,76 +114,18 @@
|
|||
[(subst-all t (x_0 x ...) (e_0 e ...))
|
||||
(subst-all (subst t x_0 e_0) (x ...) (e ...))])
|
||||
|
||||
;; ---
|
||||
;; Proper inductives.
|
||||
;; Proper inductives start with proper telescopes.
|
||||
|
||||
;; References:
|
||||
;; http://people.cs.kuleuven.be/~jesper.cockx/Without-K/Pattern-matching-without-K.pdf
|
||||
;; http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.74
|
||||
;; http://eb.host.cs.st-andrews.ac.uk/writings/thesis.pdf
|
||||
|
||||
;; Trying to generate well-typed eliminators generally amounts to
|
||||
;; trying to give a single type and rule to elim-D, which is
|
||||
;; basically the same thing as case. So might as well just use case?
|
||||
|
||||
;; (Telescope) (Ξ Φ) ::= hole (Π (x : t) Ξ)
|
||||
;; (Apply context) Θ ::= hole (Θ e)
|
||||
;;
|
||||
;; (apply-telescope D hole ) = D
|
||||
;; (apply-telescope D (Π (x : t) Ψ)) = (apply-telescope (D x) Ψ)
|
||||
|
||||
;; Data: (when does an inductive type-check. Should specify this using judgment forms)
|
||||
;;
|
||||
;; (D : (in-hole Ξ U) ((c : (in-hole Ξ (in-hole Φ (in-hole Θ D)))) ...))
|
||||
;; (side-condition (judgment-holds (check-constructor Φ)))
|
||||
;;
|
||||
;; NB: Um. I forgot what this is doing? The above pattern already checks
|
||||
;; NB: that all constructors produce D
|
||||
;; (check-constructor D hole) = #t
|
||||
;; (check-constructor D (Π (x : (in-hole Φ (in-hole Θ D))) Φ_1)) = (check-constructor Φ_1)
|
||||
;; (check-constructor D any) = #f
|
||||
;;
|
||||
;;
|
||||
;; elim : (Π (i_0 : T_0) (Π (i_1 : T_1) ... (Π (x : ((D i_0) ... i_n)) ...)))
|
||||
;; elim : (in-hole Ξ (Π (x : (apply-telescope D Ξ))
|
||||
;; (Π (P : (in-hole Ξ (Π (x : (apply-telescope x_D Ξ)) U)))
|
||||
;; (in-hole Φ ((apply-telescope P Ξ) x)))))
|
||||
;; (where Φ (methods D (constructors-for D)))
|
||||
;;
|
||||
;; (methods D ()) = hole
|
||||
;; (methods D ((c : (in-hole Ξ (in-hole Φ (in-hole Θ D)))) (c : e) ...)) =
|
||||
;; (Π (m_i : (in-hole Ξ (in-hole Φ (in-hole Φ_1 ((in-hole Θ P) (apply-telescope (apply-telescope c Ξ) Φ))))))
|
||||
; (methods D ((c : e) ...)))
|
||||
;; (where Φ_1 (hypotheses D Φ))
|
||||
;;
|
||||
;; (hypotheses D hole) = hole
|
||||
;; (hypotheses D (Π (x : (in-hole Φ (in-hole Θ D))) Φ_1)) =
|
||||
;; (Π (h : (in-hole Φ ((in-hole Θ P) (apply-telescope x Φ))))
|
||||
;; (hypotheses D Φ_1))
|
||||
|
||||
;; (in-hole Θ_m (((elim D) (in-hole Θ_i c_i)) v_P)) ->
|
||||
;; (in-hole Θ_r (in-hole Θ_i m_i) ...)
|
||||
;; (where m_i (method-lookup D c_i Θ_m))
|
||||
;; (where Θ_r (elim-recur D Θ_m Θ_i (constructors-for D) v_P Θ_m))
|
||||
;;
|
||||
;; (elim-recur D Θ hole () v_P hole) = hole
|
||||
;; Not so sure about the (in-hole Θ_t ) bit. Trying to ignore the
|
||||
;; non-recursive parameters.
|
||||
;; (elim-recur D Θ (in-hole Θ_t (Θ_i (in-hole Θ_r c_i))) (c_i c ...) v_P (Θ_m m_i)) =
|
||||
;; ((elim-recur D Θ_i (c ...) v_P Θ_m) (in-hole Θ (((elim D) (in-hole Θ_r c_i)) v_P))
|
||||
|
||||
(define-extended-language cic-redL cicL
|
||||
(E ::= hole (E t))
|
||||
;; Σ signature. (inductive-name : type ((constructor : tye) ...))
|
||||
(E ::= hole (E t)) ;; Call-by-name??
|
||||
;; Σ (signature). (inductive-name : type ((constructor : type) ...))
|
||||
(Σ ::= ∅ (Σ (x : t ((x : t) ...))))
|
||||
(Ξ Φ ::= hole (Π (x : t) Ξ)) ;;(Telescope)
|
||||
(Θ ::= hole (Θ e))) ;;(Apply context)
|
||||
(define Σ? (redex-match? cic-redL Σ))
|
||||
(define Ξ? (redex-match? cic-redL Ξ))
|
||||
(define Θ? (redex-match? cic-redL Θ))
|
||||
(define E? (redex-match? cic-redL E))
|
||||
(module+ test
|
||||
(define Σ? (redex-match? cic-redL Σ))
|
||||
(define Ξ? (redex-match? cic-redL Ξ))
|
||||
(define Φ? (redex-match? cic-redL Φ))
|
||||
(define Θ? (redex-match? cic-redL Θ))
|
||||
(define E? (redex-match? cic-redL E))
|
||||
;; TODO: Rename these signatures, and use them in all future tests.
|
||||
(define Σ (term (∅ (nat : (Unv 0) ((zero : nat) (s : (Π (x : nat) nat)))))))
|
||||
(define Σ0 (term ∅))
|
||||
|
@ -229,11 +174,23 @@
|
|||
(define ==β
|
||||
(reduction-relation cic-redL
|
||||
(==> ((any (x : t_0) t_1) t_2)
|
||||
(subst t_1 x t_2))
|
||||
(subst t_1 x t_2))
|
||||
with
|
||||
[(--> (in-hole E t_0) (in-hole E t_1))
|
||||
(==> t_0 t_1)]))
|
||||
|
||||
;; Reducing elim:
|
||||
;; (in-hole Θ_m (((elim D) (in-hole Θ_i c_i)) v_P)) ->
|
||||
;; (in-hole Θ_r (in-hole Θ_i m_i) ...)
|
||||
;; (where m_i (method-lookup D c_i Θ_m))
|
||||
;; (where Θ_r (elim-recur D Θ_m Θ_i (constructors-for D) v_P Θ_m))
|
||||
;;
|
||||
;; (elim-recur D Θ hole () v_P hole) = hole
|
||||
;; Not so sure about the (in-hole Θ_t ) bit. Trying to ignore the
|
||||
;; non-recursive parameters.
|
||||
;; (elim-recur D Θ (in-hole Θ_t (Θ_i (in-hole Θ_r c_i))) (c_i c ...) v_P (Θ_m m_i)) =
|
||||
;; ((elim-recur D Θ_i (c ...) v_P Θ_m) (in-hole Θ (((elim D) (in-hole Θ_r c_i)) v_P))
|
||||
|
||||
(define-metafunction cic-redL
|
||||
reduce : e -> e
|
||||
[(reduce e) ,(car (apply-reduction-relation* ==β (term e)))])
|
||||
|
@ -256,15 +213,13 @@
|
|||
x))))))
|
||||
(term (s (s (s (s z)))))))
|
||||
|
||||
;; TODO: Bi-directional and inference?
|
||||
;; TODO: http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/31/slides/stephanie.pdf
|
||||
|
||||
(define-extended-language cic-typingL cic-redL
|
||||
;; NB: There may be a bijection between Γ and Ξ. That's
|
||||
;; NB: interesting.
|
||||
(Γ ::= ∅ (Γ x : t)))
|
||||
|
||||
(define Γ? (redex-match? cic-typingL Γ))
|
||||
(module+ test
|
||||
(define Γ? (redex-match? cic-typingL Γ)))
|
||||
|
||||
(define-metafunction cic-typingL
|
||||
append-env : Γ Γ -> Γ
|
||||
|
@ -294,12 +249,10 @@
|
|||
[(remove (Γ x : t) x) Γ]
|
||||
[(remove (Γ x_0 : t_0) x_1) (remove Γ x_1)])
|
||||
|
||||
|
||||
;; TODO: Add positivity checking.
|
||||
(define-metafunction cicL
|
||||
positive : t any -> #t or #f
|
||||
[(positive any_1 any_2) #t])
|
||||
|
||||
(module+ test
|
||||
(check-true (term (positive nat nat)))
|
||||
(check-true (term (positive (Π (x : (Unv 0)) (Π (y : (Unv 0)) (Unv 0))) #f)))
|
||||
|
@ -316,17 +269,17 @@
|
|||
|
||||
(check-true (term (positive (Unv 0) #f))))
|
||||
|
||||
;; Checks that a signature and typing context are well-formed.
|
||||
;; Holds when the signature Σ and typing context Γ are well-formed.
|
||||
(define-judgment-form cic-typingL
|
||||
#:mode (wf I I)
|
||||
#:contract (wf Σ Γ)
|
||||
|
||||
[-----------------
|
||||
[----------------- "WF-Empty"
|
||||
(wf ∅ ∅)]
|
||||
|
||||
[(types Σ Γ t t_0)
|
||||
(wf Σ Γ)
|
||||
-----------------
|
||||
----------------- "WF-Var"
|
||||
(wf Σ (Γ x : t))]
|
||||
|
||||
[(wf Σ ∅)
|
||||
|
@ -336,7 +289,7 @@
|
|||
(side-condition ,(map (curry equal? (term Ξ_D)) (term (Ξ_D* ...))))
|
||||
(side-condition ,(map (curry equal? (term x_D)) (term (x_D* ...))))
|
||||
(side-condition (positive t_D (t_c ...)))
|
||||
-----------------
|
||||
----------------- "WF-Inductive"
|
||||
(wf (Σ (x_D : (name t_D (in-hole Ξ_D t))
|
||||
;; Checks that a constructor for x actually produces an x, i.e., that
|
||||
;; the constructor is well-formed.
|
||||
|
@ -463,6 +416,8 @@
|
|||
()))
|
||||
(term hole)))
|
||||
|
||||
;; Returns the constructors for the inductively defined type x_D in
|
||||
;; the signature Σ
|
||||
(define-metafunction cic-redL
|
||||
constructors-for : Σ x -> ((x : t) ...) or #f
|
||||
;; NB: Depends on clause order
|
||||
|
@ -479,6 +434,9 @@
|
|||
(term (constructors-for ,sigma false))
|
||||
(term ())))
|
||||
|
||||
|
||||
;; Holds when an apply context Θ provides arguments that match the
|
||||
;; telescope Ξ
|
||||
(define-judgment-form cic-typingL
|
||||
#:mode (telescope-types I I I I)
|
||||
#:contract (telescope-types Σ Γ Θ Ξ)
|
||||
|
@ -526,6 +484,10 @@
|
|||
(methods-for false hole (λ (y : false) (Π (x : Type) x))
|
||||
())))))
|
||||
|
||||
;; TODO: Bi-directional and inference?
|
||||
;; TODO: http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/31/slides/stephanie.pdf
|
||||
|
||||
;; Holds when e has type t under signature Σ and typing context Γ
|
||||
(define-judgment-form cic-typingL
|
||||
#:mode (types I I I O)
|
||||
#:contract (types Σ Γ e t)
|
||||
|
@ -570,10 +532,10 @@
|
|||
(types Σ Γ (in-hole Θ_m (((elim x_D) e_D) e_P)) (reduce ((in-hole Θ_ai e_P) e_D)))]
|
||||
|
||||
;; TODO: beta-equiv
|
||||
;; This rule is no good for algorithmic checking; Redex infinitly
|
||||
;; searches it.
|
||||
;; Perhaps something closer to Zombies = type would be better.
|
||||
;; For now, reduce types manually
|
||||
;; TODO: This rule is no good for algorithmic checking; Redex infinitly
|
||||
;; TODO: searches it.
|
||||
;; TODO: Perhaps something closer to Zombies = type would be better.
|
||||
;; TODO: For now, reduce types manually
|
||||
#;[(types Σ Γ e t)
|
||||
(types Σ Γ t U)
|
||||
(converts Σ t t_1)
|
||||
|
|
Loading…
Reference in New Issue
Block a user