Can now type check elim without discriminant
Cur can now type check elim without a discriminant. Unfortunately, this breaks the API of elim. Fortunately, the typing rule for elim is easier to understand, and it is easier to partially apply elim.
This commit is contained in:
parent
063af1fd82
commit
2f5d293f94
|
@ -119,8 +119,9 @@
|
|||
(check-holds (α-equivalent (λ (x : A) x)
|
||||
(λ (y : A) y))))
|
||||
|
||||
|
||||
|
||||
(define-metafunction cicL
|
||||
fresh-x : t ... -> x
|
||||
[(fresh-x t ...) ,(variable-not-in (term (t ...)) (term x))])
|
||||
|
||||
;; NB: Substitution is hard
|
||||
;; NB: Copy and pasted from Redex examples
|
||||
|
@ -144,6 +145,7 @@
|
|||
[(subst (any (x_0 : t_0) t_1) x t)
|
||||
(any (x_new : (subst (subst-vars (x_0 x_new) t_0) x t))
|
||||
(subst (subst-vars (x_0 x_new) t_1) x t))
|
||||
;; TODO: Use "fresh-x" meta-function
|
||||
(where x_new
|
||||
,(variable-not-in
|
||||
(term (x_0 t_0 x t t_1))
|
||||
|
@ -217,6 +219,7 @@
|
|||
((append-Σ Σ_2 Σ_1) (x : t ((x_c : t_c) ...)))])
|
||||
|
||||
;; TODO: Test
|
||||
;; TODO: Maybe this should be called "apply-to-telescope"
|
||||
(define-metafunction cic-redL
|
||||
apply-telescope : t Ξ -> t
|
||||
[(apply-telescope t hole) t]
|
||||
|
@ -672,13 +675,34 @@
|
|||
(type-infer Σ Γ (λ (x : t_0) e) (Π (x : t_0) t_1))]
|
||||
|
||||
[(type-infer Σ Γ x_D (in-hole Ξ U_D))
|
||||
(type-infer Σ Γ e_D (in-hole Θ_ai x_D))
|
||||
(type-infer Σ Γ e_P (in-hole Ξ_1 (Π (x : (in-hole Θ_Ξ x_D)) U_P)))
|
||||
(equivalent Σ (in-hole Ξ (Unv 0)) (in-hole Ξ_1 (Unv 0)))
|
||||
;; methods
|
||||
(telescope-types Σ Γ Θ_m (methods-for x_D Ξ e_P (constructors-for Σ x_D)))
|
||||
;; A fresh name for the motive
|
||||
(where x_P (fresh-x x_D (in-hole Ξ U_D)))
|
||||
(where x (fresh-x x_P x_D (in-hole Ξ U_D)))
|
||||
;; The telescope (∀ a -> ... -> (D a ...) hole), i.e.,
|
||||
;; of the parameters and the inductive type applied to the
|
||||
;; parameters
|
||||
(where Ξ_P*D (in-hole Ξ (Π (x : (apply-telescope x_D Ξ)) hole)))
|
||||
;; The types of the methods for this inductive.
|
||||
(where Ξ_m (methods-for x_D Ξ x_P (constructors-for Σ x_D)))
|
||||
----------------- "DTR-Elim_D"
|
||||
(type-infer Σ Γ (in-hole Θ_m (((elim x_D) e_D) e_P)) (reduce Σ ((in-hole Θ_ai e_P) e_D)))])
|
||||
(type-infer Σ Γ (elim x_D)
|
||||
;; The type of elim_D is something like:
|
||||
;; (∀ (P : (∀ a -> ... -> (D a ...) -> Type))
|
||||
;; (method_ci ...) -> ... ->
|
||||
;; (a -> ... -> (D a ...) ->
|
||||
;; (P a ... (D a ...))))
|
||||
;; Formally, A motive P, which takes all the parameters of the
|
||||
;; type x_D, and a discriminant of x_D applied to those
|
||||
;; parameters
|
||||
;; TODO: (Unv 0) is too restricted
|
||||
(Π (x_P : (in-hole Ξ_P*D (Unv 0)))
|
||||
;; The methods Ξ_m for each constructor of type x_D
|
||||
(in-hole Ξ_m
|
||||
;; And finally, the parameters and discriminant
|
||||
(in-hole Ξ_P*D
|
||||
;; The result is (P a ... (x_D a ...)), i.e., the motive
|
||||
;; applied to the paramters and discriminant
|
||||
(apply-telescope x_P Ξ_P*D)))))])
|
||||
|
||||
(define-judgment-form cic-typingL
|
||||
#:mode (type-check I I I I)
|
||||
|
@ -726,6 +750,9 @@
|
|||
(methods-for truth hole
|
||||
(λ (x : truth) (Unv 1))
|
||||
((T : truth)))))
|
||||
(check-true
|
||||
(judgment-holds
|
||||
(type-infer ,Σtruth ∅ (elim truth) t) t))
|
||||
(check-holds (type-check (∅ (truth : (Unv 0) ((T : truth))))
|
||||
∅
|
||||
((((elim truth) T) (λ (x : truth) (Unv 1))) (Unv 0))
|
||||
|
|
Loading…
Reference in New Issue
Block a user