Add type-inferring constructors

Convention: /i denotes a type-inferring version of something.
This commit is contained in:
Max New 2015-10-02 18:06:33 -04:00
parent 04405758ff
commit 44b4f5ca81
2 changed files with 23 additions and 4 deletions

View File

@ -1,13 +1,22 @@
#lang s-exp "../cur.rkt"
(require "sugar.rkt")
(provide Maybe none some)
(provide Maybe none some some/i)
(data Maybe : (forall (A : Type) Type)
(none : (forall (A : Type) (Maybe A)))
(some : (forall* (A : Type) (a : A) (Maybe A))))
(define-syntax (some/i syn)
(syntax-case syn ()
[(_ a)
(let ([a-ty (type-infer/syn #'a)])
#`(some #,a-ty a))]))
(module+ test
(require rackunit "bool.rkt")
(check-equal?
(some/i true)
(some Bool true))
;; Disabled until #22 fixed
#;(check-equal?
(case* Maybe Type (some Bool true) (Bool)

View File

@ -8,7 +8,7 @@
False
Not
And
conj
conj conj/i
thm:and-is-symmetric proof:and-is-symmetric
thm:proj1 proof:proj1
thm:proj2 proof:proj2
@ -28,6 +28,13 @@
(conj : (forall* (A : Type) (B : Type)
(x : A) (y : B) (And A B))))
(define-syntax (conj/i syn)
(syntax-case syn ()
[(_ a b)
(let ([a-type (type-infer/syn #'a)]
[b-type (type-infer/syn #'b)])
#`(conj #,a-type #,b-type a b))]))
(define-theorem thm:and-is-symmetric
(forall* (P : Type) (Q : Type) (ab : (And P Q)) (And Q P)))
@ -36,7 +43,7 @@
(case* And Type ab (P Q)
(lambda* (P : Type) (Q : Type) (ab : (And P Q))
(And Q P))
((conj (P : Type) (Q : Type) (x : P) (y : Q)) IH: () (conj Q P y x)))))
((conj (P : Type) (Q : Type) (x : P) (y : Q)) IH: () (conj/i y x)))))
(qed thm:and-is-symmetric proof:and-is-symmetric)
@ -94,4 +101,7 @@
true
true
(refl Bool true))
z))
z)
(check-equal?
(conj/i (conj/i T T) T)
(conj (And True True) True (conj True True T T) T)))