Merge branch 'names' into actual-inductives
Conflicts: redex-curnel.rkt With names finally fixed, many more tests can actually run. * Changed uses of case to eliminators * Fixed uses of new case* macro * Fixed some assorted bugs in reduction of eliminators
This commit is contained in:
commit
3be6730b1e
41
oll.rkt
41
oll.rkt
|
@ -231,11 +231,19 @@
|
|||
(data var : Type (avar : (-> nat var)))
|
||||
|
||||
(define (var-equal? (v1 : var) (v2 : var))
|
||||
(case* v1
|
||||
[(avar (n1 : nat))
|
||||
(case* v2
|
||||
[(avar (n2 : nat))
|
||||
(case* var v1 (lambda* (v : var) bool)
|
||||
[(avar (n1 : nat)) IH: ()
|
||||
(case* var v2 (lambda* (v : var) bool)
|
||||
[(avar (n2 : nat)) IH: ()
|
||||
(nat-equal? n1 n2)])]))
|
||||
(module+ test
|
||||
(require rackunit)
|
||||
(check-equal?
|
||||
(var-equal? (avar z) (avar z))
|
||||
btrue)
|
||||
(check-equal?
|
||||
(var-equal? (avar z) (avar (s z)))
|
||||
bfalse))
|
||||
|
||||
;; See stlc.rkt for examples
|
||||
|
||||
|
@ -263,7 +271,7 @@
|
|||
#'begin)
|
||||
;; TODO: Need to add these to a literal set and export it
|
||||
;; Or, maybe overwrite syntax-parse
|
||||
#:literals (lambda forall data real-app case define-theorem
|
||||
#:literals (lambda forall data real-app elim define-theorem
|
||||
define qed begin Type)
|
||||
[(begin e ...)
|
||||
(for/fold ([str ""])
|
||||
|
@ -322,21 +330,14 @@
|
|||
(output-coq #'t))]))))
|
||||
"")]
|
||||
[(Type i) "Type"]
|
||||
[(case e (ec eb) ...)
|
||||
(format "(match ~a with~n~aend)"
|
||||
(output-coq #'e)
|
||||
(for/fold ([strs ""])
|
||||
([con (syntax->list #'(ec ...))]
|
||||
[body (syntax->list #'(eb ...))])
|
||||
(let* ([ids (generate-temporaries (constructor-args con))]
|
||||
[names (map (compose ~a syntax->datum) ids)])
|
||||
(format "~a| (~a) => ~a~n" strs
|
||||
(for/fold ([str (output-coq con)])
|
||||
([n names])
|
||||
(format "~a ~a" str n))
|
||||
(for/fold ([body (output-coq body)])
|
||||
([n names])
|
||||
(format "(~a ~a)" body n))))))]
|
||||
[(elim var e P m ...)
|
||||
(format "(~a_rect ~a~a ~a)"
|
||||
(output-coq #'var)
|
||||
(output-coq #'P)
|
||||
(for/fold ([x ""])
|
||||
([m (syntax->list #'(m ...))])
|
||||
(format "~a ~a" (output-coq m)))
|
||||
(output-coq #'e))]
|
||||
[(real-app e1 e2)
|
||||
(format "(~a ~a)" (output-coq #'e1) (output-coq #'e2))]
|
||||
[e:id (sanitize-id (format "~a" (syntax->datum #'e)))])))
|
||||
|
|
639
redex-curnel.rkt
639
redex-curnel.rkt
|
@ -10,6 +10,15 @@
|
|||
|
||||
(set-cache-size! 10000)
|
||||
|
||||
(module+ test
|
||||
(require rackunit)
|
||||
(define-syntax-rule (check-holds (e ...))
|
||||
(check-true
|
||||
(judgment-holds (e ...))))
|
||||
(define-syntax-rule (check-not-holds (e ...))
|
||||
(check-false
|
||||
(judgment-holds (e ...)))))
|
||||
|
||||
;; References:
|
||||
;; http://www3.di.uminho.pt/~mjf/pub/SFV-CIC-2up.pdf
|
||||
;; https://www.cs.uoregon.edu/research/summerschool/summer11/lectures/oplss-herbelin1.pdf
|
||||
|
@ -28,6 +37,7 @@
|
|||
(x ::= variable-not-otherwise-mentioned)
|
||||
(v ::= (Π (x : t) t) (λ (x : t) t) elim x U)
|
||||
(t e ::= v (t t)))
|
||||
|
||||
(define x? (redex-match? cicL x))
|
||||
(define t? (redex-match? cicL t))
|
||||
(define e? (redex-match? cicL e))
|
||||
|
@ -35,9 +45,9 @@
|
|||
(define U? (redex-match? cicL U))
|
||||
|
||||
(module+ test
|
||||
(require rackunit)
|
||||
(define-term Type (Unv 0))
|
||||
(check-true (x? (term T)))
|
||||
(check-true (x? (term A)))
|
||||
(check-true (x? (term truth)))
|
||||
(check-true (x? (term zero)))
|
||||
(check-true (x? (term s)))
|
||||
|
@ -45,6 +55,8 @@
|
|||
(check-true (t? (term s)))
|
||||
(check-true (x? (term nat)))
|
||||
(check-true (t? (term nat)))
|
||||
(check-true (t? (term A)))
|
||||
(check-true (t? (term S)))
|
||||
(check-true (U? (term (Unv 0))))
|
||||
(check-true (U? (term Type)))
|
||||
(check-true (e? (term (λ (x_0 : (Unv 0)) x_0))))
|
||||
|
@ -81,13 +93,45 @@
|
|||
----------------
|
||||
(unv-kind (Unv i_1) (Unv i_2) (Unv i_3))])
|
||||
|
||||
(define-judgment-form cicL
|
||||
#:mode (α-equivalent I I)
|
||||
#:contract (α-equivalent t t)
|
||||
|
||||
[----------------- "α-x"
|
||||
(α-equivalent x x)]
|
||||
|
||||
[----------------- "α-U"
|
||||
(α-equivalent U U)]
|
||||
|
||||
[(α-equivalent t_1 (subst t_3 x_1 x_0))
|
||||
(α-equivalent t_0 t_2)
|
||||
----------------- "α-binder"
|
||||
(α-equivalent (any (x_0 : t_0) t_1)
|
||||
(any (x_1 : t_2) t_3))]
|
||||
|
||||
[(α-equivalent e_0 e_2)
|
||||
(α-equivalent e_1 e_3)
|
||||
----------------- "α-app"
|
||||
(α-equivalent (e_0 e_1) (e_2 e_3))])
|
||||
(module+ test
|
||||
(check-holds (α-equivalent x x))
|
||||
(check-not-holds (α-equivalent x y))
|
||||
(check-holds (α-equivalent (λ (x : A) x)
|
||||
(λ (y : A) y))))
|
||||
|
||||
|
||||
|
||||
|
||||
;; NB: Substitution is hard
|
||||
;; NB: Copy and pasted from Redex examples
|
||||
(define-metafunction cicL
|
||||
subst-vars : (x any) ... any -> any
|
||||
[(subst-vars (x_1 any_1) x_1) any_1]
|
||||
[(subst-vars (x_1 any_1) (any_2 ...)) ((subst-vars (x_1 any_1) any_2) ...)]
|
||||
[(subst-vars (x_1 any_1) (any_2 ...))
|
||||
((subst-vars (x_1 any_1) any_2) ...)]
|
||||
[(subst-vars (x_1 any_1) any_2) any_2]
|
||||
[(subst-vars (x_1 any_1) (x_2 any_2) ... any_3) (subst-vars (x_1 any_1) (subst-vars (x_2 any_2) ... any_3))]
|
||||
[(subst-vars (x_1 any_1) (x_2 any_2) ... any_3)
|
||||
(subst-vars (x_1 any_1) (subst-vars (x_2 any_2) ... any_3))]
|
||||
[(subst-vars any) any])
|
||||
|
||||
(define-metafunction cicL
|
||||
|
@ -95,17 +139,23 @@
|
|||
[(subst U x t) U]
|
||||
[(subst x x t) t]
|
||||
[(subst x_0 x t) x_0]
|
||||
[(subst (any (x : t_0) t_1) x t) (any (x : (subst t_0 x t)) t_1)]
|
||||
;; TODO: Broken: needs capture avoiding, but currently require
|
||||
;; binders to be the same in term/type, so this is not a local
|
||||
;; change.
|
||||
[(subst (any (x_0 : t_0) t_1) x t) (any (x_0 : (subst t_0 x t)) (subst t_1 x t))]
|
||||
[(subst (any (x : t_0) t_1) x t)
|
||||
(any (x : (subst t_0 x t)) t_1)]
|
||||
[(subst (any (x_0 : t_0) t_1) x t)
|
||||
(any (x_new : (subst (subst-vars (x_0 x_new) t_0) x t))
|
||||
(subst (subst-vars (x_0 x_new) t_1) x t))
|
||||
(where x_new
|
||||
,(variable-not-in
|
||||
(term (x_0 t_0 x t t_1))
|
||||
(term x_0)))]
|
||||
[(subst (e_0 e_1) x t) ((subst e_0 x t) (subst e_1 x t))]
|
||||
[(subst elim x t) elim])
|
||||
(module+ test
|
||||
(check-equal?
|
||||
(term (Π (a : S) (Π (b : B) ((and S) B))))
|
||||
(term (subst (Π (a : A) (Π (b : B) ((and A) B))) A S))))
|
||||
(check-true (t? (term (Π (a : A) (Π (b : B) ((and A) B))))))
|
||||
(check-holds
|
||||
(α-equivalent
|
||||
(Π (a : S) (Π (b : B) ((and S) B)))
|
||||
(subst (Π (a : A) (Π (b : B) ((and A) B))) A S))))
|
||||
;; NB:
|
||||
;; TODO: Why do I not have tests for substitutions?!?!?!?!?!?!?!!?!?!?!?!?!?!!??!?!
|
||||
|
||||
|
@ -120,8 +170,7 @@
|
|||
;; Σ (signature). (inductive-name : type ((constructor : type) ...))
|
||||
(Σ ::= ∅ (Σ (x : t ((x : t) ...))))
|
||||
(Ξ Φ ::= hole (Π (x : t) Ξ)) ;;(Telescope)
|
||||
;; NB: Does an apply context correspond to a substitution (γ) in a de
|
||||
;; NB: Bruijn setting?
|
||||
;; NB: Does an apply context correspond to a substitution (γ)?
|
||||
(Θ ::= hole (Θ e))) ;;(Apply context)
|
||||
(define Σ? (redex-match? cic-redL Σ))
|
||||
(define Ξ? (redex-match? cic-redL Ξ))
|
||||
|
@ -159,7 +208,6 @@
|
|||
(check-true (Σ? (term (((∅ (true : (Unv 0) ((T : true)))) (false : (Unv 0) ()))
|
||||
(equal : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0)))
|
||||
())))))
|
||||
|
||||
(check-true (Σ? sigma)))
|
||||
|
||||
(define-metafunction cic-redL
|
||||
|
@ -191,7 +239,7 @@
|
|||
method-lookup : Σ x x (Θ e) -> e
|
||||
[(method-lookup Σ x_D x_ci Θ)
|
||||
(select-arg x_ci (x_0 ...) Θ)
|
||||
(where ((x_0 : t_0) ...) (constructors-for Σ x_D)) ])
|
||||
(where ((x_0 : t_0) ...) (constructors-for Σ x_D))])
|
||||
(module+ test
|
||||
(check-equal?
|
||||
(term (method-lookup ,Σ nat s
|
||||
|
@ -204,13 +252,13 @@
|
|||
;; TODO: Poorly documented, and poorly tested.
|
||||
(define-metafunction cic-redL
|
||||
elim-recur : x e Θ Θ Θ (x ...) -> Θ
|
||||
[(elim-recur x_D e_P Θ Θ_i hole (x ...)) hole]
|
||||
[(elim-recur x_D e_P Θ
|
||||
(in-hole Θ_m (hole e_mi))
|
||||
(in-hole Θ_i (hole (in-hole Θ_r x_ci)))
|
||||
(x_c0 ... x_ci x_c1 ...))
|
||||
((elim-recur x_D e_P Θ Θ_m Θ_i (x_c0 ... x_ci x_c1 ...))
|
||||
(in-hole Θ (((elim x_D) (in-hole Θ_r x_ci)) e_P)))])
|
||||
(in-hole Θ (((elim x_D) (in-hole Θ_r x_ci)) e_P)))]
|
||||
[(elim-recur x_D e_P Θ Θ_i Θ_nr (x ...)) hole])
|
||||
(module+ test
|
||||
(check-true
|
||||
(redex-match? cic-redL (in-hole Θ_i (hole (in-hole Θ_r zero))) (term (hole zero))))
|
||||
|
@ -246,12 +294,12 @@
|
|||
-->β)
|
||||
(--> (Σ (in-hole E (in-hole Θ_m (((elim x_D) (in-hole Θ_i x_ci)) e_P))))
|
||||
(Σ (in-hole E (in-hole Θ_r (in-hole Θ_i e_mi))))
|
||||
(where ((x_c : t_c) ...) (constructors-for Σ x_D))
|
||||
(where ((x_c : t_c) ... (x_ci : t_ci) (x_cr : t_cr) ...) (constructors-for Σ x_D))
|
||||
;; There should be a number of methods equal to the number of
|
||||
;; constructors; to ensure E doesn't capture methods
|
||||
(judgment-holds (length-match Θ_m (x_c ...)))
|
||||
(judgment-holds (length-match Θ_m (x_c ... x_ci x_cr ...)))
|
||||
(where e_mi (method-lookup Σ x_D x_ci Θ_m))
|
||||
(where Θ_r (elim-recur x_D e_P Θ_m Θ_m Θ_i (x_c ...)))
|
||||
(where Θ_r (elim-recur x_D e_P Θ_m Θ_m Θ_i (x_c ... x_ci x_cr ...)))
|
||||
-->elim)))
|
||||
|
||||
(define-metafunction cic-redL
|
||||
|
@ -289,6 +337,15 @@
|
|||
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))))
|
||||
(term (s (s (s (s zero)))))))
|
||||
|
||||
(define-judgment-form cic-redL
|
||||
#:mode (equivalent I I I)
|
||||
#:contract (equivalent Σ t t)
|
||||
|
||||
[(where t_2 (reduce Σ t_0))
|
||||
(where t_3 (reduce Σ t_1))
|
||||
(α-equivalent t_2 t_3)
|
||||
----------------- "≡-αβ"
|
||||
(equivalent Σ t_0 t_1)])
|
||||
|
||||
(define-extended-language cic-typingL cic-redL
|
||||
;; NB: There may be a bijection between Γ and Ξ. That's
|
||||
|
@ -310,7 +367,7 @@
|
|||
[(lookup-Γ (Γ x_0 : t_0) x_1) (lookup-Γ Γ x_1)])
|
||||
|
||||
;; NB: Depends on clause order
|
||||
(define-metafunction cic-typingL
|
||||
(define-metafunction cic-redL
|
||||
lookup-Σ : Σ x -> t or #f
|
||||
[(lookup-Σ ∅ x) #f]
|
||||
[(lookup-Σ (Σ (x : t ((x_1 : t_1) ...))) x) t]
|
||||
|
@ -352,14 +409,14 @@
|
|||
[----------------- "WF-Empty"
|
||||
(wf ∅ ∅)]
|
||||
|
||||
[(types Σ Γ t t_0)
|
||||
[(type-infer Σ Γ t t_0)
|
||||
(wf Σ Γ)
|
||||
----------------- "WF-Var"
|
||||
(wf Σ (Γ x : t))]
|
||||
|
||||
[(wf Σ ∅)
|
||||
(types Σ ∅ t_D U_D)
|
||||
(types Σ (∅ x_D : t_D) t_c U_c) ...
|
||||
(type-infer Σ ∅ t_D U_D)
|
||||
(type-infer Σ (∅ x_D : t_D) t_c U_c) ...
|
||||
;; NB: Ugh this should be possible with pattern matching alone ....
|
||||
(side-condition ,(map (curry equal? (term Ξ_D)) (term (Ξ_D* ...))))
|
||||
(side-condition ,(map (curry equal? (term x_D)) (term (x_D* ...))))
|
||||
|
@ -405,25 +462,25 @@
|
|||
(redex-match? cic-redL
|
||||
(in-hole hole (in-hole (Π (x : nat) hole) (in-hole hole nat)))
|
||||
(term (Π (x : nat) nat))))
|
||||
(check-true (judgment-holds (wf (∅ (nat : (Unv 0) ())) ∅)))
|
||||
(check-holds (wf (∅ (nat : (Unv 0) ())) ∅))
|
||||
|
||||
(check-true (judgment-holds (wf ,Σ0 ∅)))
|
||||
(check-true (judgment-holds (types ∅ ∅ (Unv 0) U)))
|
||||
(check-true (judgment-holds (types ∅ (∅ nat : (Unv 0)) nat U)))
|
||||
(check-true (judgment-holds (types ∅ (∅ nat : (Unv 0)) (Π (x : nat) nat) U)))
|
||||
(check-holds (wf ,Σ0 ∅))
|
||||
(check-holds (type-infer ∅ ∅ (Unv 0) U))
|
||||
(check-holds (type-infer ∅ (∅ nat : (Unv 0)) nat U))
|
||||
(check-holds (type-infer ∅ (∅ nat : (Unv 0)) (Π (x : nat) nat) U))
|
||||
(check-true (term (positive nat (nat (Π (x : nat) nat)))))
|
||||
(check-true
|
||||
(judgment-holds (wf (∅ (nat : (Unv 0) ((zero : nat)))) ∅)))
|
||||
(check-true
|
||||
(judgment-holds (wf (∅ (nat : (Unv 0) ((s : (Π (x : nat) nat))))) ∅)))
|
||||
(check-true (judgment-holds (wf ,Σ ∅)))
|
||||
(check-holds
|
||||
(wf (∅ (nat : (Unv 0) ((zero : nat)))) ∅))
|
||||
(check-holds
|
||||
(wf (∅ (nat : (Unv 0) ((s : (Π (x : nat) nat))))) ∅))
|
||||
(check-holds (wf ,Σ ∅))
|
||||
|
||||
(check-true (judgment-holds (wf ,Σ3 ∅)))
|
||||
(check-true (judgment-holds (wf ,Σ4 ∅)))
|
||||
(check-true (judgment-holds (wf (∅ (truth : (Unv 0) ())) ∅)))
|
||||
(check-true (judgment-holds (wf ∅ (∅ x : (Unv 0)))))
|
||||
(check-true (judgment-holds (wf (∅ (nat : (Unv 0) ())) (∅ x : nat))))
|
||||
(check-true (judgment-holds (wf (∅ (nat : (Unv 0) ())) (∅ x : (Π (x : nat) nat))))))
|
||||
(check-holds (wf ,Σ3 ∅))
|
||||
(check-holds (wf ,Σ4 ∅))
|
||||
(check-holds (wf (∅ (truth : (Unv 0) ())) ∅))
|
||||
(check-holds (wf ∅ (∅ x : (Unv 0))))
|
||||
(check-holds (wf (∅ (nat : (Unv 0) ())) (∅ x : nat)))
|
||||
(check-holds (wf (∅ (nat : (Unv 0) ())) (∅ x : (Π (x : nat) nat)))))
|
||||
|
||||
;; Returns the inductive hypotheses required for eliminating the
|
||||
;; inductively defined type x_D with motive t_P, where the telescope
|
||||
|
@ -462,6 +519,8 @@
|
|||
;; NB: Manually reducing types because no conversion
|
||||
;; NB: rule
|
||||
;; TODO: Thread through Σ for reduce
|
||||
;; TODO: Might be able to remove this now that I have
|
||||
;; TODO: equivalence in type-check
|
||||
(reduce ∅ ((in-hole Θ t_P) (apply-telescopes x_ci (Ξ_pi Φ))))))))
|
||||
(methods-for x_D Ξ_pi t_P ((x_c : t) ...)))
|
||||
(where Φ_h (hypotheses-for x_D t_P (inductive-args x_D Φ)))
|
||||
|
@ -536,144 +595,119 @@
|
|||
[----------------- "TT-Hole"
|
||||
(telescope-types Σ Γ hole hole)]
|
||||
|
||||
[(types Σ Γ e t)
|
||||
[(type-check Σ Γ e t)
|
||||
(telescope-types Σ Γ Θ Ξ)
|
||||
----------------- "TT-Match"
|
||||
(telescope-types Σ Γ (in-hole Θ (hole e)) (Π (x : t) Ξ))])
|
||||
(module+ test
|
||||
(check-true
|
||||
(judgment-holds (telescope-types ,Σ ∅ (hole zero) (Π (x : nat) hole))))
|
||||
(check-holds
|
||||
(telescope-types ,Σ ∅ (hole zero) (Π (x : nat) hole)))
|
||||
(check-true
|
||||
(redex-match? cic-redL (in-hole Θ (hole e))
|
||||
(term ((hole zero) (λ (x : nat) x)))))
|
||||
(check-true
|
||||
(judgment-holds (telescope-types ,Σ ∅ (hole zero)
|
||||
(methods-for nat hole
|
||||
(λ (x : nat) nat)
|
||||
((zero : nat))))))
|
||||
(check-true
|
||||
(judgment-holds (types ,Σ ∅ (λ (x : nat) (λ (ih-x : nat) x))
|
||||
(Π (x : nat) (Π (ih-x : nat) nat)))))
|
||||
(check-true
|
||||
(judgment-holds (telescope-types ,Σ ∅
|
||||
((hole zero)
|
||||
(λ (x : nat) (λ (ih-x : nat) x)))
|
||||
(methods-for nat hole
|
||||
(λ (x : nat) nat)
|
||||
(constructors-for ,Σ nat)))))
|
||||
(check-true
|
||||
(judgment-holds
|
||||
(telescope-types (,Σ4 (true : (Unv 0) ((tt : true))))
|
||||
∅ (hole (λ (A : (Unv 0)) (λ (B : (Unv 0))
|
||||
(λ (a : A) (λ (b : B) tt)))))
|
||||
(methods-for and (Π (A : Type) (Π (B : Type) hole))
|
||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) true)))
|
||||
(constructors-for ,Σ4 and)))))
|
||||
(check-true
|
||||
(judgment-holds
|
||||
(telescope-types ,sigma (∅ x : false)
|
||||
hole
|
||||
(methods-for false hole (λ (y : false) (Π (x : Type) x))
|
||||
())))))
|
||||
(check-holds
|
||||
(telescope-types ,Σ ∅ (hole zero)
|
||||
(methods-for nat hole
|
||||
(λ (x : nat) nat)
|
||||
((zero : nat)))))
|
||||
(check-holds
|
||||
(type-check ,Σ ∅ (λ (x : nat) (λ (ih-x : nat) x))
|
||||
(Π (x : nat) (Π (ih-x : nat) nat))))
|
||||
(check-holds
|
||||
(telescope-types ,Σ ∅
|
||||
((hole zero)
|
||||
(λ (x : nat) (λ (ih-x : nat) x)))
|
||||
(methods-for nat hole
|
||||
(λ (x : nat) nat)
|
||||
(constructors-for ,Σ nat))))
|
||||
(check-holds
|
||||
(telescope-types (,Σ4 (true : (Unv 0) ((tt : true))))
|
||||
∅ (hole (λ (A : (Unv 0)) (λ (B : (Unv 0))
|
||||
(λ (a : A) (λ (b : B) tt)))))
|
||||
(methods-for and (Π (A : Type) (Π (B : Type) hole))
|
||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) true)))
|
||||
(constructors-for ,Σ4 and))))
|
||||
(check-holds
|
||||
(telescope-types ,sigma (∅ x : false)
|
||||
hole
|
||||
(methods-for false hole (λ (y : false) (Π (x : Type) x))
|
||||
()))))
|
||||
|
||||
;; TODO: Bi-directional and inference?
|
||||
;; TODO: http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/31/slides/stephanie.pdf
|
||||
|
||||
;; Holds when e has type t under signature Σ and typing context Γ
|
||||
(define-judgment-form cic-typingL
|
||||
#:mode (types I I I O)
|
||||
#:contract (types Σ Γ e t)
|
||||
#:mode (type-infer I I I O)
|
||||
#:contract (type-infer Σ Γ e t)
|
||||
|
||||
[(unv-ok U_0 U_1)
|
||||
(wf Σ Γ)
|
||||
----------------- "DTR-Axiom"
|
||||
(types Σ Γ U_0 U_1)]
|
||||
(type-infer Σ Γ U_0 U_1)]
|
||||
|
||||
[(where t (lookup-Σ Σ x))
|
||||
----------------- "DTR-Inductive"
|
||||
(types Σ Γ x t)]
|
||||
(type-infer Σ Γ x t)]
|
||||
|
||||
;; TODO: Require alpha-equiv here, at least.
|
||||
[(where t (lookup-Γ Γ x))
|
||||
----------------- "DTR-Start"
|
||||
(types Σ Γ x t)]
|
||||
(type-infer Σ Γ x t)]
|
||||
|
||||
[(types Σ Γ t_0 U_1)
|
||||
(types Σ (Γ x : t_0) t U_2)
|
||||
[(type-infer Σ Γ t_0 U_1)
|
||||
(type-infer Σ (Γ x : t_0) t U_2)
|
||||
(unv-kind U_1 U_2 U)
|
||||
----------------- "DTR-Product"
|
||||
(types Σ Γ (Π (x : t_0) t) U)]
|
||||
(type-infer Σ Γ (Π (x : t_0) t) U)]
|
||||
|
||||
[(types Σ Γ e_0 (Π (x_0 : t_0) t_1))
|
||||
(types Σ Γ e_1 t_0)
|
||||
[(type-infer Σ Γ e_0 (Π (x_0 : t_0) t_1))
|
||||
(type-infer Σ Γ e_1 t_2)
|
||||
(equivalent Σ t_0 t_2)
|
||||
----------------- "DTR-Application"
|
||||
(types Σ Γ (e_0 e_1) (subst t_1 x_0 e_1))]
|
||||
(type-infer Σ Γ (e_0 e_1) (subst t_1 x_0 e_1))]
|
||||
|
||||
;; TODO: This restriction that the names be the same is a little annoying
|
||||
[(types Σ (Γ x : t_0) e t_1)
|
||||
(types Σ Γ (Π (x : t_0) t_1) U)
|
||||
[(type-infer Σ (Γ x : t_0) e t_1)
|
||||
(type-infer Σ Γ (Π (x : t_0) t_1) U)
|
||||
----------------- "DTR-Abstraction"
|
||||
(types Σ Γ (λ (x : t_0) e) (Π (x : t_0) t_1))]
|
||||
(type-infer Σ Γ (λ (x : t_0) e) (Π (x : t_0) t_1))]
|
||||
|
||||
[(types Σ Γ x_D (in-hole Ξ U_D))
|
||||
(types Σ Γ e_D (in-hole Θ_ai x_D))
|
||||
(types Σ Γ e_P (in-hole Ξ (Π (x : (in-hole Θ_Ξ x_D)) U_P)))
|
||||
[(type-infer Σ Γ x_D (in-hole Ξ U_D))
|
||||
(type-infer Σ Γ e_D (in-hole Θ_ai x_D))
|
||||
(type-infer Σ Γ e_P (in-hole Ξ_1 (Π (x : (in-hole Θ_Ξ x_D)) U_P)))
|
||||
(equivalent Σ (in-hole Ξ (Unv 0)) (in-hole Ξ_1 (Unv 0)))
|
||||
;; methods
|
||||
(telescope-types Σ Γ Θ_m (methods-for x_D Ξ e_P (constructors-for Σ x_D)))
|
||||
----------------- "DTR-Elim_D"
|
||||
(types Σ Γ (in-hole Θ_m (((elim x_D) e_D) e_P)) (reduce Σ ((in-hole Θ_ai e_P) e_D)))]
|
||||
(type-infer Σ Γ (in-hole Θ_m (((elim x_D) e_D) e_P)) (reduce Σ ((in-hole Θ_ai e_P) e_D)))])
|
||||
|
||||
;; TODO: beta-equiv
|
||||
;; TODO: This rule is no good for algorithmic checking; Redex infinitly
|
||||
;; TODO: searches it.
|
||||
;; TODO: Perhaps something closer to Zombies = type would be better.
|
||||
;; TODO: For now, reduce types manually
|
||||
#;[(types Σ Γ e t)
|
||||
(types Σ Γ t U)
|
||||
(converts Σ t t_1)
|
||||
(types Σ Γ t_1 U)
|
||||
----------------- "DTR-Conversion"
|
||||
(types Σ Γ e t_1)])
|
||||
(define-judgment-form cic-typingL
|
||||
#:mode (type-check I I I I)
|
||||
#:contract (type-check Σ Γ e t)
|
||||
|
||||
[(type-infer Σ Γ e t_0)
|
||||
(equivalent Σ t t_0)
|
||||
----------------- "DTR-Check"
|
||||
(type-check Σ Γ e t)])
|
||||
(module+ test
|
||||
(check-true (judgment-holds (types ∅ ∅ (Unv 0) (Unv 1))))
|
||||
(check-true (judgment-holds (types ∅ (∅ x : (Unv 0)) (Unv 0) (Unv 1))))
|
||||
(check-true (judgment-holds (types ∅ (∅ x : (Unv 0)) x (Unv 0))))
|
||||
(check-true (judgment-holds (types ∅ ((∅ x_0 : (Unv 0)) x_1 : (Unv 0))
|
||||
(Π (x_3 : x_0) x_1) (Unv 0))))
|
||||
(check-holds (type-infer ∅ ∅ (Unv 0) (Unv 1)))
|
||||
(check-holds (type-infer ∅ (∅ x : (Unv 0)) (Unv 0) (Unv 1)))
|
||||
(check-holds (type-infer ∅ (∅ x : (Unv 0)) x (Unv 0)))
|
||||
(check-holds (type-infer ∅ ((∅ x_0 : (Unv 0)) x_1 : (Unv 0))
|
||||
(Π (x_3 : x_0) x_1) (Unv 0)))
|
||||
(check-holds (type-infer ∅ (∅ x_0 : (Unv 0)) x_0 U_1))
|
||||
(check-holds (type-infer ∅ ((∅ x_0 : (Unv 0)) x_2 : x_0) (Unv 0) U_2))
|
||||
(check-holds (unv-kind (Unv 0) (Unv 0) (Unv 0)))
|
||||
(check-holds (type-infer ∅ (∅ x_0 : (Unv 0)) (Π (x_2 : x_0) (Unv 0)) t))
|
||||
|
||||
(check-true (judgment-holds (types ∅ (∅ x_0 : (Unv 0)) x_0 U_1)))
|
||||
(check-true (judgment-holds (types ∅ ((∅ x_0 : (Unv 0)) x_2 : x_0) (Unv 0) U_2)))
|
||||
(check-true (judgment-holds (unv-kind (Unv 0) (Unv 0) (Unv 0))))
|
||||
(check-true (judgment-holds (types ∅ (∅ x_0 : (Unv 0)) (Π (x_2 : x_0) (Unv 0)) t)))
|
||||
|
||||
(check-true (judgment-holds (types ∅ ∅ (λ (x : (Unv 0)) x) (Π (x : (Unv 0)) (Unv 0)))))
|
||||
(check-true (judgment-holds (types ∅ ∅ (λ (y : (Unv 0)) (λ (x : y) x))
|
||||
(Π (y : (Unv 0)) (Π (x : y) y)))))
|
||||
(check-holds (type-infer ∅ ∅ (λ (x : (Unv 0)) x) (Π (x : (Unv 0)) (Unv 0))))
|
||||
(check-holds (type-infer ∅ ∅ (λ (y : (Unv 0)) (λ (x : y) x))
|
||||
(Π (y : (Unv 0)) (Π (x : y) y))))
|
||||
|
||||
(check-equal? (list (term (Unv 1)))
|
||||
(judgment-holds
|
||||
(types ∅ ((∅ x1 : (Unv 0)) x2 : (Unv 0)) (Π (t6 : x1) (Π (t2 : x2) (Unv 0)))
|
||||
(type-infer ∅ ((∅ x1 : (Unv 0)) x2 : (Unv 0)) (Π (t6 : x1) (Π (t2 : x2) (Unv 0)))
|
||||
U)
|
||||
U))
|
||||
(check-true
|
||||
(judgment-holds
|
||||
(types ∅ ∅ (Π (x2 : (Unv 0)) (Unv 0))
|
||||
U)))
|
||||
(check-true
|
||||
(judgment-holds
|
||||
(types ∅ (∅ x1 : (Unv 0)) (λ (x2 : (Unv 0)) (Π (t6 : x1) (Π (t2 : x2) (Unv 0))))
|
||||
t)))
|
||||
(check-true
|
||||
(judgment-holds (types (∅ (truth : (Unv 0) ((T : truth))))
|
||||
∅
|
||||
T
|
||||
truth)))
|
||||
(check-true
|
||||
(judgment-holds (types (∅ (truth : (Unv 0) ((T : truth))))
|
||||
∅
|
||||
(Unv 0)
|
||||
(Unv 1))))
|
||||
|
||||
;; ---- Elim
|
||||
;; TODO: Clean up/Reorganize these tests
|
||||
(check-true
|
||||
|
@ -681,46 +715,43 @@
|
|||
(in-hole Θ_m (((elim x_D) e_D) e_P))
|
||||
(term ((((elim truth) T) (Π (x : truth) (Unv 1))) (Unv 0)))))
|
||||
(define Σtruth (term (∅ (truth : (Unv 0) ((T : truth))))))
|
||||
(check-true
|
||||
(judgment-holds (types ,Σtruth ∅ truth (in-hole Ξ U))))
|
||||
(check-true
|
||||
(judgment-holds (types ,Σtruth ∅ T (in-hole Θ_ai truth))))
|
||||
(check-true
|
||||
(judgment-holds (types ,Σtruth ∅ (λ (x : truth) (Unv 1))
|
||||
(in-hole Ξ (Π (x : (in-hole Θ truth)) U)))))
|
||||
(check-holds (type-infer ,Σtruth ∅ truth (in-hole Ξ U)))
|
||||
(check-holds (type-infer ,Σtruth ∅ T (in-hole Θ_ai truth)))
|
||||
(check-holds (type-infer ,Σtruth ∅ (λ (x : truth) (Unv 1))
|
||||
(in-hole Ξ (Π (x : (in-hole Θ truth)) U))))
|
||||
(check-equal?
|
||||
(term (methods-for truth hole (λ (x : truth) (Unv 1)) ((T : truth))))
|
||||
(term (Π (m-T : (Unv 1)) hole)))
|
||||
(check-true
|
||||
(judgment-holds (telescope-types ,Σtruth ∅ (hole (Unv 0))
|
||||
(methods-for truth hole
|
||||
(λ (x : truth) (Unv 1))
|
||||
((T : truth))))))
|
||||
(check-true
|
||||
(judgment-holds (types (∅ (truth : (Unv 0) ((T : truth))))
|
||||
∅
|
||||
((((elim truth) T) (λ (x : truth) (Unv 1))) (Unv 0))
|
||||
(Unv 1))))
|
||||
(check-holds (telescope-types ,Σtruth ∅ (hole (Unv 0))
|
||||
(methods-for truth hole
|
||||
(λ (x : truth) (Unv 1))
|
||||
((T : truth)))))
|
||||
(check-holds (type-check (∅ (truth : (Unv 0) ((T : truth))))
|
||||
∅
|
||||
((((elim truth) T) (λ (x : truth) (Unv 1))) (Unv 0))
|
||||
(Unv 1)))
|
||||
|
||||
(check-false
|
||||
(judgment-holds (types (∅ (truth : (Unv 0) ((T : truth))))
|
||||
∅
|
||||
(((((elim truth) T) (Unv 1)) Type) Type)
|
||||
(Unv 1))))
|
||||
(check-not-holds (type-check (∅ (truth : (Unv 0) ((T : truth))))
|
||||
∅
|
||||
(((((elim truth) T) (Unv 1)) Type) Type)
|
||||
(Unv 1)))
|
||||
(check-holds
|
||||
(type-infer ∅ ∅ (Π (x2 : (Unv 0)) (Unv 0)) U))
|
||||
(check-holds
|
||||
(type-infer ∅ (∅ x1 : (Unv 0)) (λ (x2 : (Unv 0)) (Π (t6 : x1) (Π (t2 : x2) (Unv 0))))
|
||||
t))
|
||||
(define-syntax-rule (nat-test syn ...)
|
||||
(check-true (judgment-holds (types ,Σ syn ...))))
|
||||
(check-holds (type-infer ,Σ syn ...)))
|
||||
(nat-test ∅ (Π (x : nat) nat) (Unv 0))
|
||||
(nat-test ∅ (λ (x : nat) x) (Π (x : nat) nat))
|
||||
|
||||
(check-true
|
||||
(judgment-holds (types ,Σ ∅ nat (in-hole Ξ U))))
|
||||
(check-true
|
||||
(judgment-holds (types ,Σ ∅ zero (in-hole Θ_ai nat))))
|
||||
(check-true
|
||||
(judgment-holds (types ,Σ ∅ (λ (x : nat) nat)
|
||||
(in-hole Ξ (Π (x : (in-hole Θ nat)) U)))))
|
||||
|
||||
|
||||
(check-holds
|
||||
(type-infer ,Σ ∅ nat (in-hole Ξ U)))
|
||||
(check-holds
|
||||
(type-infer ,Σ ∅ zero (in-hole Θ_ai nat)))
|
||||
(check-holds
|
||||
(type-infer ,Σ ∅ (λ (x : nat) nat)
|
||||
(in-hole Ξ (Π (x : (in-hole Θ nat)) U))))
|
||||
(nat-test ∅ (((((elim nat) zero) (λ (x : nat) nat)) zero)
|
||||
(λ (x : nat) (λ (ih-x : nat) x)))
|
||||
nat)
|
||||
|
@ -735,129 +766,161 @@
|
|||
(nat-test (∅ n : nat)
|
||||
(((((elim nat) n) (λ (x : nat) nat)) zero) (λ (x : nat) (λ (ih-x : nat) x)))
|
||||
nat)
|
||||
(check-true
|
||||
(judgment-holds
|
||||
(types (,Σ (bool : (Unv 0) ((btrue : bool) (bfalse : bool))))
|
||||
(∅ n2 : nat)
|
||||
(((((elim nat) n2) (λ (x : nat) bool)) btrue) (λ (x : nat) (λ (ih-x : bool) bfalse)))
|
||||
bool)))
|
||||
(check-false (judgment-holds
|
||||
(types ,Σ
|
||||
∅
|
||||
((((elim nat) zero) nat) (s zero))
|
||||
nat)))
|
||||
(check-holds
|
||||
(type-check (,Σ (bool : (Unv 0) ((btrue : bool) (bfalse : bool))))
|
||||
(∅ n2 : nat)
|
||||
(((((elim nat) n2) (λ (x : nat) bool)) btrue) (λ (x : nat) (λ (ih-x : bool) bfalse)))
|
||||
bool))
|
||||
(check-not-holds
|
||||
(type-check ,Σ ∅
|
||||
((((elim nat) zero) nat) (s zero))
|
||||
nat))
|
||||
(define lam (term (λ (nat : (Unv 0)) nat)))
|
||||
(check-equal?
|
||||
(list (term (Π (nat : (Unv 0)) (Unv 0))))
|
||||
(judgment-holds (types ,Σ0 ∅ ,lam t) t))
|
||||
(judgment-holds (type-infer ,Σ0 ∅ ,lam t) t))
|
||||
(check-equal?
|
||||
(list (term (Π (nat : (Unv 0)) (Unv 0))))
|
||||
(judgment-holds (types ,Σ ∅ ,lam t) t))
|
||||
(judgment-holds (type-infer ,Σ ∅ ,lam t) t))
|
||||
(check-equal?
|
||||
(list (term (Π (x : (Π (y : (Unv 0)) y)) nat)))
|
||||
(judgment-holds (types (∅ (nat : (Unv 0) ())) ∅ (λ (x : (Π (y : (Unv 0)) y)) (x nat))
|
||||
(judgment-holds (type-infer (∅ (nat : (Unv 0) ())) ∅ (λ (x : (Π (y : (Unv 0)) y)) (x nat))
|
||||
t) t))
|
||||
(check-equal?
|
||||
(list (term (Π (y : (Unv 0)) (Unv 0))))
|
||||
(judgment-holds (types (∅ (nat : (Unv 0) ())) ∅ (λ (y : (Unv 0)) y) t) t))
|
||||
(judgment-holds (type-infer (∅ (nat : (Unv 0) ())) ∅ (λ (y : (Unv 0)) y) t) t))
|
||||
(check-equal?
|
||||
(list (term (Unv 0)))
|
||||
(judgment-holds (types (∅ (nat : (Unv 0) ())) ∅
|
||||
(judgment-holds (type-infer (∅ (nat : (Unv 0) ())) ∅
|
||||
((λ (x : (Π (y : (Unv 0)) (Unv 0))) (x nat))
|
||||
(λ (y : (Unv 0)) y))
|
||||
t) t))
|
||||
(check-equal?
|
||||
(list (term (Unv 0)) (term (Unv 1)))
|
||||
(judgment-holds
|
||||
(types ,Σ4 ∅ (Π (S : (Unv 0)) (Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B)))))
|
||||
(type-infer ,Σ4 ∅ (Π (S : (Unv 0)) (Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B)))))
|
||||
U) U))
|
||||
(check-holds
|
||||
(type-check ,Σ4 (∅ S : (Unv 0)) conj (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (a : A) (Π (b : B) ((and A) B)))))))
|
||||
(check-holds
|
||||
(type-check ,Σ4 (∅ S : (Unv 0))
|
||||
conj (Π (P : (Unv 0)) (Π (Q : (Unv 0)) (Π (x : P) (Π (y : Q) ((and P) Q)))))))
|
||||
(check-holds
|
||||
(type-check ,Σ4 (∅ S : (Unv 0)) S (Unv 0)))
|
||||
(check-holds
|
||||
(type-check ,Σ4 (∅ S : (Unv 0)) (conj S)
|
||||
(Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B))))))
|
||||
(check-holds
|
||||
(type-check ,Σ4 (∅ S : (Unv 0)) (conj S)
|
||||
(Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B))))))
|
||||
(check-holds
|
||||
(type-check ,Σ4 ∅ (λ (S : (Unv 0)) (conj S))
|
||||
(Π (S : (Unv 0)) (Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B)))))))
|
||||
(check-holds
|
||||
(type-check (,Σ4 (true : (Unv 0) ((tt : true)))) ∅
|
||||
((((conj true) true) tt) tt)
|
||||
((and true) true)))
|
||||
(check-holds
|
||||
(type-infer ,Σ4 ∅ and (in-hole Ξ U_D)))
|
||||
(check-holds
|
||||
(type-infer (,Σ4 (true : (Unv 0) ((tt : true)))) ∅
|
||||
((((conj true) true) tt) tt)
|
||||
(in-hole Θ and)))
|
||||
(check-holds
|
||||
(type-infer (,Σ4 (true : (Unv 0) ((tt : true)))) ∅
|
||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) true)))
|
||||
(in-hole Ξ (Π (x : (in-hole Θ_Ξ and)) U_P))))
|
||||
(check-holds
|
||||
(type-check (,Σ4 (true : (Unv 0) ((tt : true)))) ∅
|
||||
((((elim and) ((((conj true) true) tt) tt))
|
||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
|
||||
true))))
|
||||
(λ (A : (Unv 0))
|
||||
(λ (B : (Unv 0))
|
||||
(λ (a : A)
|
||||
(λ (b : B) tt)))))
|
||||
true))
|
||||
(check-true (Γ? (term (((∅ P : (Unv 0)) Q : (Unv 0)) ab : ((and P) Q)))))
|
||||
(check-holds
|
||||
(type-infer ,Σ4 ∅ and (in-hole Ξ U)))
|
||||
(check-holds
|
||||
(type-infer ,Σ4 (((∅ P : Type) Q : Type) ab : ((and P) Q))
|
||||
ab (in-hole Θ and)))
|
||||
(check-true
|
||||
(judgment-holds (types ,Σ4 (∅ S : (Unv 0)) conj (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (a : A) (Π (b : B) ((and A) B))))))))
|
||||
(check-true
|
||||
(judgment-holds (types ,Σ4 (∅ S : (Unv 0)) S (Unv 0))))
|
||||
(check-true
|
||||
(judgment-holds (types ,Σ4 (∅ S : (Unv 0)) (conj S)
|
||||
(Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B)))))))
|
||||
(check-true
|
||||
(judgment-holds (types ,Σ4 (∅ S : (Unv 0)) (conj S)
|
||||
(Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B)))))))
|
||||
(check-true
|
||||
(judgment-holds (types ,Σ4 ∅ (λ (S : (Unv 0)) (conj S))
|
||||
(Π (S : (Unv 0)) (Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B))))))))
|
||||
(check-true
|
||||
(judgment-holds (types (,Σ4 (true : (Unv 0) ((tt : true)))) ∅
|
||||
((((conj true) true) tt) tt)
|
||||
((and true) true))))
|
||||
(check-true
|
||||
(judgment-holds
|
||||
(types ,Σ4 ∅ and (in-hole Ξ U_D))))
|
||||
(check-true
|
||||
(judgment-holds
|
||||
(types (,Σ4 (true : (Unv 0) ((tt : true)))) ∅
|
||||
((((conj true) true) tt) tt)
|
||||
(in-hole Θ and))))
|
||||
(check-true
|
||||
(judgment-holds
|
||||
(types (,Σ4 (true : (Unv 0) ((tt : true)))) ∅
|
||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) true)))
|
||||
(in-hole Ξ (Π (x : (in-hole Θ_Ξ and)) U_P)))))
|
||||
(check-true
|
||||
(judgment-holds (types (,Σ4 (true : (Unv 0) ((tt : true)))) ∅
|
||||
((((elim and) ((((conj true) true) tt) tt))
|
||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
|
||||
true))))
|
||||
(λ (A : (Unv 0))
|
||||
(λ (B : (Unv 0))
|
||||
(λ (a : A)
|
||||
(λ (b : B) tt)))))
|
||||
true)))
|
||||
(check-true
|
||||
(judgment-holds
|
||||
(types (,Σ4 (true : (Unv 0) ((tt : true)))) ∅
|
||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) ((and B) A))))
|
||||
(Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (x : ((and A) B)) (Unv 0)))))))
|
||||
(check-true
|
||||
(judgment-holds
|
||||
(types (,Σ4 (true : (Unv 0) ((tt : true))))
|
||||
((∅ A : Type) B : Type)
|
||||
(conj B)
|
||||
t) t))
|
||||
(check-true
|
||||
(judgment-holds (types (,Σ4 (true : (Unv 0) ((tt : true)))) ∅
|
||||
((((elim and) ((((conj true) true) tt) tt))
|
||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
|
||||
((and B) A)))))
|
||||
(λ (A : (Unv 0))
|
||||
(λ (B : (Unv 0))
|
||||
(λ (a : A)
|
||||
(λ (b : B) ((((conj B) A) b) a))))))
|
||||
((and true) true))))
|
||||
(redex-match? cic-redL
|
||||
(in-hole Ξ (Π (x : (in-hole Θ and)) U))
|
||||
(term (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (x : ((and A) B)) (Unv 0)))))))
|
||||
(check-holds
|
||||
(type-infer ,Σ4 (((∅ P : Type) Q : Type) ab : ((and P) Q))
|
||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
|
||||
((and B) A))))
|
||||
(in-hole Ξ (Π (x : (in-hole Θ and)) U))))
|
||||
(check-holds
|
||||
(equivalent ,Σ4
|
||||
(Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (x : ((and A) B)) (Unv 0))))
|
||||
(Π (P : (Unv 0)) (Π (Q : (Unv 0)) (Π (x : ((and P) Q)) (Unv 0))))))
|
||||
(check-holds
|
||||
(type-infer ,Σ4 ∅
|
||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
|
||||
((and B) A))))
|
||||
(in-hole Ξ (Π (x : (in-hole Θ_Ξ and)) U_P))))
|
||||
(check-holds
|
||||
(type-check ,Σ4
|
||||
(((∅ P : (Unv 0)) Q : (Unv 0)) ab : ((and P) Q))
|
||||
((((elim and) ab)
|
||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
|
||||
((and B) A)))))
|
||||
(λ (A : (Unv 0))
|
||||
(λ (B : (Unv 0))
|
||||
(λ (a : A)
|
||||
(λ (b : B) ((((conj B) A) b) a))))))
|
||||
((and Q) P)))
|
||||
(check-holds
|
||||
(type-check (,Σ4 (true : (Unv 0) ((tt : true)))) ∅
|
||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) ((and B) A))))
|
||||
(Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (x : ((and A) B)) (Unv 0))))))
|
||||
(check-holds
|
||||
(type-infer (,Σ4 (true : (Unv 0) ((tt : true))))
|
||||
((∅ A : Type) B : Type)
|
||||
(conj B)
|
||||
t))
|
||||
(check-holds
|
||||
(type-check (,Σ4 (true : (Unv 0) ((tt : true)))) ∅
|
||||
((((elim and) ((((conj true) true) tt) tt))
|
||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
|
||||
((and B) A)))))
|
||||
(λ (A : (Unv 0))
|
||||
(λ (B : (Unv 0))
|
||||
(λ (a : A)
|
||||
(λ (b : B) ((((conj B) A) b) a))))))
|
||||
((and true) true)))
|
||||
(define gamma (term (∅ temp863 : pre)))
|
||||
(check-true (judgment-holds (wf ,sigma ∅)))
|
||||
(check-true (judgment-holds (wf ,sigma ,gamma)))
|
||||
(check-true
|
||||
(judgment-holds (types ,sigma ,gamma (Unv 0) t)))
|
||||
(check-true
|
||||
(judgment-holds (types ,sigma ,gamma pre t)))
|
||||
(check-true
|
||||
(judgment-holds (types ,sigma (,gamma tmp863 : pre) (Unv 0) (Unv 1))))
|
||||
(check-true
|
||||
(judgment-holds
|
||||
(types ,sigma (,gamma x : false) false (in-hole Ξ U_D))))
|
||||
(check-true
|
||||
(judgment-holds
|
||||
(types ,sigma (,gamma x : false) x (in-hole Θ false))))
|
||||
(check-true
|
||||
(judgment-holds
|
||||
(types ,sigma (,gamma x : false) (λ (y : false) (Π (x : Type) x))
|
||||
(in-hole Ξ (Π (x : (in-hole Θ false)) U)))))
|
||||
(check-holds (wf ,sigma ∅))
|
||||
(check-holds (wf ,sigma ,gamma))
|
||||
(check-holds
|
||||
(type-infer ,sigma ,gamma (Unv 0) t))
|
||||
(check-holds
|
||||
(type-infer ,sigma ,gamma pre t))
|
||||
(check-holds
|
||||
(type-check ,sigma (,gamma tmp863 : pre) (Unv 0) (Unv 1)))
|
||||
(check-holds
|
||||
(type-infer ,sigma ,gamma pre t))
|
||||
(check-holds
|
||||
(type-check ,sigma (,gamma tmp863 : pre) (Unv 0) (Unv 1)))
|
||||
(check-holds
|
||||
(type-infer ,sigma (,gamma x : false) false (in-hole Ξ U_D)))
|
||||
(check-holds
|
||||
(type-infer ,sigma (,gamma x : false) x (in-hole Θ false)))
|
||||
(check-holds
|
||||
(type-infer ,sigma (,gamma x : false) (λ (y : false) (Π (x : Type) x))
|
||||
(in-hole Ξ (Π (x : (in-hole Θ false)) U))))
|
||||
(check-true
|
||||
(redex-match? cic-typingL (in-hole Θ_m (((elim x_D) e_D) e_P))
|
||||
(term (((elim false) x) (λ (y : false) (Π (x : Type) x))))))
|
||||
(check-true
|
||||
(judgment-holds (types ,sigma (,gamma x : false)
|
||||
(((elim false) x) (λ (y : false) (Π (x : Type) x)))
|
||||
(Π (x : (Unv 0)) x))))))
|
||||
(check-holds
|
||||
(type-check ,sigma (,gamma x : false)
|
||||
(((elim false) x) (λ (y : false) (Π (x : Type) x)))
|
||||
(Π (x : (Unv 0)) x)))))
|
||||
|
||||
;; This module just provide module language sugar over the redex model.
|
||||
|
||||
|
@ -997,13 +1060,18 @@
|
|||
;; TODO: Still absurdly slow. Probably doing n^2 checks of sigma and
|
||||
;; gamma. And lookup on sigma, gamma are linear, so probably n^2 lookup time.
|
||||
(define (type-infer/term t)
|
||||
(let ([t (judgment-holds (types ,(sigma) ,(gamma) ,t t_0) t_0)])
|
||||
(let ([t (judgment-holds (type-infer ,(sigma) ,(gamma) ,t t_0) t_0)])
|
||||
(and (pair? t) (car t))))
|
||||
|
||||
(define (type-check/term? e t)
|
||||
(and (judgment-holds (type-check ,(sigma) ,(gamma) ,e ,t)) #t))
|
||||
|
||||
(define (syntax->curnel-syntax syn) (denote syn (cur->datum syn)))
|
||||
|
||||
(define (denote syn t)
|
||||
#`(term (reduce #,(sigma) (subst-all #,(datum->syntax syn t) #,(first (bind-subst)) #,(second (bind-subst))))))
|
||||
(quasisyntax/loc
|
||||
syn
|
||||
(term (reduce #,(sigma) (subst-all #,(datum->syntax syn t) #,(first (bind-subst)) #,(second (bind-subst)))))))
|
||||
|
||||
;; TODO: Blanket disarming is probably a bad idea.
|
||||
(define orig-insp (variable-reference->module-declaration-inspector
|
||||
|
@ -1065,19 +1133,20 @@
|
|||
reified-term)
|
||||
|
||||
;; Reflection tools
|
||||
(define (normalize/syn syn)
|
||||
(denote syn (term (reduce ,(sigma) (subst-all ,(cur->datum syn) ,(first (bind-subst)) ,(second (bind-subst)))))))
|
||||
|
||||
(define (run-cur->datum syn)
|
||||
(cur->datum (normalize/syn syn)))
|
||||
|
||||
;; TODO: OOps, type-infer doesn't return a cur term but a redex term
|
||||
;; wrapped in syntax bla. This is bad.
|
||||
(define (type-infer/syn syn)
|
||||
(let ([t (type-infer/term (cur->datum syn))])
|
||||
(let ([t (type-infer/term (run-cur->datum syn))])
|
||||
(and t (datum->syntax syn t))))
|
||||
|
||||
(define (type-check/syn? syn type)
|
||||
(let ([t (type-infer/term (cur->datum syn))])
|
||||
(equal? t (cur->datum type))))
|
||||
|
||||
(define (normalize/syn syn)
|
||||
(denote syn (term (reduce ,(sigma) (subst-all ,(cur->datum syn) ,(first (bind-subst)) ,(second (bind-subst)))))))
|
||||
(type-check/term? (run-cur->datum syn) (run-cur->datum type)))
|
||||
|
||||
;; Takes a Cur term syn and an arbitrary number of identifiers ls. The cur term is
|
||||
;; expanded until expansion reaches a Curnel form, or one of the
|
||||
|
@ -1247,20 +1316,28 @@
|
|||
#;(define-syntax (dep-datum syn) (denote #'syn))
|
||||
(define-syntax (dep-lambda syn)
|
||||
(syntax-case syn (:)
|
||||
[(_ (x : t) e) (syntax->curnel-syntax #`(λ (x : t) e))]))
|
||||
[(_ (x : t) e)
|
||||
(syntax->curnel-syntax
|
||||
(quasisyntax/loc syn (λ (x : t) e)))]))
|
||||
|
||||
(define-syntax (dep-app syn)
|
||||
(syntax-case syn ()
|
||||
[(_ e1 e2) (syntax->curnel-syntax #`(#%app e1 e2))]))
|
||||
[(_ e1 e2)
|
||||
(syntax->curnel-syntax
|
||||
(quasisyntax/loc syn (#%app e1 e2)))]))
|
||||
|
||||
(define-syntax (dep-forall syn)
|
||||
(syntax-case syn (:)
|
||||
[(_ (x : t) e) (syntax->curnel-syntax #`(Π (x : t) e))]))
|
||||
[(_ (x : t) e)
|
||||
(syntax->curnel-syntax
|
||||
(quasisyntax/loc syn (Π (x : t) e)))]))
|
||||
|
||||
(define-syntax (Type syn)
|
||||
(syntax-case syn ()
|
||||
[(_ i) (syntax->curnel-syntax #'(Unv i))]
|
||||
[_ #'(Type 0)]))
|
||||
[(_ i)
|
||||
(syntax->curnel-syntax
|
||||
(quasisyntax/loc syn (Unv i)))]
|
||||
[_ (quasisyntax/loc syn (Type 0))]))
|
||||
|
||||
(define-syntax (dep-inductive syn)
|
||||
(syntax-case syn (:)
|
||||
|
@ -1273,7 +1350,7 @@
|
|||
(syntax-case syn (:)
|
||||
[(_ D e P method ...)
|
||||
(syntax->curnel-syntax
|
||||
#`(elim D e P method ...))]))
|
||||
(quasisyntax/loc syn (elim D e P method ...)))]))
|
||||
|
||||
;; TODO: Not sure if this is the correct behavior for #%top
|
||||
(define-syntax (dep-var syn)
|
||||
|
|
|
@ -11,7 +11,7 @@
|
|||
;; Compute the motive
|
||||
(let ([M #`(lambda (x : #,(type-infer/syn #'t))
|
||||
#,(type-infer/syn #'s))])
|
||||
#`(elim bool t #,M s f))]))
|
||||
(quasisyntax/loc syn (elim bool t #,M s f)))]))
|
||||
|
||||
(define (bnot (x : bool)) (if x bfalse btrue))
|
||||
(module+ test
|
||||
|
|
|
@ -8,12 +8,12 @@
|
|||
|
||||
(module+ test
|
||||
(require rackunit "bool.rkt")
|
||||
;; TODO: Dependent pattern matching doesn't work yet
|
||||
(check-equal?
|
||||
#;(check-equal?
|
||||
(case* maybe (some bool btrue)
|
||||
(lambda (x : (maybe bool)) bool)
|
||||
[(none (A : Type)) with-IH ()
|
||||
[(none (A : Type)) IH: ()
|
||||
bfalse]
|
||||
[(some (A : Type) (x : A)) with-IH ()
|
||||
[(some (A : Type) (x : A)) IH: ()
|
||||
;; TODO: Don't know how to use dependency yet
|
||||
(if x btrue bfalse)])
|
||||
btrue))
|
||||
|
|
|
@ -8,8 +8,7 @@
|
|||
|
||||
(data nat : Type
|
||||
(z : nat)
|
||||
;; TODO: Can't use -> syntax here due to issues with names
|
||||
(s : (forall (x : nat) nat)))
|
||||
(s : (-> nat nat)))
|
||||
|
||||
(define (add1 (n : nat)) (s n))
|
||||
(module+ test
|
||||
|
@ -18,31 +17,35 @@
|
|||
(define (sub1 (n : nat))
|
||||
(case* nat n (lambda (x : nat) nat)
|
||||
[z z]
|
||||
[(s (x : nat)) IH: ((ih-x : nat)) x]))
|
||||
[(s (x : nat)) IH: ((ih-n : nat)) x]))
|
||||
(module+ test
|
||||
(check-equal? (sub1 (s z)) z))
|
||||
|
||||
(define (plus (n1 : nat) (n2 : nat))
|
||||
(case* nat n1 (lambda (x : nat) nat)
|
||||
[z n2]
|
||||
[(s (x : nat)) IH: ((ih-x : nat))
|
||||
(s ih-x)]))
|
||||
[(s (x : nat)) IH: ((ih-n1 : nat))
|
||||
(s ih-n1)]))
|
||||
(module+ test
|
||||
(check-equal? (plus z z) z)
|
||||
(check-equal? (plus (s (s z)) (s (s z))) (s (s (s (s z))))))
|
||||
|
||||
(define (nat-equal? (n1 : nat) (n2 : nat))
|
||||
(case* nat n1 (lambda (x : nat) bool)
|
||||
[z (case* nat n2 (lambda (x : nat) bool)
|
||||
[z btrue]
|
||||
[(s (x : nat)) IH: ((ih-x : bool)) bfalse])]
|
||||
;; TODO: Can't finish correct definition due to issues with names
|
||||
[(s (x : nat)) IH: ((ih-x : bool))
|
||||
(case* nat n2 (lambda (x : nat) bool)
|
||||
[z bfalse]
|
||||
[(s (x : nat)) IH: ((ih-x : bool))
|
||||
ih-x])]))
|
||||
;; Credit to this function goes to Max
|
||||
(define (nat-equal? (n1 : nat))
|
||||
(elim nat n1 (lambda (x : nat) (-> nat bool))
|
||||
(lambda (n2 : nat)
|
||||
(elim nat n2 (lambda (x : nat) bool)
|
||||
btrue
|
||||
(lambda* (x : nat) (ih-n2 : bool) bfalse)))
|
||||
(lambda* (x : nat) (ih : (-> nat bool))
|
||||
(lambda (n2 : nat)
|
||||
(elim nat n2 (lambda (x : nat) bool)
|
||||
bfalse
|
||||
(lambda* (x : nat) (ih-bla : bool)
|
||||
(ih x)))))))
|
||||
(module+ test
|
||||
(check-equal? (nat-equal? z z) btrue)
|
||||
(check-equal? (nat-equal? z (s z)) bfalse)
|
||||
(check-equal? (nat-equal? (s z) (s z)) btrue))
|
||||
|
||||
|
||||
|
|
|
@ -18,7 +18,7 @@
|
|||
|
||||
(define-theorem thm:anything-implies-true (forall (P : Type) true))
|
||||
|
||||
(qed (run thm:anything-implies-true) (lambda (P : Type) T))
|
||||
(qed thm:anything-implies-true (lambda (P : Type) T))
|
||||
|
||||
(data false : Type)
|
||||
|
||||
|
@ -36,16 +36,18 @@
|
|||
(case* and ab
|
||||
(lambda* (P : Type) (Q : Type) (ab : (and P Q))
|
||||
(and Q P))
|
||||
((conj (P : Type) (Q : Type) (x : P) (y : Q)) (conj Q P y x)))))
|
||||
((conj (P : Type) (Q : Type) (x : P) (y : Q)) IH: () (conj Q P y x)))))
|
||||
|
||||
#;(qed thm:and-is-symmetric proof:and-is-symmetric)
|
||||
(qed thm:and-is-symmetric proof:and-is-symmetric)
|
||||
|
||||
(define-theorem thm:proj1
|
||||
(forall* (A : Type) (B : Type) (c : (and A B)) A))
|
||||
|
||||
(define proof:proj1
|
||||
(lambda* (A : Type) (B : Type) (c : (and A B))
|
||||
(case c (conj (lambda* (A : Type) (B : Type) (a : A) (b : B) a)))))
|
||||
(case* and c
|
||||
(lambda* (A : Type) (B : Type) (c : (and A B)) A)
|
||||
((conj (A : Type) (B : Type) (a : A) (b : B)) IH: () a))))
|
||||
|
||||
(qed thm:proj1 proof:proj1)
|
||||
|
||||
|
@ -54,7 +56,9 @@
|
|||
|
||||
(define proof:proj2
|
||||
(lambda* (A : Type) (B : Type) (c : (and A B))
|
||||
(case c (conj (lambda* (A : Type) (B : Type) (a : A) (b : B) b)))))
|
||||
(case* and c
|
||||
(lambda* (A : Type) (B : Type) (c : (and A B)) B)
|
||||
((conj (A : Type) (B : Type) (a : A) (b : B)) IH: () b))))
|
||||
|
||||
(qed thm:proj2 proof:proj2)
|
||||
|
||||
|
|
|
@ -84,8 +84,12 @@
|
|||
(define-syntax-rule (define-theorem name prop)
|
||||
(define name prop))
|
||||
|
||||
;; TODO: Current implementation doesn't do beta/eta while type-checking
|
||||
;; because reasons. So manually insert a run in the type annotation
|
||||
(define-syntax-rule (qed thm pf)
|
||||
((lambda (x : (run thm)) Type) pf))
|
||||
(define-syntax (qed stx)
|
||||
(syntax-case stx ()
|
||||
[(_ t pf)
|
||||
(begin
|
||||
(unless (type-check/syn? #'pf #'t)
|
||||
(raise-syntax-error 'qed "Invalid proof"
|
||||
#'pf #'t))
|
||||
#'pf)]))
|
||||
|
||||
|
|
7
stlc.rkt
7
stlc.rkt
|
@ -17,13 +17,14 @@
|
|||
(emp-gamma : gamma)
|
||||
(extend-gamma : (->* gamma var stlc-type gamma)))
|
||||
|
||||
(define-rec (lookup-gamma (g : gamma) (x : var) : (maybe stlc-type))
|
||||
(case* g
|
||||
(define (lookup-gamma (g : gamma) (x : var))
|
||||
(case* gamma g (lambda* (g : gamma) (maybe stlc-type))
|
||||
[emp-gamma (none stlc-type)]
|
||||
[(extend-gamma (g1 : gamma) (v1 : var) (t1 : stlc-type))
|
||||
IH: ((ih-g1 : (maybe stlc-type)))
|
||||
(if (var-equal? v1 x)
|
||||
(some stlc-type t1)
|
||||
(lookup-gamma g1 x))]))
|
||||
ih-g1)]))
|
||||
|
||||
(define-relation (has-type gamma stlc-term stlc-type)
|
||||
#:output-coq "stlc.v"
|
||||
|
|
Loading…
Reference in New Issue
Block a user