Typing checking sans ≡ is becoming a problem

elim tests now use the correct API, but typing is a problem without ≡
while typing. I think I could strongly normalize types and such while
typing checking...
This commit is contained in:
William J. Bowman 2015-04-17 01:24:38 -04:00
parent ae6c29d1e6
commit 4290654cdd

View File

@ -120,8 +120,8 @@
(λ (y : A) y))))
(define-metafunction cicL
fresh-x : t ... -> x
[(fresh-x t ...) ,(variable-not-in (term (t ...)) (term x))])
fresh-x : any ... -> x
[(fresh-x any ...) ,(variable-not-in (term (any ...)) (term x))])
;; NB: Substitution is hard
;; NB: Copy and pasted from Redex examples
@ -168,7 +168,7 @@
(subst-all (subst t x_0 e_0) (x ...) (e ...))])
(define-extended-language cic-redL cicL
(E ::= hole (v E) (E e)) ;; call-by-value
(E ::= hole (v E) (E e) (Π (x : E) e)) ;; call-by-value
;; Σ (signature). (inductive-name : type ((constructor : type) ...))
(Σ ::= (Σ (x : t ((x : t) ...))))
(Ξ Φ ::= hole (Π (x : t) Ξ)) ;;(Telescope)
@ -254,34 +254,34 @@
;; arguments of an inductive constructor.
;; TODO: Poorly documented, and poorly tested.
(define-metafunction cic-redL
elim-recur : x e Θ Θ Θ (x ...) -> Θ
[(elim-recur x_D e_P Θ
elim-recur : x U e Θ Θ Θ (x ...) -> Θ
[(elim-recur x_D U e_P Θ
(in-hole Θ_m (hole e_mi))
(in-hole Θ_i (hole (in-hole Θ_r x_ci)))
(x_c0 ... x_ci x_c1 ...))
((elim-recur x_D e_P Θ Θ_m Θ_i (x_c0 ... x_ci x_c1 ...))
(in-hole (Θ (in-hole Θ_r x_ci)) ((elim x_D) e_P)))]
[(elim-recur x_D e_P Θ Θ_i Θ_nr (x ...)) hole])
((elim-recur x_D U e_P Θ Θ_m Θ_i (x_c0 ... x_ci x_c1 ...))
(in-hole (Θ (in-hole Θ_r x_ci)) (((elim x_D) U) e_P)))]
[(elim-recur x_D U e_P Θ Θ_i Θ_nr (x ...)) hole])
(module+ test
(check-true
(redex-match? cic-redL (in-hole Θ_i (hole (in-hole Θ_r zero))) (term (hole zero))))
(check-equal?
(term (elim-recur nat (λ (x : nat) nat)
(term (elim-recur nat Type (λ (x : nat) nat)
((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
(hole zero)
(zero s)))
(term (hole (((((elim nat) (λ (x : nat) nat))
(term (hole ((((((elim nat) Type) (λ (x : nat) nat))
(s zero))
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
zero))))
(check-equal?
(term (elim-recur nat (λ (x : nat) nat)
(term (elim-recur nat Type (λ (x : nat) nat)
((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
(hole (s zero))
(zero s)))
(term (hole (((((elim nat) (λ (x : nat) nat))
(term (hole ((((((elim nat) Type) (λ (x : nat) nat))
(s zero))
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
(s zero))))))
@ -301,12 +301,13 @@
(--> (Σ (in-hole E ((any (x : t_0) t_1) t_2)))
(Σ (in-hole E (subst t_1 x t_2)))
-->β)
(--> (Σ (in-hole E (in-hole Θ ((elim x_D) e_P))))
(--> (Σ (in-hole E (in-hole Θ (((elim x_D) U) e_P))))
(Σ (in-hole E (in-hole Θ_r (in-hole Θ_i e_mi))))
;; The elim form must appear applied like so:
;; (elim x_D e_P m_0 ... m_i m_j ... m_n p ... (c_i p ... a ...))
;; (elim x_D U e_P m_0 ... m_i m_j ... m_n p ... (c_i p ... a ...))
;; Where:
; x_D is the inductive being eliminated
; U is the sort of the motive
; e_P is the motive
; m_{0..n} are the methods
; p ... are the parameters of x_D
@ -326,7 +327,7 @@
;; constructors; to ensure E doesn't capture methods
(judgment-holds (length-match Θ_m (x_c* ...)))
(where e_mi (method-lookup Σ x_D x_ci Θ_m))
(where Θ_r (elim-recur x_D e_P Θ_m Θ_m Θ_i (x_c* ...)))
(where Θ_r (elim-recur x_D U e_P Θ_m Θ_m Θ_i (x_c* ...)))
-->elim)))
(define-metafunction cic-redL
@ -342,26 +343,30 @@
(term (Π (x : t) (Unv 0))))
(check-equal? (term (reduce (Π (x : t) ((Π (x_0 : t) (x_0 x)) x))))
(term (Π (x : t) ((Π (x_0 : t) (x_0 x)) x))))
(check-equal? (term (reduce ,Σ (((((elim nat) zero) (λ (x : nat) nat))
(s zero))
(λ (x : nat) (λ (ih-x : nat)
(s (s x)))))))
(check-equal? (term (reduce ,Σ ((((((elim nat) Type) (λ (x : nat) nat))
(s zero))
(λ (x : nat) (λ (ih-x : nat)
(s (s x)))))
zero)))
(term (s zero)))
(check-equal? (term (reduce ,Σ (((((elim nat) (s zero)) (λ (x : nat) nat))
(s zero))
(λ (x : nat) (λ (ih-x : nat)
(s (s x)))))))
(check-equal? (term (reduce ,Σ ((((((elim nat) Type) (λ (x : nat) nat))
(s zero))
(λ (x : nat) (λ (ih-x : nat)
(s (s x)))))
(s zero))))
(term (s (s zero))))
(check-equal? (term (reduce ,Σ (((((elim nat) (s (s (s zero)))) (λ (x : nat) nat))
(s zero))
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))))
(check-equal? (term (reduce ,Σ ((((((elim nat) Type) (λ (x : nat) nat))
(s zero))
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
(s (s (s zero))))))
(term (s (s (s (s zero))))))
(check-equal?
(term (reduce ,Σ
(((((elim nat) (s (s zero))) (λ (x : nat) nat))
(s (s zero)))
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))))
((((((elim nat) Type) (λ (x : nat) nat))
(s (s zero)))
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
(s (s zero)))))
(term (s (s (s (s zero)))))))
(define-judgment-form cic-redL
@ -688,10 +693,10 @@
(type-infer Σ Γ (Π (x : t_0) t) U)]
[(type-infer Σ Γ e_0 (Π (x_0 : t_0) t_1))
(type-infer Σ Γ e_1 t_2)
(equivalent Σ t_0 t_2)
(type-check Σ Γ e_1 t_0)
(where t_3 (reduce Σ ((Π (x_0 : t_0) t_1) e_1)))
----------------- "DTR-Application"
(type-infer Σ Γ (e_0 e_1) (subst t_1 x_0 e_1))]
(type-infer Σ Γ (e_0 e_1) t_3)]
[(type-infer Σ (Γ x : t_0) e t_1)
(type-infer Σ Γ (Π (x : t_0) t_1) U)
@ -699,27 +704,31 @@
(type-infer Σ Γ (λ (x : t_0) e) (Π (x : t_0) t_1))]
[(type-infer Σ Γ x_D (in-hole Ξ U_D))
;; A fresh name for the motive
(where x_P (fresh-x x_D (in-hole Ξ U_D)))
(where x (fresh-x x_P x_D (in-hole Ξ U_D)))
;; A fresh name to bind the discriminant
(where x (fresh-x Σ Γ x_D Ξ))
;; The telescope (∀ a -> ... -> (D a ...) hole), i.e.,
;; of the parameters and the inductive type applied to the
;; parameters
(where Ξ_P*D (in-hole Ξ (Π (x : (apply-telescope x_D Ξ)) hole)))
;; A fresh name for the motive
(where x_P (fresh-x Σ Γ x_D Ξ Ξ_P*D x))
;; The types of the methods for this inductive.
(where Ξ_m (methods-for x_D Ξ x_P (constructors-for Σ x_D)))
----------------- "DTR-Elim_D"
(type-infer Σ Γ (elim x_D)
;; The type of elim_D is something like:
;; (∀ (P : (∀ a -> ... -> (D a ...) -> Type))
(type-infer Σ Γ ((elim x_D) U)
;; The type of ((elim x_D) U) is something like:
;; (∀ (P : (∀ a -> ... -> (D a ...) -> U))
;; (method_ci ...) -> ... ->
;; (a -> ... -> (D a ...) ->
;; (P a ... (D a ...))))
;; Formally, A motive P, which takes all the parameters of the
;; type x_D, and a discriminant of x_D applied to those
;; parameters
;; TODO: (Unv 0) is too restricted
(Π (x_P : (in-hole Ξ_P*D (Unv 0)))
;;
;; x_D is an inductively defined type
;; U is the sort the motive
;; x_P is the name of the motive
;; Ξ_P*D is the telescope of the parameters of x_D and
;; the witness of type x_D (applied to the parameters)
;; Ξ_m is the telescope of the methods for x_D
(Π (x_P : (in-hole Ξ_P*D U))
;; The methods Ξ_m for each constructor of type x_D
(in-hole Ξ_m
;; And finally, the parameters and discriminant
@ -760,8 +769,8 @@
;; TODO: Clean up/Reorganize these tests
(check-true
(redex-match? cic-typingL
(in-hole Θ_m (((elim x_D) e_D) e_P))
(term ((((elim truth) T) (Π (x : truth) (Unv 1))) (Unv 0)))))
(in-hole Θ_m ((((elim x_D) U) e_D) e_P))
(term (((((elim truth) Type) T) (Π (x : truth) (Unv 1))) (Unv 0)))))
(define Σtruth (term ( (truth : (Unv 0) ((T : truth))))))
(check-holds (type-infer ,Σtruth truth (in-hole Ξ U)))
(check-holds (type-infer ,Σtruth T (in-hole Θ_ai truth)))
@ -774,57 +783,76 @@
(methods-for truth hole
(λ (x : truth) (Unv 1))
((T : truth)))))
(check-true
(judgment-holds
(type-infer ,Σtruth (elim truth) t) t))
(check-holds (type-infer ,Σtruth ((elim truth) Type) t))
(check-holds (type-check ( (truth : (Unv 0) ((T : truth))))
((((elim truth) T) (λ (x : truth) (Unv 1))) (Unv 0))
(Unv 1)))
(((((elim truth) (Unv 2)) (λ (x : truth) (Unv 1))) (Unv 0))
T)
(Unv 1)))
(check-not-holds (type-check ( (truth : (Unv 0) ((T : truth))))
(((((elim truth) T) (Unv 1)) Type) Type)
(((((elim truth) (Unv 1)) Type) Type) T)
(Unv 1)))
(check-holds
(type-infer (Π (x2 : (Unv 0)) (Unv 0)) U))
(check-holds
(type-infer ( x1 : (Unv 0)) (λ (x2 : (Unv 0)) (Π (t6 : x1) (Π (t2 : x2) (Unv 0))))
t))
(define-syntax-rule (nat-test syn ...)
(check-holds (type-infer ,Σ syn ...)))
(nat-test (Π (x : nat) nat) (Unv 0))
(nat-test (λ (x : nat) x) (Π (x : nat) nat))
(check-holds
(type-infer ,Σ nat (in-hole Ξ U)))
(check-holds
(type-infer ,Σ zero (in-hole Θ_ai nat)))
(check-holds
(type-infer ,Σ (λ (x : nat) nat)
(in-hole Ξ (Π (x : (in-hole Θ nat)) U))))
(nat-test (((((elim nat) zero) (λ (x : nat) nat)) zero)
(λ (x : nat) (λ (ih-x : nat) x)))
nat)
(in-hole Ξ (Π (x : (in-hole Θ nat)) U))))
(define-syntax-rule (nat-test syn ...)
(check-holds (type-check ,Σ syn ...)))
(nat-test (Π (x : nat) nat) (Unv 0))
(nat-test (λ (x : nat) x) (Π (x : nat) nat))
(nat-test nat (Unv 0))
(nat-test zero nat)
(nat-test s (Π (x : nat) nat))
(nat-test (s zero) nat)
(nat-test (((((elim nat) zero) (λ (x : nat) nat))
(s zero))
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
;; TODO: Meta-function auto-currying and such
(check-true
(judgment-holds
(type-infer ,Σ (((elim nat) (Unv 0)) (λ (x : nat) nat)) t) t))
(check-true
(judgment-holds
(type-infer ,Σ ((((elim nat) (Unv 0)) (λ (x : nat) nat)) zero) t) t))
#;(Π (m-zero1 : ((λ (x : nat) nat) zero))
(Π (m-s1 : (Π (x1 : nat) (Π (ih-x1 : ((λ (x : nat) nat) x1))
((λ (x : nat) nat) (s x1)))))
(Π (x3 : nat) ((λ (x : nat) nat) x3))))
(check-holds
(type-infer ,Σ (((((elim nat) (Unv 0)) (λ (x : nat) nat))
zero)
(λ (x : nat) (λ (ih-x : nat) x)))
t))
(nat-test ((((((elim nat) (Unv 0)) (λ (x : nat) nat))
zero)
(λ (x : nat) (λ (ih-x : nat) x)))
zero)
nat)
(nat-test ((((((elim nat) (Unv 0)) (λ (x : nat) nat))
(s zero))
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
zero)
nat)
(nat-test ( n : nat)
(((((elim nat) n) (λ (x : nat) nat)) zero) (λ (x : nat) (λ (ih-x : nat) x)))
((((((elim nat) (Unv 0)) (λ (x : nat) nat)) zero) (λ (x : nat) (λ (ih-x : nat) x))) n)
nat)
(check-holds
(type-check (,Σ (bool : (Unv 0) ((btrue : bool) (bfalse : bool))))
( n2 : nat)
(((((elim nat) n2) (λ (x : nat) bool)) btrue) (λ (x : nat) (λ (ih-x : bool) bfalse)))
((((((elim nat) (Unv 0)) (λ (x : nat) bool))
btrue)
(λ (x : nat) (λ (ih-x : bool) bfalse)))
n2)
bool))
(check-not-holds
(type-check ,Σ
((((elim nat) zero) nat) (s zero))
(((((elim nat) (Unv 0)) nat) (s zero)) zero)
nat))
(define lam (term (λ (nat : (Unv 0)) nat)))
(check-equal?
@ -883,13 +911,14 @@
(in-hole Ξ (Π (x : (in-hole Θ_Ξ and)) U_P))))
(check-holds
(type-check (,Σ4 (true : (Unv 0) ((tt : true))))
((((elim and) ((((conj true) true) tt) tt))
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
true))))
(λ (A : (Unv 0))
(λ (B : (Unv 0))
(λ (a : A)
(λ (b : B) tt)))))
(((((elim and) (Unv 0))
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
true))))
(λ (A : (Unv 0))
(λ (B : (Unv 0))
(λ (a : A)
(λ (b : B) tt)))))
((((conj true) true) tt) tt))
true))
(check-true (Γ? (term ((( P : (Unv 0)) Q : (Unv 0)) ab : ((and P) Q)))))
(check-holds
@ -918,13 +947,14 @@
(check-holds
(type-check ,Σ4
((( P : (Unv 0)) Q : (Unv 0)) ab : ((and P) Q))
((((elim and) ab)
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
((and B) A)))))
(λ (A : (Unv 0))
(λ (B : (Unv 0))
(λ (a : A)
(λ (b : B) ((((conj B) A) b) a))))))
(((((elim and) (Unv 0))
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
((and B) A)))))
(λ (A : (Unv 0))
(λ (B : (Unv 0))
(λ (a : A)
(λ (b : B) ((((conj B) A) b) a))))))
ab)
((and Q) P)))
(check-holds
(type-check (,Σ4 (true : (Unv 0) ((tt : true))))
@ -937,13 +967,14 @@
t))
(check-holds
(type-check (,Σ4 (true : (Unv 0) ((tt : true))))
((((elim and) ((((conj true) true) tt) tt))
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
((and B) A)))))
(λ (A : (Unv 0))
(λ (B : (Unv 0))
(λ (a : A)
(λ (b : B) ((((conj B) A) b) a))))))
(((((elim and) (Unv 0))
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
((and B) A)))))
(λ (A : (Unv 0))
(λ (B : (Unv 0))
(λ (a : A)
(λ (b : B) ((((conj B) A) b) a))))))
((((conj true) true) tt) tt))
((and true) true)))
(define gamma (term ( temp863 : pre)))
(check-holds (wf ,sigma ))
@ -966,11 +997,12 @@
(type-infer ,sigma (,gamma x : false) (λ (y : false) (Π (x : Type) x))
(in-hole Ξ (Π (x : (in-hole Θ false)) U))))
(check-true
(redex-match? cic-typingL (in-hole Θ_m (((elim x_D) e_D) e_P))
(term (((elim false) x) (λ (y : false) (Π (x : Type) x))))))
(redex-match? cic-typingL ((in-hole Θ_m ((((elim x_D) U) e_P))) e_D)
(term ((((elim false) (Unv 1)) (λ (y : false) (Π (x : Type) x)))
x))))
(check-holds
(type-check ,sigma (,gamma x : false)
(((elim false) x) (λ (y : false) (Π (x : Type) x)))
((((elim false) (Unv 0)) (λ (y : false) (Π (x : Type) x))) x)
(Π (x : (Unv 0)) x)))))
;; This module just provide module language sugar over the redex model.