Refactored core

Moved all curnel code into curnel/, and split the two kernel modules
into separate files. Now the trusted core and the module/#lang stuff are
in separate files. The #lang is now reprovided by "cur.rkt", which
should also provide core agnostic sugar.
This commit is contained in:
William J. Bowman 2015-09-15 18:02:36 -04:00
parent a29940ec69
commit 3ce14c3871
No known key found for this signature in database
GPG Key ID: DDD48D26958F0D1A
18 changed files with 1412 additions and 1420 deletions

View File

@ -31,4 +31,5 @@ translation defined in [Proofs for Free](http://staff.city.ac.uk/~ross/papers/pr
Open up anything in `stdlib/` to see some standard dependent-type
formalisms.
Open up `redex-curnel.rkt` to see the entire "trusted" core.
Open up `curnel/redex-core.rkt` to see the entire "trusted" (after a
large test suite) core.

4
cur.rkt Normal file
View File

@ -0,0 +1,4 @@
#lang racket/base
(require (rename-in "curnel/redex-lang.rkt" [provide real-provide]))
(provide (rename-out [real-provide provide]) (all-from-out "curnel/redex-lang.rkt"))

923
curnel/redex-core.rkt Normal file
View File

@ -0,0 +1,923 @@
#lang racket/base
(require
racket/function
(only-in racket/set set=?)
redex/reduction-semantics)
(provide
(all-defined-out))
(set-cache-size! 10000)
(module+ test
(require rackunit)
(define-syntax-rule (check-holds (e ...))
(check-true
(judgment-holds (e ...))))
(define-syntax-rule (check-not-holds (e ...))
(check-false
(judgment-holds (e ...)))))
;; References:
;; http://www3.di.uminho.pt/~mjf/pub/SFV-CIC-2up.pdf
;; https://www.cs.uoregon.edu/research/summerschool/summer11/lectures/oplss-herbelin1.pdf
;; http://www.emn.fr/z-info/ntabareau/papers/universe_polymorphism.pdf
;; http://people.cs.kuleuven.be/~jesper.cockx/Without-K/Pattern-matching-without-K.pdf
;; http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.74
;; http://eb.host.cs.st-andrews.ac.uk/writings/thesis.pdf
;; cicL is the core language of Cur. Very similar to TT (Idirs core)
;; and Luo's UTT. Used to be similar to CIC, hence the name.
;; Surface langauge should provide short-hand, such as -> for
;; non-dependent function types, and type inference.
(define-language cicL
(i ::= natural)
(U ::= (Unv i))
(x ::= variable-not-otherwise-mentioned)
(v ::= (Π (x : t) t) (λ (x : t) t) elim x U)
(t e ::= v (t t)))
(define x? (redex-match? cicL x))
(define t? (redex-match? cicL t))
(define e? (redex-match? cicL e))
(define v? (redex-match? cicL v))
(define U? (redex-match? cicL U))
(module+ test
(define-term Type (Unv 0))
(check-true (x? (term T)))
(check-true (x? (term A)))
(check-true (x? (term truth)))
(check-true (x? (term zero)))
(check-true (x? (term s)))
(check-true (t? (term zero)))
(check-true (t? (term s)))
(check-true (x? (term nat)))
(check-true (t? (term nat)))
(check-true (t? (term A)))
(check-true (t? (term S)))
(check-true (U? (term (Unv 0))))
(check-true (U? (term Type)))
(check-true (e? (term (λ (x_0 : (Unv 0)) x_0))))
(check-true (v? (term (λ (x_0 : (Unv 0)) x_0))))
(check-true (t? (term (λ (x_0 : (Unv 0)) x_0))))
(check-true (t? (term (λ (x_0 : (Unv 0)) x_0)))))
;; 'A'
;; Types of Universes
(define-judgment-form cicL
#:mode (unv-ok I O)
#:contract (unv-ok U U)
[(where i_1 ,(add1 (term i_0)))
-----------------
(unv-ok (Unv i_0) (Unv i_1))])
;; 'R'
;; Kinding, I think
(define-judgment-form cicL
#:mode (unv-kind I I O)
#:contract (unv-kind U U U)
[----------------
(unv-kind (Unv 0) (Unv 0) (Unv 0))]
[----------------
(unv-kind (Unv 0) (Unv i) (Unv i))]
[----------------
(unv-kind (Unv i) (Unv 0) (Unv 0))]
[(where i_3 ,(max (term i_1) (term i_2)))
----------------
(unv-kind (Unv i_1) (Unv i_2) (Unv i_3))])
(define-judgment-form cicL
#:mode (α-equivalent I I)
#:contract (α-equivalent t t)
[----------------- "α-x"
(α-equivalent x x)]
[----------------- "α-U"
(α-equivalent U U)]
[(α-equivalent t_1 (subst t_3 x_1 x_0))
(α-equivalent t_0 t_2)
----------------- "α-binder"
(α-equivalent (any (x_0 : t_0) t_1)
(any (x_1 : t_2) t_3))]
[(α-equivalent e_0 e_2)
(α-equivalent e_1 e_3)
----------------- "α-app"
(α-equivalent (e_0 e_1) (e_2 e_3))])
(module+ test
(check-holds (α-equivalent x x))
(check-not-holds (α-equivalent x y))
(check-holds (α-equivalent (λ (x : A) x) (λ (y : A) y))))
;; NB: Substitution is hard
;; NB: Copy and pasted from Redex examples
(define-metafunction cicL
subst-vars : (x any) ... any -> any
[(subst-vars (x_1 any_1) x_1) any_1]
[(subst-vars (x_1 any_1) (any_2 ...))
((subst-vars (x_1 any_1) any_2) ...)]
[(subst-vars (x_1 any_1) any_2) any_2]
[(subst-vars (x_1 any_1) (x_2 any_2) ... any_3)
(subst-vars (x_1 any_1) (subst-vars (x_2 any_2) ... any_3))]
[(subst-vars any) any])
(define-metafunction cicL
subst : t x t -> t
[(subst U x t) U]
[(subst x x t) t]
[(subst x_0 x t) x_0]
[(subst (any (x : t_0) t_1) x t)
(any (x : (subst t_0 x t)) t_1)]
[(subst (any (x_0 : t_0) t_1) x t)
(any (x_new : (subst (subst-vars (x_0 x_new) t_0) x t))
(subst (subst-vars (x_0 x_new) t_1) x t))
(where x_new
,(variable-not-in
(term (x_0 t_0 x t t_1))
(term x_0)))]
[(subst (e_0 e_1) x t) ((subst e_0 x t) (subst e_1 x t))]
[(subst elim x t) elim])
(module+ test
(check-true (t? (term (Π (a : A) (Π (b : B) ((and A) B))))))
(check-holds
(α-equivalent
(Π (a : S) (Π (b : B) ((and S) B)))
(subst (Π (a : A) (Π (b : B) ((and A) B))) A S))))
;; NB:
;; TODO: Why do I not have tests for substitutions?!?!?!?!?!?!?!!?!?!?!?!?!?!!??!?!
(define-metafunction cicL
subst-all : t (x ...) (e ...) -> t
[(subst-all t () ()) t]
[(subst-all t (x_0 x ...) (e_0 e ...))
(subst-all (subst t x_0 e_0) (x ...) (e ...))])
;; TODO: I think a lot of things can be simplified if I rethink how
;; TODO: model contexts, telescopes, and such.
(define-extended-language cic-redL cicL
(E ::= hole (v E) (E e)) ;; call-by-value
;; Σ (signature). (inductive-name : type ((constructor : type) ...))
(Σ ::= (Σ (x : t ((x : t) ...))))
(Ξ Φ ::= hole (Π (x : t) Ξ)) ;;(Telescope)
;; NB: Does an apply context correspond to a substitution (γ)?
(Θ ::= hole (Θ e))) ;;(Apply context)
(define Σ? (redex-match? cic-redL Σ))
(define Ξ? (redex-match? cic-redL Ξ))
(define Φ? (redex-match? cic-redL Φ))
(define Θ? (redex-match? cic-redL Θ))
(define E? (redex-match? cic-redL E))
(module+ test
;; TODO: Rename these signatures, and use them in all future tests.
(define Σ (term ( (nat : (Unv 0) ((zero : nat) (s : (Π (x : nat) nat)))))))
(define Σ0 (term ))
(define Σ3 (term ( (and : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0))) ()))))
(define Σ4 (term ( (and : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0)))
((conj : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (a : A) (Π (b : B) ((and A) B)))))))))))
(check-true (Σ? Σ0))
(check-true (Σ? Σ))
(check-true (Σ? Σ4))
(check-true (Σ? Σ3))
(check-true (Σ? Σ4))
(define sigma (term (((((( (true : (Unv 0) ((T : true))))
(false : (Unv 0) ()))
(equal : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0)))
()))
(nat : (Unv 0) ()))
(heap : (Unv 0) ()))
(pre : (Π (temp808 : heap) (Unv 0)) ()))))
(check-true (Σ? (term ( (true : (Unv 0) ((T : true)))))))
(check-true (Σ? (term ( (false : (Unv 0) ())))))
(check-true (Σ? (term ( (equal : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0)))
())))))
(check-true (Σ? (term ( (nat : (Unv 0) ())))))
(check-true (Σ? (term ( (pre : (Π (temp808 : heap) (Unv 0)) ())))))
(check-true (Σ? (term (( (true : (Unv 0) ((T : true)))) (false : (Unv 0) ())))))
(check-true (Σ? (term ((( (true : (Unv 0) ((T : true)))) (false : (Unv 0) ()))
(equal : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0)))
())))))
(check-true (Σ? sigma)))
(define-metafunction cic-redL
append-Σ : Σ Σ -> Σ
[(append-Σ Σ ) Σ]
[(append-Σ Σ_2 (Σ_1 (x : t ((x_c : t_c) ...))))
((append-Σ Σ_2 Σ_1) (x : t ((x_c : t_c) ...)))])
;; TODO: Test
;; TODO: Isn't this just plug?
(define-metafunction cic-redL
apply-telescope : t Ξ -> t
[(apply-telescope t hole) t]
[(apply-telescope t_0 (Π (x : t) Ξ)) (apply-telescope (t_0 x) Ξ)])
(define-metafunction cic-redL
apply-telescopes : t (Ξ ...) -> t
[(apply-telescopes t ()) t]
[(apply-telescopes t (Ξ_0 Ξ_rest ...))
(apply-telescopes (apply-telescope t Ξ_0) (Ξ_rest ...))])
;; NB: Depends on clause order
(define-metafunction cic-redL
select-arg : x (x ...) (Θ e) -> e
[(select-arg x (x x_r ...) (in-hole Θ (hole e))) e]
[(select-arg x (x_1 x_r ...) (in-hole Θ (hole e)))
(select-arg x (x_r ...) Θ)])
(define-metafunction cic-redL
method-lookup : Σ x x (Θ e) -> e
[(method-lookup Σ x_D x_ci Θ)
(select-arg x_ci (x_0 ...) Θ)
(where ((x_0 : t_0) ...) (constructors-for Σ x_D))])
(module+ test
(check-equal?
(term (method-lookup ,Σ nat s
((hole (s zero))
(λ (x : nat) (λ (ih-x : nat) (s (s zero)))))))
(term (λ (x : nat) (λ (ih-x : nat) (s (s zero)))))))
;; Create the recursive applications of elim to the recursive
;; arguments of an inductive constructor.
;; TODO: Poorly documented, and poorly tested.
(define-metafunction cic-redL
elim-recur : x e Θ Θ Θ (x ...) -> Θ
[(elim-recur x_D e_P Θ
(in-hole Θ_m (hole e_mi))
(in-hole Θ_i (hole (in-hole Θ_r x_ci)))
(x_c0 ... x_ci x_c1 ...))
((elim-recur x_D e_P Θ Θ_m Θ_i (x_c0 ... x_ci x_c1 ...))
(in-hole Θ (((elim x_D) (in-hole Θ_r x_ci)) e_P)))]
[(elim-recur x_D e_P Θ Θ_i Θ_nr (x ...)) hole])
(module+ test
(check-true
(redex-match? cic-redL (in-hole Θ_i (hole (in-hole Θ_r zero))) (term (hole zero))))
(check-equal?
(term (elim-recur nat (λ (x : nat) nat)
((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
(hole zero)
(zero s)))
(term (hole (((((elim nat) zero) (λ (x : nat) nat)) (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x))))))))
(check-equal?
(term (elim-recur nat (λ (x : nat) nat)
((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
(hole (s zero))
(zero s)))
(term (hole (((((elim nat) (s zero)) (λ (x : nat) nat)) (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))))))
(define-judgment-form cic-redL
#:mode (length-match I I)
#:contract (length-match Θ (x ...))
[----------------------
(length-match hole ())]
[(length-match Θ (x_r ...))
----------------------
(length-match (Θ e) (x x_r ...))])
(define cic-->
(reduction-relation cic-redL
(--> (Σ (in-hole E ((any (x : t_0) t_1) t_2)))
(Σ (in-hole E (subst t_1 x t_2)))
-->β)
(--> (Σ (in-hole E (in-hole Θ_m (((elim x_D) (in-hole Θ_i x_ci)) e_P))))
(Σ (in-hole E (in-hole Θ_r (in-hole Θ_i e_mi))))
(where ((x_c : t_c) ... (x_ci : t_ci) (x_cr : t_cr) ...) (constructors-for Σ x_D))
;; There should be a number of methods equal to the number of
;; constructors; to ensure E doesn't capture methods
(judgment-holds (length-match Θ_m (x_c ... x_ci x_cr ...)))
(where e_mi (method-lookup Σ x_D x_ci Θ_m))
(where Θ_r (elim-recur x_D e_P Θ_m Θ_m Θ_i (x_c ... x_ci x_cr ...)))
-->elim)))
(define-metafunction cic-redL
reduce : Σ e -> e
[(reduce Σ e) e_r
(where (_ e_r) ,(car (apply-reduction-relation* cic--> (term (Σ e)))))])
(module+ test
(check-equal? (term (reduce (Unv 0))) (term (Unv 0)))
(check-equal? (term (reduce ((λ (x : t) x) (Unv 0)))) (term (Unv 0)))
(check-equal? (term (reduce ((Π (x : t) x) (Unv 0)))) (term (Unv 0)))
;; NB: This test fails because not currently reducing under binders.
(check-equal? (term (reduce (Π (x : t) ((Π (x_0 : t) x_0) (Unv 0)))))
(term (Π (x : t) (Unv 0))))
(check-equal? (term (reduce (Π (x : t) ((Π (x_0 : t) (x_0 x)) x))))
(term (Π (x : t) ((Π (x_0 : t) (x_0 x)) x))))
(check-equal? (term (reduce ,Σ (((((elim nat) zero) (λ (x : nat) nat))
(s zero))
(λ (x : nat) (λ (ih-x : nat)
(s (s x)))))))
(term (s zero)))
(check-equal? (term (reduce ,Σ (((((elim nat) (s zero)) (λ (x : nat) nat))
(s zero))
(λ (x : nat) (λ (ih-x : nat)
(s (s x)))))))
(term (s (s zero))))
(check-equal? (term (reduce ,Σ (((((elim nat) (s (s (s zero)))) (λ (x : nat) nat))
(s zero))
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))))
(term (s (s (s (s zero))))))
(check-equal?
(term (reduce ,Σ
(((((elim nat) (s (s zero))) (λ (x : nat) nat))
(s (s zero)))
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))))
(term (s (s (s (s zero)))))))
(define-judgment-form cic-redL
#:mode (equivalent I I I)
#:contract (equivalent Σ t t)
[(where t_2 (reduce Σ t_0))
(where t_3 (reduce Σ t_1))
(α-equivalent t_2 t_3)
----------------- "≡-αβ"
(equivalent Σ t_0 t_1)])
(define-extended-language cic-typingL cic-redL
;; NB: There may be a bijection between Γ and Ξ. That's
;; NB: interesting.
(Γ ::= (Γ x : t)))
(define Γ? (redex-match? cic-typingL Γ))
(define-metafunction cic-typingL
append-Γ : Γ Γ -> Γ
[(append-Γ Γ ) Γ]
[(append-Γ Γ_2 (Γ_1 x : t))
((append-Γ Γ_2 Γ_1) x : t)])
;; NB: Depends on clause order
(define-metafunction cic-typingL
lookup-Γ : Γ x -> t or #f
[(lookup-Γ x) #f]
[(lookup-Γ (Γ x : t) x) t]
[(lookup-Γ (Γ x_0 : t_0) x_1) (lookup-Γ Γ x_1)])
;; NB: Depends on clause order
(define-metafunction cic-redL
lookup-Σ : Σ x -> t or #f
[(lookup-Σ x) #f]
[(lookup-Σ (Σ (x : t ((x_1 : t_1) ...))) x) t]
[(lookup-Σ (Σ (x_0 : t_0 ((x_1 : t_1) ... (x : t) (x_2 : t_2) ...))) x) t]
[(lookup-Σ (Σ (x_0 : t_0 ((x_1 : t_1) ...))) x) (lookup-Σ Σ x)])
;; NB: Depends on clause order
(define-metafunction cic-typingL
remove : Γ x -> Γ
[(remove x) ]
[(remove (Γ x : t) x) Γ]
[(remove (Γ x_0 : t_0) x_1) (remove Γ x_1)])
;; TODO: Add positivity checking.
(define-metafunction cicL
positive : t any -> #t or #f
[(positive any_1 any_2) #t])
;; NB: These tests may or may not fail because positivity checking is not implemented.
(module+ test
(check-true (term (positive nat nat)))
(check-true (term (positive (Π (x : (Unv 0)) (Π (y : (Unv 0)) (Unv 0))) #f)))
(check-true (term (positive (Π (x : nat) nat) nat)))
;; (nat -> nat) -> nat
;; Not sure if this is actually supposed to pass
(check-false (term (positive (Π (x : (Π (y : nat) nat)) nat) nat)))
;; ((Unv 0) -> nat) -> nat
(check-true (term (positive (Π (x : (Π (y : (Unv 0)) nat)) nat) nat)))
;; (((nat -> (Unv 0)) -> nat) -> nat)
(check-true (term (positive (Π (x : (Π (y : (Π (x : nat) (Unv 0))) nat)) nat) nat)))
;; Not sure if this is actually supposed to pass
(check-false (term (positive (Π (x : (Π (y : (Π (x : nat) nat)) nat)) nat) nat)))
(check-true (term (positive (Unv 0) #f))))
;; Holds when the signature Σ and typing context Γ are well-formed.
(define-judgment-form cic-typingL
#:mode (wf I I)
#:contract (wf Σ Γ)
[----------------- "WF-Empty"
(wf )]
[(type-infer Σ Γ t t_0)
(wf Σ Γ)
----------------- "WF-Var"
(wf Σ (Γ x : t))]
[(wf Σ )
(type-infer Σ t_D U_D)
(type-infer Σ ( x_D : t_D) t_c U_c) ...
;; NB: Ugh this should be possible with pattern matching alone ....
(side-condition ,(map (curry equal? (term Ξ_D)) (term (Ξ_D* ...))))
(side-condition ,(map (curry equal? (term x_D)) (term (x_D* ...))))
(side-condition (positive t_D (t_c ...)))
----------------- "WF-Inductive"
(wf (Σ (x_D : (name t_D (in-hole Ξ_D t))
;; Checks that a constructor for x actually produces an x, i.e., that
;; the constructor is well-formed.
((x_c : (name t_c (in-hole Ξ_D* (in-hole Φ (in-hole Θ x_D*))))) ...))) )])
(module+ test
(check-true (judgment-holds (wf ,Σ0 )))
(check-true (redex-match? cic-redL (in-hole Ξ (Unv 0)) (term (Unv 0))))
(check-true (redex-match? cic-redL (in-hole Ξ (in-hole Φ (in-hole Θ nat)))
(term (Π (x : nat) nat))))
(define (bindings-equal? l1 l2)
(map set=? l1 l2))
(check-pred
(curry bindings-equal?
(list (list
(make-bind 'Ξ (term (Π (x : nat) hole)))
(make-bind 'Φ (term hole))
(make-bind 'Θ (term hole)))
(list
(make-bind 'Ξ (term hole))
(make-bind 'Φ (term (Π (x : nat) hole)))
(make-bind 'Θ (term hole)))))
(map match-bindings (redex-match cic-redL (in-hole Ξ (in-hole Φ (in-hole Θ nat)))
(term (Π (x : nat) nat)))))
(check-pred
(curry bindings-equal?
(list
(list
(make-bind 'Φ (term (Π (x : nat) hole)))
(make-bind 'Θ (term hole)))))
(map match-bindings (redex-match cic-redL (in-hole hole (in-hole Φ (in-hole Θ nat)))
(term (Π (x : nat) nat)))))
(check-true
(redex-match? cic-redL
(in-hole hole (in-hole hole (in-hole hole nat)))
(term nat)))
(check-true
(redex-match? cic-redL
(in-hole hole (in-hole (Π (x : nat) hole) (in-hole hole nat)))
(term (Π (x : nat) nat))))
(check-holds (wf ( (nat : (Unv 0) ())) ))
(check-holds (wf ,Σ0 ))
(check-holds (type-infer (Unv 0) U))
(check-holds (type-infer ( nat : (Unv 0)) nat U))
(check-holds (type-infer ( nat : (Unv 0)) (Π (x : nat) nat) U))
(check-true (term (positive nat (nat (Π (x : nat) nat)))))
(check-holds
(wf ( (nat : (Unv 0) ((zero : nat)))) ))
(check-holds
(wf ( (nat : (Unv 0) ((s : (Π (x : nat) nat))))) ))
(check-holds (wf ,Σ ))
(check-holds (wf ,Σ3 ))
(check-holds (wf ,Σ4 ))
(check-holds (wf ( (truth : (Unv 0) ())) ))
(check-holds (wf ( x : (Unv 0))))
(check-holds (wf ( (nat : (Unv 0) ())) ( x : nat)))
(check-holds (wf ( (nat : (Unv 0) ())) ( x : (Π (x : nat) nat)))))
;; Returns the inductive hypotheses required for eliminating the
;; inductively defined type x_D with motive t_P, where the telescope
;; Φ are the inductive arguments to a constructor for x_D
(define-metafunction cic-redL
hypotheses-for : x t Φ -> Φ
[(hypotheses-for x_D t_P hole) hole]
[(hypotheses-for x_D t_P (Π (x : (in-hole Φ (in-hole Θ x_D))) Φ_1))
;; TODO: Thread through Σ for reduce
(Π (x_h : (in-hole Φ (reduce ((in-hole Θ t_P) (apply-telescope x Φ)))))
(hypotheses-for x_D t_P Φ_1))
;; NB: Lol hygiene
(where x_h ,(string->symbol (format "~a-~a" 'ih (term x))))])
;; Returns the inductive arguments to a constructor for the
;; inducitvely defined type x_D, where the telescope Φ are the
;; non-parameter arguments to the constructor.
(define-metafunction cic-redL
inductive-args : x Φ -> Φ
[(inductive-args x_D hole) hole]
[(inductive-args x_D (Π (x : (in-hole Φ (in-hole Θ x_D))) Φ_1))
(Π (x : (in-hole Φ (in-hole Θ x_D))) (inductive-args x_D Φ_1))]
;; NB: Depends on clause order
[(inductive-args x_D (Π (x : t) Φ_1))
(inductive-args x_D Φ_1)])
;; Returns the methods required for eliminating the inductively
;; defined type x_D, whose parameters/indices are Ξ_pi and whose
;; constructors are ((x_ci : t_ci) ...), with motive t_P.
(define-metafunction cic-redL
methods-for : x Ξ t ((x : t) ...) -> Ξ
[(methods-for x_D Ξ_pi t_P ()) hole]
[(methods-for x_D Ξ_pi t_P ((x_ci : (in-hole Ξ_pi (in-hole Φ (in-hole Θ x_D))))
(x_c : t) ...))
(Π (x_mi : (in-hole Ξ_pi (in-hole Φ (in-hole Φ_h
;; NB: Manually reducing types because no conversion
;; NB: rule
;; TODO: Thread through Σ for reduce
;; TODO: Might be able to remove this now that I have
;; TODO: equivalence in type-check
(reduce ((in-hole Θ t_P) (apply-telescopes x_ci (Ξ_pi Φ))))))))
(methods-for x_D Ξ_pi t_P ((x_c : t) ...)))
(where Φ_h (hypotheses-for x_D t_P (inductive-args x_D Φ)))
;; NB: Lol hygiene
(where x_mi ,(string->symbol (format "~a-~a" 'm (term x_ci))))])
(module+ test
(check-equal?
(term (methods-for nat hole P ((zero : nat) (s : (Π (x : nat) nat)))))
(term (Π (m-zero : (P zero))
(Π (m-s : (Π (x : nat) (Π (ih-x : (P x)) (P (s x)))))
hole))))
(check-equal?
(term (methods-for nat hole (λ (x : nat) nat) ((zero : nat) (s : (Π (x : nat) nat)))))
(term (Π (m-zero : nat) (Π (m-s : (Π (x : nat) (Π (ih-x : nat) nat)))
hole))))
(check-equal?
(term (methods-for and (Π (A : Type) (Π (B : Type) hole))
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) true)))
((conj : (Π (A : Type) (Π (B : Type) (Π (a : A) (Π (b : B)
((and A) B)))))))))
(term (Π (m-conj : (Π (A : Type) (Π (B : Type) (Π (a : A) (Π (b : B) true)))))
hole)))
(check-true (x? (term false)))
(check-true (Ξ? (term hole)))
(check-true (t? (term (λ (y : false) (Π (x : Type) x)))))
(check-true (redex-match? cicL ((x : t) ...) (term ())))
(check-equal?
(term (methods-for false hole (λ (y : false) (Π (x : Type) x))
()))
(term hole)))
;; Returns the inductively defined type that x constructs
;; NB: Depends on clause order
(define-metafunction cic-redL
constructor-of : Σ x -> x
[(constructor-of (Σ (x : t ((x_0 : t_0) ... (x_c : t_c) (x_1 : t_1) ...)))
x_c) x]
[(constructor-of (Σ (x_1 : t_1 ((x_c : t) ...))) x)
(constructor-of Σ x)])
(module+ test
(check-equal?
(term (constructor-of ,Σ zero))
(term nat))
(check-equal?
(term (constructor-of ,Σ s))
(term nat)))
;; Returns the constructors for the inductively defined type x_D in
;; the signature Σ
(define-metafunction cic-redL
constructors-for : Σ x -> ((x : t) ...) or #f
;; NB: Depends on clause order
[(constructors-for x_D) #f]
[(constructors-for (Σ (x_D : t_D ((x : t) ...))) x_D)
((x : t) ...)]
[(constructors-for (Σ (x_1 : t_1 ((x : t) ...))) x_D)
(constructors-for Σ x_D)])
(module+ test
(check-equal?
(term (constructors-for ,Σ nat))
(term ((zero : nat) (s : (Π (x : nat) nat)))))
(check-equal?
(term (constructors-for ,sigma false))
(term ())))
;; Holds when an apply context Θ provides arguments that match the
;; telescope Ξ
(define-judgment-form cic-typingL
#:mode (telescope-types I I I I)
#:contract (telescope-types Σ Γ Θ Ξ)
[----------------- "TT-Hole"
(telescope-types Σ Γ hole hole)]
[(type-check Σ Γ e t)
(telescope-types Σ Γ Θ Ξ)
----------------- "TT-Match"
(telescope-types Σ Γ (in-hole Θ (hole e)) (Π (x : t) Ξ))])
(module+ test
(check-holds
(telescope-types ,Σ (hole zero) (Π (x : nat) hole)))
(check-true
(redex-match? cic-redL (in-hole Θ (hole e))
(term ((hole zero) (λ (x : nat) x)))))
(check-holds
(telescope-types ,Σ (hole zero)
(methods-for nat hole
(λ (x : nat) nat)
((zero : nat)))))
(check-holds
(type-check ,Σ (λ (x : nat) (λ (ih-x : nat) x))
(Π (x : nat) (Π (ih-x : nat) nat))))
(check-holds
(telescope-types ,Σ
((hole zero)
(λ (x : nat) (λ (ih-x : nat) x)))
(methods-for nat hole
(λ (x : nat) nat)
(constructors-for ,Σ nat))))
(check-holds
(telescope-types (,Σ4 (true : (Unv 0) ((tt : true))))
(hole (λ (A : (Unv 0)) (λ (B : (Unv 0))
(λ (a : A) (λ (b : B) tt)))))
(methods-for and (Π (A : Type) (Π (B : Type) hole))
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) true)))
(constructors-for ,Σ4 and))))
(check-holds
(telescope-types ,sigma ( x : false)
hole
(methods-for false hole (λ (y : false) (Π (x : Type) x))
()))))
;; TODO: Bi-directional and inference?
;; TODO: http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/31/slides/stephanie.pdf
;; Holds when e has type t under signature Σ and typing context Γ
(define-judgment-form cic-typingL
#:mode (type-infer I I I O)
#:contract (type-infer Σ Γ e t)
[(unv-ok U_0 U_1)
(wf Σ Γ)
----------------- "DTR-Axiom"
(type-infer Σ Γ U_0 U_1)]
[(where t (lookup-Σ Σ x))
----------------- "DTR-Inductive"
(type-infer Σ Γ x t)]
[(where t (lookup-Γ Γ x))
----------------- "DTR-Start"
(type-infer Σ Γ x t)]
[(type-infer Σ Γ t_0 U_1)
(type-infer Σ (Γ x : t_0) t U_2)
(unv-kind U_1 U_2 U)
----------------- "DTR-Product"
(type-infer Σ Γ (Π (x : t_0) t) U)]
[(type-infer Σ Γ e_0 (Π (x_0 : t_0) t_1))
(type-infer Σ Γ e_1 t_2)
(equivalent Σ t_0 t_2)
----------------- "DTR-Application"
(type-infer Σ Γ (e_0 e_1) (subst t_1 x_0 e_1))]
[(type-infer Σ (Γ x : t_0) e t_1)
(type-infer Σ Γ (Π (x : t_0) t_1) U)
----------------- "DTR-Abstraction"
(type-infer Σ Γ (λ (x : t_0) e) (Π (x : t_0) t_1))]
[(type-infer Σ Γ x_D (in-hole Ξ U_D))
(type-infer Σ Γ e_D (in-hole Θ_ai x_D))
(type-infer Σ Γ e_P (in-hole Ξ_1 (Π (x : (in-hole Θ_Ξ x_D)) U_P)))
(equivalent Σ (in-hole Ξ (Unv 0)) (in-hole Ξ_1 (Unv 0)))
;; methods
(telescope-types Σ Γ Θ_m (methods-for x_D Ξ e_P (constructors-for Σ x_D)))
----------------- "DTR-Elim_D"
(type-infer Σ Γ (in-hole Θ_m (((elim x_D) e_D) e_P)) (reduce Σ ((in-hole Θ_ai e_P) e_D)))])
(define-judgment-form cic-typingL
#:mode (type-check I I I I)
#:contract (type-check Σ Γ e t)
[(type-infer Σ Γ e t_0)
(equivalent Σ t t_0)
----------------- "DTR-Check"
(type-check Σ Γ e t)])
(module+ test
(check-holds (type-infer (Unv 0) (Unv 1)))
(check-holds (type-infer ( x : (Unv 0)) (Unv 0) (Unv 1)))
(check-holds (type-infer ( x : (Unv 0)) x (Unv 0)))
(check-holds (type-infer (( x_0 : (Unv 0)) x_1 : (Unv 0))
(Π (x_3 : x_0) x_1) (Unv 0)))
(check-holds (type-infer ( x_0 : (Unv 0)) x_0 U_1))
(check-holds (type-infer (( x_0 : (Unv 0)) x_2 : x_0) (Unv 0) U_2))
(check-holds (unv-kind (Unv 0) (Unv 0) (Unv 0)))
(check-holds (type-infer ( x_0 : (Unv 0)) (Π (x_2 : x_0) (Unv 0)) t))
(check-holds (type-infer (λ (x : (Unv 0)) x) (Π (x : (Unv 0)) (Unv 0))))
(check-holds (type-infer (λ (y : (Unv 0)) (λ (x : y) x))
(Π (y : (Unv 0)) (Π (x : y) y))))
(check-equal? (list (term (Unv 1)))
(judgment-holds
(type-infer (( x1 : (Unv 0)) x2 : (Unv 0)) (Π (t6 : x1) (Π (t2 : x2) (Unv 0)))
U)
U))
;; ---- Elim
;; TODO: Clean up/Reorganize these tests
(check-true
(redex-match? cic-typingL
(in-hole Θ_m (((elim x_D) e_D) e_P))
(term ((((elim truth) T) (Π (x : truth) (Unv 1))) (Unv 0)))))
(define Σtruth (term ( (truth : (Unv 0) ((T : truth))))))
(check-holds (type-infer ,Σtruth truth (in-hole Ξ U)))
(check-holds (type-infer ,Σtruth T (in-hole Θ_ai truth)))
(check-holds (type-infer ,Σtruth (λ (x : truth) (Unv 1))
(in-hole Ξ (Π (x : (in-hole Θ truth)) U))))
(check-equal?
(term (methods-for truth hole (λ (x : truth) (Unv 1)) ((T : truth))))
(term (Π (m-T : (Unv 1)) hole)))
(check-holds (telescope-types ,Σtruth (hole (Unv 0))
(methods-for truth hole
(λ (x : truth) (Unv 1))
((T : truth)))))
(check-holds (type-check ( (truth : (Unv 0) ((T : truth))))
((((elim truth) T) (λ (x : truth) (Unv 1))) (Unv 0))
(Unv 1)))
(check-not-holds (type-check ( (truth : (Unv 0) ((T : truth))))
(((((elim truth) T) (Unv 1)) Type) Type)
(Unv 1)))
(check-holds
(type-infer (Π (x2 : (Unv 0)) (Unv 0)) U))
(check-holds
(type-infer ( x1 : (Unv 0)) (λ (x2 : (Unv 0)) (Π (t6 : x1) (Π (t2 : x2) (Unv 0))))
t))
(define-syntax-rule (nat-test syn ...)
(check-holds (type-infer ,Σ syn ...)))
(nat-test (Π (x : nat) nat) (Unv 0))
(nat-test (λ (x : nat) x) (Π (x : nat) nat))
(check-holds
(type-infer ,Σ nat (in-hole Ξ U)))
(check-holds
(type-infer ,Σ zero (in-hole Θ_ai nat)))
(check-holds
(type-infer ,Σ (λ (x : nat) nat)
(in-hole Ξ (Π (x : (in-hole Θ nat)) U))))
(nat-test (((((elim nat) zero) (λ (x : nat) nat)) zero)
(λ (x : nat) (λ (ih-x : nat) x)))
nat)
(nat-test nat (Unv 0))
(nat-test zero nat)
(nat-test s (Π (x : nat) nat))
(nat-test (s zero) nat)
(nat-test (((((elim nat) zero) (λ (x : nat) nat))
(s zero))
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
nat)
(nat-test ( n : nat)
(((((elim nat) n) (λ (x : nat) nat)) zero) (λ (x : nat) (λ (ih-x : nat) x)))
nat)
(check-holds
(type-check (,Σ (bool : (Unv 0) ((btrue : bool) (bfalse : bool))))
( n2 : nat)
(((((elim nat) n2) (λ (x : nat) bool)) btrue) (λ (x : nat) (λ (ih-x : bool) bfalse)))
bool))
(check-not-holds
(type-check ,Σ
((((elim nat) zero) nat) (s zero))
nat))
(define lam (term (λ (nat : (Unv 0)) nat)))
(check-equal?
(list (term (Π (nat : (Unv 0)) (Unv 0))))
(judgment-holds (type-infer ,Σ0 ,lam t) t))
(check-equal?
(list (term (Π (nat : (Unv 0)) (Unv 0))))
(judgment-holds (type-infer ,Σ ,lam t) t))
(check-equal?
(list (term (Π (x : (Π (y : (Unv 0)) y)) nat)))
(judgment-holds (type-infer ( (nat : (Unv 0) ())) (λ (x : (Π (y : (Unv 0)) y)) (x nat))
t) t))
(check-equal?
(list (term (Π (y : (Unv 0)) (Unv 0))))
(judgment-holds (type-infer ( (nat : (Unv 0) ())) (λ (y : (Unv 0)) y) t) t))
(check-equal?
(list (term (Unv 0)))
(judgment-holds (type-infer ( (nat : (Unv 0) ()))
((λ (x : (Π (y : (Unv 0)) (Unv 0))) (x nat))
(λ (y : (Unv 0)) y))
t) t))
(check-equal?
(list (term (Unv 0)) (term (Unv 1)))
(judgment-holds
(type-infer ,Σ4 (Π (S : (Unv 0)) (Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B)))))
U) U))
(check-holds
(type-check ,Σ4 ( S : (Unv 0)) conj (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (a : A) (Π (b : B) ((and A) B)))))))
(check-holds
(type-check ,Σ4 ( S : (Unv 0))
conj (Π (P : (Unv 0)) (Π (Q : (Unv 0)) (Π (x : P) (Π (y : Q) ((and P) Q)))))))
(check-holds
(type-check ,Σ4 ( S : (Unv 0)) S (Unv 0)))
(check-holds
(type-check ,Σ4 ( S : (Unv 0)) (conj S)
(Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B))))))
(check-holds
(type-check ,Σ4 ( S : (Unv 0)) (conj S)
(Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B))))))
(check-holds
(type-check ,Σ4 (λ (S : (Unv 0)) (conj S))
(Π (S : (Unv 0)) (Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B)))))))
(check-holds
(type-check (,Σ4 (true : (Unv 0) ((tt : true))))
((((conj true) true) tt) tt)
((and true) true)))
(check-holds
(type-infer ,Σ4 and (in-hole Ξ U_D)))
(check-holds
(type-infer (,Σ4 (true : (Unv 0) ((tt : true))))
((((conj true) true) tt) tt)
(in-hole Θ and)))
(check-holds
(type-infer (,Σ4 (true : (Unv 0) ((tt : true))))
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) true)))
(in-hole Ξ (Π (x : (in-hole Θ_Ξ and)) U_P))))
(check-holds
(type-check (,Σ4 (true : (Unv 0) ((tt : true))))
((((elim and) ((((conj true) true) tt) tt))
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
true))))
(λ (A : (Unv 0))
(λ (B : (Unv 0))
(λ (a : A)
(λ (b : B) tt)))))
true))
(check-true (Γ? (term ((( P : (Unv 0)) Q : (Unv 0)) ab : ((and P) Q)))))
(check-holds
(type-infer ,Σ4 and (in-hole Ξ U)))
(check-holds
(type-infer ,Σ4 ((( P : Type) Q : Type) ab : ((and P) Q))
ab (in-hole Θ and)))
(check-true
(redex-match? cic-redL
(in-hole Ξ (Π (x : (in-hole Θ and)) U))
(term (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (x : ((and A) B)) (Unv 0)))))))
(check-holds
(type-infer ,Σ4 ((( P : Type) Q : Type) ab : ((and P) Q))
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
((and B) A))))
(in-hole Ξ (Π (x : (in-hole Θ and)) U))))
(check-holds
(equivalent ,Σ4
(Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (x : ((and A) B)) (Unv 0))))
(Π (P : (Unv 0)) (Π (Q : (Unv 0)) (Π (x : ((and P) Q)) (Unv 0))))))
(check-holds
(type-infer ,Σ4
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
((and B) A))))
(in-hole Ξ (Π (x : (in-hole Θ_Ξ and)) U_P))))
(check-holds
(type-check ,Σ4
((( P : (Unv 0)) Q : (Unv 0)) ab : ((and P) Q))
((((elim and) ab)
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
((and B) A)))))
(λ (A : (Unv 0))
(λ (B : (Unv 0))
(λ (a : A)
(λ (b : B) ((((conj B) A) b) a))))))
((and Q) P)))
(check-holds
(type-check (,Σ4 (true : (Unv 0) ((tt : true))))
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) ((and B) A))))
(Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (x : ((and A) B)) (Unv 0))))))
(check-holds
(type-infer (,Σ4 (true : (Unv 0) ((tt : true))))
(( A : Type) B : Type)
(conj B)
t))
(check-holds
(type-check (,Σ4 (true : (Unv 0) ((tt : true))))
((((elim and) ((((conj true) true) tt) tt))
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
((and B) A)))))
(λ (A : (Unv 0))
(λ (B : (Unv 0))
(λ (a : A)
(λ (b : B) ((((conj B) A) b) a))))))
((and true) true)))
(define gamma (term ( temp863 : pre)))
(check-holds (wf ,sigma ))
(check-holds (wf ,sigma ,gamma))
(check-holds
(type-infer ,sigma ,gamma (Unv 0) t))
(check-holds
(type-infer ,sigma ,gamma pre t))
(check-holds
(type-check ,sigma (,gamma tmp863 : pre) (Unv 0) (Unv 1)))
(check-holds
(type-infer ,sigma ,gamma pre t))
(check-holds
(type-check ,sigma (,gamma tmp863 : pre) (Unv 0) (Unv 1)))
(check-holds
(type-infer ,sigma (,gamma x : false) false (in-hole Ξ U_D)))
(check-holds
(type-infer ,sigma (,gamma x : false) x (in-hole Θ false)))
(check-holds
(type-infer ,sigma (,gamma x : false) (λ (y : false) (Π (x : Type) x))
(in-hole Ξ (Π (x : (in-hole Θ false)) U))))
(check-true
(redex-match? cic-typingL (in-hole Θ_m (((elim x_D) e_D) e_P))
(term (((elim false) x) (λ (y : false) (Π (x : Type) x))))))
(check-holds
(type-check ,sigma (,gamma x : false)
(((elim false) x) (λ (y : false) (Π (x : Type) x)))
(Π (x : (Unv 0)) x))))

437
curnel/redex-lang.rkt Normal file
View File

@ -0,0 +1,437 @@
#lang racket/base
;; This module just provide module language sugar over the redex model.
;; TODO: Strip to racket/base as much as possible.
;; TODO: Remove trace,pretty, debugging stuff
(require
racket/pretty
"redex-core.rkt"
redex/reduction-semantics
racket/provide-syntax
(for-syntax
(except-in racket import)
syntax/parse
racket/pretty
racket/syntax
(except-in racket/provide-transform export)
racket/require-transform
(except-in "redex-core.rkt" remove)
redex/reduction-semantics))
(provide
;; Basic syntax
for-syntax
only-in
all-defined-out
rename-in
prefix-in
submod
#%module-begin
begin
(rename-out
[dep-module+ module+]
[dep-provide provide]
[dep-require require]
[dep-lambda lambda]
[dep-lambda λ]
[dep-app #%app]
[dep-forall forall]
[dep-forall ]
[dep-inductive data]
[dep-elim elim]
[dep-var #%top]
; [dep-datum #%datum]
[dep-define define])
Type
;; DYI syntax extension
define-syntax
begin-for-syntax
define-for-syntax
(for-syntax (all-from-out syntax/parse))
syntax-case
syntax-rules
define-syntax-rule
(for-syntax (all-from-out racket))
;; reflection
(for-syntax
cur-expand
type-infer/syn
type-check/syn?
normalize/syn
cur-equal?)
run)
(begin-for-syntax
;; TODO: Gamma and Sigma seem to get reset inside a module+
(define gamma
(make-parameter (term )
(lambda (x)
(unless (Γ? x)
(error 'core-error "We built a bad gamma ~s" x))
x)))
(define sigma
(make-parameter (term )
(lambda (x)
(unless (Σ? x)
(error 'core-error "We built a bad sigma ~s" x))
x)))
(define (extend-Γ/term env x t)
(term (,(env) ,x : ,t)))
(define (extend-Γ/term! env x t) (env (extend-Γ/term env x t)))
(define (extend-Γ/syn env x t)
(extend-Γ/term env (syntax->datum x) (cur->datum t)))
(define (extend-Γ/syn! env x t) (env (extend-Γ/syn env x t)))
(define (extend-Σ/term env x t c*)
(term (,(env) (,x : ,t (,@c*)))))
(define (extend-Σ/term! env x t c*)
(env (extend-Σ/term env x t c*)))
(define (extend-Σ/syn env x t c*)
(extend-Σ/term env (syntax->datum x) (cur->datum t)
(for/list ([c (syntax->list c*)])
(syntax-case c ()
[(c : ct)
(parameterize ([gamma (extend-Γ/syn gamma x t)])
(term (,(syntax->datum #'c) : ,(cur->datum #'ct))))]))))
(define (extend-Σ/syn! env x t c*)
(env (extend-Σ/syn env x t c*)))
(define bind-subst (make-parameter (list null null)))
(define (add-binding/term! x t)
(let ([vars (first (bind-subst))]
[exprs (second (bind-subst))])
(bind-subst (list (cons x vars) (cons t exprs)))))
;; TODO: Still absurdly slow. Probably doing n^2 checks of sigma and
;; gamma. And lookup on sigma, gamma are linear, so probably n^2 lookup time.
(define (type-infer/term t)
(let ([t (judgment-holds (type-infer ,(sigma) ,(gamma) ,t t_0) t_0)])
(and (pair? t) (car t))))
(define (type-check/term? e t)
(and (judgment-holds (type-check ,(sigma) ,(gamma) ,e ,t)) #t))
(define (syntax->curnel-syntax syn) (denote syn (cur->datum syn)))
(define (denote syn t)
(quasisyntax/loc
syn
(term (reduce #,(sigma) (subst-all #,(datum->syntax syn t) #,(first (bind-subst)) #,(second (bind-subst)))))))
;; TODO: Blanket disarming is probably a bad idea.
(define orig-insp (variable-reference->module-declaration-inspector
(#%variable-reference)))
(define (disarm syn) (syntax-disarm syn orig-insp))
;; Locally expand everything down to core forms.
(define (core-expand syn)
(disarm
(local-expand
syn
'expression
(append (syntax-e #'(term reduce subst-all dep-var #%app λ Π elim Unv #%datum))))))
;; Only type-check at the top-level, to prevent exponential
;; type-checking. Redex is expensive enough.
;; TODO: This results in less good error messages. Add an
;; algorithm to find the smallest ill-typed term.
(define inner-expand? (make-parameter #f))
;; Expand a piece of syntax into a curnel redex term
(define (cur->datum syn)
;; Main loop; avoid type
(define reified-term
(parameterize ([inner-expand? #t])
(let cur->datum ([syn syn])
(syntax-parse (core-expand syn)
#:literals (term reduce #%app subst-all)
#:datum-literals (elim Π λ : Unv)
[x:id (syntax->datum #'x)]
[(subst-all e _ _) (syntax->datum #'e)]
[(reduce Σ e) (cur->datum #'e)]
[(term e) (cur->datum #'e)]
[(Unv i) (term (Unv ,(syntax->datum #'i)))]
;; TODO: should really check that b is one of the binders
;; Maybe make a syntax class for the binders, core forms,
;; etc.
[(b:id (x:id : t) e)
(let* ([x (syntax->datum #'x)]
[t (cur->datum #'t)]
[e (parameterize ([gamma (extend-Γ/term gamma x t)])
(cur->datum #'e))])
(term (,(syntax->datum #'b) (,x : ,t) ,e)))]
[(elim t e P m ...)
(let* ([t (cur->datum #'t)]
[e (cur->datum #'e)]
[P (cur->datum #'P)]
[e (term (((elim ,t) ,e) ,P))])
(for/fold ([e e])
([m (syntax->list #'(m ...))])
(term (,e ,(cur->datum m)))))]
[(#%app e1 e2)
(term (,(cur->datum #'e1) ,(cur->datum #'e2)))]))))
(unless (and inner-expand? (type-infer/term reified-term))
;; TODO: is this really a syntax error?
(raise-syntax-error 'cur "term is ill-typed:"
(begin (printf "Sigma: ~s~nGamma: ~s~n" (sigma) (gamma))
reified-term)
syn))
reified-term)
;; Reflection tools
(define (normalize/syn syn)
(denote
syn
(term (reduce ,(sigma) (subst-all ,(cur->datum syn) ,(first (bind-subst)) ,(second (bind-subst)))))))
(define (run-cur->datum syn)
(cur->datum (normalize/syn syn)))
;; Are these two terms equivalent in type-systems internal equational reasoning?
(define (cur-equal? e1 e2)
(and (judgment-holds (equivalent ,(sigma) ,(run-cur->datum e1) ,(run-cur->datum e2)) #t)))
;; TODO: OOps, type-infer doesn't return a cur term but a redex term
;; wrapped in syntax bla. This is bad.
(define (type-infer/syn syn)
(let ([t (type-infer/term (run-cur->datum syn))])
(and t (datum->syntax syn t))))
(define (type-check/syn? syn type)
(type-check/term? (run-cur->datum syn) (run-cur->datum type)))
;; Takes a Cur term syn and an arbitrary number of identifiers ls. The cur term is
;; expanded until expansion reaches a Curnel form, or one of the
;; identifiers in ls.
(define (cur-expand syn . ls)
(disarm
(local-expand
syn
'expression
(append (syntax-e #'(Type dep-inductive dep-lambda dep-app dep-elim dep-forall dep-var))
ls)))))
;; TODO: OOps, run doesn't return a cur term but a redex term
;; wrapped in syntax bla. This is bad.
(define-syntax (run syn)
(syntax-case syn ()
[(_ expr) (normalize/syn #'expr)]))
;; -----------------------------------------------------------------
;; Require/provide macros
#| TODO NB XXX
| This is code some of the most hacky awful code I've ever written. But it works. ish
|#
(begin-for-syntax
(define envs (list #'(void)))
(define (cur-identifier-bound? id)
(let ([x (syntax->datum id)])
(and (x? x)
(or (term (lookup-Γ ,(gamma) ,x))
(term (lookup-Σ ,(sigma) ,x))))))
(define (filter-cur-exports syn modes)
(partition (compose cur-identifier-bound? export-local-id)
(apply append (map (lambda (e) (expand-export e modes))
(syntax->list syn))))))
(define-syntax extend-env-and-provide
(make-provide-transformer
(lambda (syn modes)
(syntax-case syn ()
[(_ e ...)
(let-values ([(cur ~cur) (filter-cur-exports #'(e ...) modes)])
#| TODO: Ignoring the built envs for now
(set! envs (for/list ([e cur])
(let* ([x (syntax->datum (export-local-id e))]
[t (type-infer/term x)]
[env (if (term (lookup ,(gamma) ,x)) #'gamma #'sigma)])
#`(extend-env/term! #,env #,(export-out-sym e) #,t))))
|#
~cur)]))))
(define-syntax (export-envs syn)
(syntax-case syn ()
[(_ gamma-out sigma-out bind-out)
#`(begin-for-syntax
(define gamma-out (term #,(gamma)))
(define sigma-out (term #,(sigma)))
(define bind-out '#,(bind-subst)))]))
;; TODO: This can only handle a single provide form, otherwise generates multiple *-out
(define-syntax (dep-provide syn)
(syntax-case syn ()
[(_ e ...)
(begin
#| TODO NB:
| Ignoring the built envs above, for now. The local-lift export seems to get executed before
| the filtered environment is built.
|#
;; TODO: rename out will need to rename variables in gamma and ; sigma.
(syntax-local-lift-module-end-declaration
#`(export-envs gamma-out sigma-out bind-out))
#`(provide (extend-env-and-provide e ...)
(for-syntax gamma-out sigma-out bind-out)))]))
(begin-for-syntax
(define out-gammas #`())
(define out-sigmas #`())
(define out-binds #`())
(define gn 0)
(define sn 0)
(define bn 0)
(define (filter-cur-imports syn)
(for/fold ([imports '()]
[sources '()])
([req-spec (syntax->list syn)])
(let-values ([(more-imports more-sources) (expand-import req-spec)])
(values (for/fold ([imports imports])
([imp more-imports])
(cond
[(equal? (import-src-sym imp) 'gamma-out)
(let ([new-id (format-id (import-orig-stx imp)
"gamma-out~a" gn)])
;; TODO: Fewer set!s
;; TODO: Do not DIY gensym
(set! gn (add1 gn))
(set! out-gammas
#`(#,@out-gammas (gamma (term (append-Γ
,(gamma)
,#,new-id)))))
(cons (struct-copy import imp [local-id new-id])
imports))]
;; TODO: Many shared code between these two clauses
[(equal? (import-src-sym imp) 'sigma-out)
(let ([new-id (format-id (import-orig-stx imp)
"sigma-out~a" sn)])
;; TODO: Fewer set!s
;; TODO: Do not DIY gensym
(set! sn (add1 sn))
(set! out-sigmas
#`(#,@out-sigmas (sigma (term (append-Σ
,(sigma)
,#,new-id)))))
(cons (struct-copy import imp [local-id new-id])
imports))]
;; TODO: Many shared code between these two clauses
[(equal? (import-src-sym imp) 'bind-out)
(let ([new-id (format-id (import-orig-stx imp)
"bind-out~a" bn)])
;; TODO: Fewer set!s
;; TODO: Do not DIY gensym
(set! bn (add1 bn))
(set! out-binds
#`(#,@out-binds (bind-subst (list (append
(first #,new-id)
(first (bind-subst)))
(append
(second #,new-id)
(second (bind-subst)))))))
(cons (struct-copy import imp [local-id new-id])
imports))]
[else (cons imp imports)]))
(append sources more-sources))))))
(define-syntax extend-env-and-require
(make-require-transformer
(lambda (syn)
(syntax-case syn ()
[(_ e ...) (filter-cur-imports #'(e ...))]))))
;; TODO: rename in will need to rename variables in gamma and
;; sigma.
(define-syntax (import-envs syn)
(syntax-case syn ()
[(_) #`(begin-for-syntax #,@out-gammas #,@out-sigmas
#,@out-binds)]))
(define-syntax (dep-require syn)
(syntax-case syn ()
[(_ e ...)
#`(begin
(require (extend-env-and-require e ...))
(import-envs))]))
(define-syntax (dep-module+ syn)
(syntax-case syn ()
[(_ name body ...)
#`(module+ name
(begin-for-syntax
(gamma (term #,(gamma)))
(sigma (term #,(sigma)))
(bind-subst '#,(bind-subst)))
body ...)]))
;; -----------------------------------------------------------------
;; Core wrapper macros
;;
;; TODO: Can these be simplified further?
#;(define-syntax (dep-datum syn) (denote #'syn))
(define-syntax (dep-lambda syn)
(syntax-case syn (:)
[(_ (x : t) e)
(syntax->curnel-syntax
(quasisyntax/loc syn (λ (x : t) e)))]))
(define-syntax (dep-app syn)
(syntax-case syn ()
[(_ e1 e2)
(syntax->curnel-syntax
(quasisyntax/loc syn (#%app e1 e2)))]))
(define-syntax (dep-forall syn)
(syntax-case syn (:)
[(_ (x : t) e)
(syntax->curnel-syntax
(quasisyntax/loc syn (Π (x : t) e)))]))
(define-syntax (Type syn)
(syntax-case syn ()
[(_ i)
(syntax->curnel-syntax
(quasisyntax/loc syn (Unv i)))]
[_ (quasisyntax/loc syn (Type 0))]))
(define-syntax (dep-inductive syn)
(syntax-case syn (:)
[(_ i : ti (x1 : t1) ...)
(begin
(extend-Σ/syn! sigma #'i #'ti #'((x1 : t1) ...))
#'(void))]))
(define-syntax (dep-elim syn)
(syntax-case syn (:)
[(_ D e P method ...)
(syntax->curnel-syntax
(quasisyntax/loc syn (elim D e P method ...)))]))
;; TODO: Not sure if this is the correct behavior for #%top
(define-syntax (dep-var syn)
(syntax-case syn ()
[(_ . id) #`(term (reduce #,(sigma) id))]))
;; TODO: Syntax-parse
(define-syntax (dep-define syn)
(syntax-case syn (:)
[(_ (name (x : t)) e)
#'(dep-define name (dep-lambda (x : t) e))]
[(_ id e)
(let ([e (cur->datum #'e)]
[id (syntax->datum #'id)])
(extend-Γ/term! gamma id (type-infer/term e))
(add-binding/term! id e)
#'(void))]))

View File

@ -1,11 +1,13 @@
#lang s-exp "redex-curnel.rkt"
#lang s-exp "cur.rkt"
;; Use racket libraries over your dependently typed code!?!?
;; TODO: actually, I'm not sure this should work quite as well as it
;; seems to with check-equal?
(require rackunit)
(require (only-in "redex-curnel.rkt" [#%app real-app]
[define real-define]))
(require
(only-in "cur.rkt"
[#%app real-app]
[define real-define]))
(define-syntax (#%app syn)
(syntax-case syn ()

View File

@ -1,4 +1,4 @@
#lang s-exp "redex-curnel.rkt"
#lang s-exp "cur.rkt"
;; OLL: The OTT-Like Library
;; TODO: Add latex extraction
;; TODO: Automagically create a parser from bnf grammar

View File

@ -1,6 +1,9 @@
#lang s-exp "redex-curnel.rkt"
(require "stdlib/sugar.rkt" "stdlib/prop.rkt" racket/trace
(for-syntax racket/syntax))
#lang s-exp "cur.rkt"
(require
"stdlib/sugar.rkt"
"stdlib/prop.rkt"
racket/trace
(for-syntax racket/syntax))
;; ---------
(begin-for-syntax

File diff suppressed because it is too large Load Diff

View File

@ -1,4 +1,4 @@
#lang s-exp "../redex-curnel.rkt"
#lang s-exp "../cur.rkt"
(provide bool btrue bfalse if bnot)
(data bool : Type

View File

@ -1,4 +1,4 @@
#lang s-exp "../redex-curnel.rkt"
#lang s-exp "../cur.rkt"
(require "sugar.rkt")
(provide maybe none some)

View File

@ -1,4 +1,4 @@
#lang s-exp "../redex-curnel.rkt"
#lang s-exp "../cur.rkt"
(require "sugar.rkt" "bool.rkt")
;; TODO: override (all-defined-out) to enable exporting all these
;; properly.

View File

@ -1,4 +1,4 @@
#lang s-exp "../redex-curnel.rkt"
#lang s-exp "../cur.rkt"
(require "sugar.rkt")
;; TODO: Handle multiple provide forms properly
;; TODO: Handle (all-defined-out) properly

View File

@ -1,19 +1,22 @@
#lang s-exp "../redex-curnel.rkt"
(provide ->
->*
forall*
lambda*
#%app
define
case*
define-type
define-theorem
qed
real-app
define-rec)
#lang s-exp "../cur.rkt"
(provide
->
->*
forall*
lambda*
#%app
define
case*
define-type
define-theorem
qed
real-app
define-rec)
(require (only-in "../redex-curnel.rkt" [#%app real-app]
[define real-define]))
(require
(only-in "../cur.rkt"
[#%app real-app]
[define real-define]))
(define-syntax (-> syn)

View File

@ -1,4 +1,4 @@
#lang s-exp "../../redex-curnel.rkt"
#lang s-exp "../../cur.rkt"
(require
(for-syntax racket/syntax))
(provide

View File

@ -1,4 +1,4 @@
#lang s-exp "../../redex-curnel.rkt"
#lang s-exp "../../cur.rkt"
(require
"base.rkt"
(prefix-in basic: "standard.rkt")

View File

@ -1,4 +1,4 @@
#lang s-exp "../../redex-curnel.rkt"
#lang s-exp "../../cur.rkt"
(require
"base.rkt"
(for-syntax racket/syntax))

View File

@ -1,4 +1,4 @@
#lang s-exp "../redex-curnel.rkt"
#lang s-exp "../cur.rkt"
(require
"nat.rkt"
"bool.rkt"

View File

@ -1,6 +1,11 @@
#lang s-exp "redex-curnel.rkt"
(require "stdlib/nat.rkt" "stdlib/sugar.rkt" "oll.rkt"
"stdlib/maybe.rkt" "stdlib/bool.rkt" "stdlib/prop.rkt")
#lang s-exp "cur.rkt"
(require
"stdlib/nat.rkt"
"stdlib/sugar.rkt"
"oll.rkt"
"stdlib/maybe.rkt"
"stdlib/bool.rkt"
"stdlib/prop.rkt")
(define-language stlc
#:vars (x)