Started converting to Redex + binding

This commit is contained in:
William J. Bowman 2015-09-24 14:41:01 -04:00
parent 4bb6dc3c71
commit 3e5af72334
No known key found for this signature in database
GPG Key ID: DDD48D26958F0D1A

View File

@ -36,7 +36,10 @@
(U ::= (Unv i))
(x ::= variable-not-otherwise-mentioned)
(v ::= (Π (x : t) t) (λ (x : t) t) elim x U)
(t e ::= v (t t)))
(t e ::= v (t t))
#:binding-forms
(λ (x : t) e #:refers-to x)
(Π (x : t) t #:refers-to x))
(define x? (redex-match? cicL x))
(define t? (redex-match? cicL t))
@ -93,67 +96,21 @@
----------------
(unv-kind (Unv i_1) (Unv i_2) (Unv i_3))])
(define-judgment-form cicL
#:mode (α-equivalent I I)
#:contract (α-equivalent t t)
[----------------- "α-x"
(α-equivalent x x)]
[----------------- "α-U"
(α-equivalent U U)]
[(α-equivalent t_1 (subst t_3 x_1 x_0))
(α-equivalent t_0 t_2)
----------------- "α-binder"
(α-equivalent (any (x_0 : t_0) t_1)
(any (x_1 : t_2) t_3))]
[(α-equivalent e_0 e_2)
(α-equivalent e_1 e_3)
----------------- "α-app"
(α-equivalent (e_0 e_1) (e_2 e_3))])
(module+ test
(check-holds (α-equivalent x x))
(check-not-holds (α-equivalent x y))
(check-holds (α-equivalent (λ (x : A) x) (λ (y : A) y))))
;; NB: Substitution is hard
;; NB: Copy and pasted from Redex examples
(define-metafunction cicL
subst-vars : (x any) ... any -> any
[(subst-vars (x_1 any_1) x_1) any_1]
[(subst-vars (x_1 any_1) (any_2 ...))
((subst-vars (x_1 any_1) any_2) ...)]
[(subst-vars (x_1 any_1) any_2) any_2]
[(subst-vars (x_1 any_1) (x_2 any_2) ... any_3)
(subst-vars (x_1 any_1) (subst-vars (x_2 any_2) ... any_3))]
[(subst-vars any) any])
α-equivalent? : t t -> #t or #f
[(α-equivalent? t_0 t_1)
,(alpha-equivalent? cicL (term t_0) (term t_1)) ])
(define-metafunction cicL
subst : t x t -> t
[(subst U x t) U]
[(subst x x t) t]
[(subst x_0 x t) x_0]
[(subst (any (x : t_0) t_1) x t)
(any (x : (subst t_0 x t)) t_1)]
[(subst (any (x_0 : t_0) t_1) x t)
(any (x_new : (subst (subst-vars (x_0 x_new) t_0) x t))
(subst (subst-vars (x_0 x_new) t_1) x t))
(where x_new
,(variable-not-in
(term (x_0 t_0 x t t_1))
(term x_0)))]
[(subst (e_0 e_1) x t) ((subst e_0 x t) (subst e_1 x t))]
[(subst elim x t) elim])
[(subst t_0 x t_1)
,(substitute cicL (term t_0) (term x) (term t_1))])
(module+ test
(check-true (t? (term (Π (a : A) (Π (b : B) ((and A) B))))))
(check-holds
(α-equivalent
(Π (a : S) (Π (b : B) ((and S) B)))
(subst (Π (a : A) (Π (b : B) ((and A) B))) A S))))
;; NB:
;; TODO: Why do I not have tests for substitutions?!?!?!?!?!?!?!!?!?!?!?!?!?!!??!?!
(check-true
(term
(α-equivalent?
(Π (a : S) (Π (b : B) ((and S) B)))
(subst (Π (a : A) (Π (b : B) ((and A) B))) A S)))))
(define-metafunction cicL
subst-all : t (x ...) (e ...) -> t
@ -343,7 +300,7 @@
[(where t_2 (reduce Σ t_0))
(where t_3 (reduce Σ t_1))
(α-equivalent t_2 t_3)
(side-condition (α-equivalent? t_2 t_3))
----------------- "≡-αβ"
(equivalent Σ t_0 t_1)])